1
|
Xie X, Zhang X, Chen T, Yu D, Ma M, Lu X, Xu G. High-coverage identification of hydroxyl compounds based on pyridine derivatization-assisted liquid chromatography mass spectrometry. Anal Chim Acta 2024; 1322:343065. [PMID: 39182991 DOI: 10.1016/j.aca.2024.343065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/29/2024] [Accepted: 08/05/2024] [Indexed: 08/27/2024]
Abstract
Hydroxyl compounds are widely present in plants and play essential roles in plant growth and development. High-coverage detection of hydroxyl compounds is crucial for understanding the physiological processes of plants. Despite the prevalence of chemical derivatization-assisted liquid chromatography-high resolution mass spectrometry (CD-LC-HRMS) in high-coverage detection of compounds with diverse functional groups, the confident identification of these compounds after derivatization remains a significant challenge. Herein, a novel method was developed for the identification of pyridine (PY)-derivatized hydroxyl compounds by comparing the MS/MS similarity of derivatized and corresponding underivatized compounds. Fragmentation rules of standards were summarized, and theoretical calculations have demonstrated the MS/MS similarity of PY-derivatized hydroxyl compounds with their underivatized counterparts. The effectiveness of the developed method was demonstrated by identifying PY-derivatized authentic standards. A total of 90 hydroxyl compounds were putatively identified in maize using the proposed method. This method can significantly enhance ionization efficiency with minimal impact on the quality of the MS/MS spectra, enabling the effective utilization of mass spectra databases for the identification of hydroxyl compounds.
Collapse
Affiliation(s)
- Xiaoyu Xie
- CAS Key Laboratory of Separation Science for Anal. Chem, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; Key Laboratory of Phytochemical R&D of Hunan Province, Hunan Normal University, Changsha, 410081, China
| | - Xiuqiong Zhang
- CAS Key Laboratory of Separation Science for Anal. Chem, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Tiantian Chen
- CAS Key Laboratory of Separation Science for Anal. Chem, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Di Yu
- CAS Key Laboratory of Separation Science for Anal. Chem, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; Liaoning Province Key Laboratory of Metabolomics, Dalian, 116023, China
| | - Ming Ma
- Key Laboratory of Phytochemical R&D of Hunan Province, Hunan Normal University, Changsha, 410081, China
| | - Xin Lu
- CAS Key Laboratory of Separation Science for Anal. Chem, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; Liaoning Province Key Laboratory of Metabolomics, Dalian, 116023, China.
| | - Guowang Xu
- CAS Key Laboratory of Separation Science for Anal. Chem, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; Liaoning Province Key Laboratory of Metabolomics, Dalian, 116023, China.
| |
Collapse
|
2
|
Wang X, Shang D, Chen J, Cheng S, Chen D, Zhang Z, Liu C, Yu J, Cao H, Li L, Li L. Serum metabolomics reveals the effectiveness of human placental mesenchymal stem cell therapy for Crohn's disease. Talanta 2024; 277:126442. [PMID: 38897006 DOI: 10.1016/j.talanta.2024.126442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 06/10/2024] [Accepted: 06/15/2024] [Indexed: 06/21/2024]
Abstract
Mesenchymal stem cell (MSC) therapy offers a promising cure for Crohn's disease (CD), however, its therapeutic effects vary significantly due to individual differences. Therefore, identifying easily detectable biomarkers is essential to assess the efficacy of MSC therapy. In this study, SAMP1/Yit mice were used as a model of CD, which develop spontaneous chronic ileitis, closely resembling the characteristics present in CD patients. Serum metabolic alterations during treatment were analyzed, through the application of differential 12C-/13C-dansylation labeling liquid chromatography-mass spectrometry. Based on the significant differences and time-varying trends of serum amine/phenol-containing metabolites abundance between the control group, the model group, and the treatment group, four serum biomarkers were ultimately screened for evaluating the efficacy of MSC treatment for CD, namely 4-hydroxyphenylpyruvate, 4-hydroxyphenylacetaldehyde, caffeate, and N-acetyltryptamine, whose abundances both increased in the serum of CD model mice and decreased after MSC treatment. These metabolic alterations were associated with tyrosine metabolism, which was validated by the dysregulation of related enzymes. The discovery of biomarkers may help to improve the targeting and effectiveness of treatment and provide innovative prospects for the clinical application of MSC for CD.
