1
|
Anagnostopoulou E, Tsouko E, Maina S, Myrtsi ED, Haroutounian S, Papanikolaou S, Koutinas A. Unlocking the potential of spent coffee grounds via a comprehensive biorefinery approach: production of microbial oil and carotenoids under fed-batch fermentation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:35483-35497. [PMID: 38727974 DOI: 10.1007/s11356-024-33609-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 05/04/2024] [Indexed: 05/30/2024]
Abstract
The valorization of renewable feedstock to produce a plethora of value-added products could promote the transition towards a circular bioeconomy. This study presents the development of cascade processes to bioconvert spent coffee grounds (SCGs) into microbial oil and carotenoids employing sustainable practices. The stepwise recovery of crude phenolic extract and coffee oil was carried out using green or recyclable solvents, i.e., aqueous ethanol and hexane. Palmitic acid (43.3%) and linoleic acid (38.9%) were the major fatty acids in the oil fraction of SCGs. The LC-MS analysis of crude phenolic extracts revealed that chlorogenic acid dominated (45.7%), while neochlorogenic acid was also detected in substantial amounts (24.0%). SCGs free of coffee oil and phenolic compounds were subjected to microwave-assisted pretreatment under different irradiations and solvents to enhance subsequent enzymatic saccharification. Microwave/water pretreatment at 400 W, followed by enzymatic hydrolysis with proteases, hemicellulases, and cellulases, at 50 g/L initial SCGs, led to satisfying overall yields of cellulose (75.4%), hemicellulose (50.3%), and holocellulose (55.3%). Mannan was the most extractable polysaccharide followed by galactan and arabinan. SCGs hydrolysate was used in fed-batch bioreactor fermentations with Rhodosporidium toruloides to produce 24.0 g/L microbial oil and carotenoids of 432.9 μg/g biomass.
Collapse
Affiliation(s)
- Elena Anagnostopoulou
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 11855, Athens, Greece
| | - Erminta Tsouko
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 11855, Athens, Greece.
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Ave, 11635, Athens, Greece.
| | - Sofia Maina
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 11855, Athens, Greece
| | - Eleni D Myrtsi
- Department of Nutritional Physiology and Feeding, Agricultural University of Athens, Iera Odos 75, 11855, Athens, Greece
| | - Serkos Haroutounian
- Department of Nutritional Physiology and Feeding, Agricultural University of Athens, Iera Odos 75, 11855, Athens, Greece
| | - Seraphim Papanikolaou
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 11855, Athens, Greece
| | - Apostolos Koutinas
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 11855, Athens, Greece
| |
Collapse
|
2
|
Yuan K, Huang R, Gong K, Xiao Z, Chen J, Cai S, Shen J, Xiong Z, Lin Z. Smartphone-based hand-held polarized light microscope for on-site pharmaceutical crystallinity characterization. Anal Bioanal Chem 2023:10.1007/s00216-023-04582-1. [PMID: 36786836 DOI: 10.1007/s00216-023-04582-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/22/2023] [Accepted: 01/31/2023] [Indexed: 02/15/2023]
Abstract
Polarized light microscopy (PLM) is a common but critical method for pharmaceutical crystallinity characterization, which has been widely introduced for research purposes or drug testing and is recommended by many pharmacopeias around the world. To date, crystallinity characterization of pharmaceutical solids is restricted to laboratories due to the relatively bulky design of the conventional PLM system, while little attention has been paid to on-site, portable, and low-cost applications. Herein, we developed a smartphone-based polarized microscope with an ultra-miniaturization design ("hand-held" scale) for these purposes. The compact system consists of an optical lens, two polarizers, and a tailor-made platform to hold the smartphone. Analytical performance parameters including resolution, imaging quality of interference color, and imaging reproducibility were measured. In a first approach, we illustrated the suitability of the device for pharmaceutical crystallinity characterization and obtained high-quality birefringence images comparable to a conventional PLM system, and we also showed the great promise of the device for on-site characterization with high flexibility. In a second approach, we employed the device as a proof of concept for a wider application ranging from liquid crystal to environmental pollutants or tissues from plants. As such, this smartphone-based hand-held polarized light microscope shows great potential in helping pharmacists both for research purposes and on-site drug testing, not to mention its broad application prospects in many other fields.
Collapse
Affiliation(s)
- Kaisong Yuan
- Bio-Analytical Laboratory, Shantou University Medical College, No. 22, Xinling Road, Shantou, 515041, China.
| | - Rui Huang
- Bio-Analytical Laboratory, Shantou University Medical College, No. 22, Xinling Road, Shantou, 515041, China
| | - Kaishuo Gong
- Bio-Analytical Laboratory, Shantou University Medical College, No. 22, Xinling Road, Shantou, 515041, China
| | - Ziyi Xiao
- Bio-Analytical Laboratory, Shantou University Medical College, No. 22, Xinling Road, Shantou, 515041, China
| | - Jialin Chen
- Bio-Analytical Laboratory, Shantou University Medical College, No. 22, Xinling Road, Shantou, 515041, China
| | - Siyao Cai
- Bio-Analytical Laboratory, Shantou University Medical College, No. 22, Xinling Road, Shantou, 515041, China
| | - Jiayi Shen
- Bio-Analytical Laboratory, Shantou University Medical College, No. 22, Xinling Road, Shantou, 515041, China
| | - Zuer Xiong
- Bio-Analytical Laboratory, Shantou University Medical College, No. 22, Xinling Road, Shantou, 515041, China
| | - Zhexuan Lin
- Bio-Analytical Laboratory, Shantou University Medical College, No. 22, Xinling Road, Shantou, 515041, China.
| |
Collapse
|
3
|
Titiri E, Filippi K, Giannakis N, Vlysidis A, Koutinas A, Stylianou E. Optimisation of alkaline pretreatment of spent coffee grounds for microbial oil production by Cryptococcus curvatus. Biochem Eng J 2023. [DOI: 10.1016/j.bej.2023.108841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|