Collapse
Affiliation(s)
- Xiao Wang
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan City 250117, China
| | - Dandan Shang
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan City 250117, China
| | - Junyao Chen
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou City 310003, China
| | - Sheng Cheng
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou City 310003, China
| | - Deying Chen
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou City 310003, China
| | - Zhehua Zhang
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou City 310003, China
| | - Chaoxu Liu
- Department of Colorectal Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou City 310003, China
| | - Jiong Yu
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan City 250117, China; State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou City 310003, China; Zhejiang Key Laboratory for Diagnosis and Treatment of Physic-chemical and Aging-related Injuries, 79 Qingchun Rd, Hangzhou City 310003, China.
| | - Hongcui Cao
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan City 250117, China; State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou City 310003, China; Zhejiang Key Laboratory for Diagnosis and Treatment of Physic-chemical and Aging-related Injuries, 79 Qingchun Rd, Hangzhou City 310003, China.
| | - Liang Li
- Department of Chemistry, University of Alberta, Edmonton, Alberta, T6G 2G2, Canada
| | - Lanjuan Li
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan City 250117, China; State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou City 310003, China
| |
Collapse
|
3
|
Wishart DS, Hiebert-Giesbrecht M, Inchehborouni G, Cao X, Guo AC, LeVatte MA, Torres-Calzada C, Gautam V, Johnson M, Liigand J, Wang F, Zahraei S, Bhumireddy S, Wang Y, Zheng J, Mandal R, Dyck JRB. Chemical Composition of Commercial Cannabis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:14099-14113. [PMID: 38181219 PMCID: PMC11212042 DOI: 10.1021/acs.jafc.3c06616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/18/2023] [Accepted: 12/22/2023] [Indexed: 01/07/2024]
Abstract
Cannabis is widely used for medicinal and recreational purposes. As a result, there is increased interest in its chemical components and their physiological effects. However, current information on cannabis chemistry is often outdated or scattered across many books and journals. To address this issue, we used modern metabolomics techniques and modern bioinformatics techniques to compile a comprehensive list of >6000 chemical constituents in commercial cannabis. The metabolomics methods included a combination of high- and low-resolution liquid chromatography-mass spectrometry (MS), gas chromatography-MS, and inductively coupled plasma-MS. The bioinformatics methods included computer-aided text mining and computational genome-scale metabolic inference. This information, along with detailed compound descriptions, physicochemical data, known physiological effects, protein targets, and referential compound spectra, has been made available through a publicly accessible database called the Cannabis Compound Database (https://cannabisdatabase.ca). Such a centralized, open-access resource should prove to be quite useful for the cannabis community.
Collapse
Affiliation(s)
- David S. Wishart
- Department
of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
- Department
of Computing Science, University of Alberta, Edmonton, Alberta T6G 2E8, Canada
- Faculty
of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
- Department
of Laboratory Medicine and Pathology, University
of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | | | - Gozal Inchehborouni
- Department
of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Xuan Cao
- Department
of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - An Chi Guo
- Department
of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Marcia A. LeVatte
- Department
of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Claudia Torres-Calzada
- Department
of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Vasuk Gautam
- Department
of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Mathew Johnson
- Department
of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Jaanus Liigand
- Department
of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Fei Wang
- Department
of Computing Science, University of Alberta, Edmonton, Alberta T6G 2E8, Canada
| | - Shirin Zahraei
- Department
of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Sudarshana Bhumireddy
- Department
of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Yilin Wang
- Department
of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Jiamin Zheng
- Department
of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Rupasri Mandal
- Department
of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Jason R. B. Dyck
- Department
of Pediatrics, University of Alberta, Edmonton, Alberta T6G 1C9, Canada
| |
Collapse
|
4
|
Ghafari N, Sleno L. Challenges and recent advances in quantitative mass spectrometry-based metabolomics. ANALYTICAL SCIENCE ADVANCES 2024; 5:e2400007. [PMID: 38948317 PMCID: PMC11210748 DOI: 10.1002/ansa.202400007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/03/2024] [Accepted: 06/08/2024] [Indexed: 07/02/2024]
Abstract
The field of metabolomics has gained tremendous interest in recent years. Whether the goal is to discover biomarkers related to certain pathologies or to better understand the impact of a drug or contaminant, numerous studies have demonstrated how crucial it is to understand variations in metabolism. Detailed knowledge of metabolic variabilities can lead to more effective treatments, as well as faster or less invasive diagnostics. Exploratory approaches are often employed in metabolomics, using relative quantitation to look at perturbations between groups of samples. Most metabolomics studies have been based on metabolite profiling using relative quantitation, with very few studies using an approach for absolute quantitation. Using accurate quantitation facilitates the comparison between different studies, as well as enabling longitudinal studies. In this review, we discuss the most widely used techniques for quantitative metabolomics using mass spectrometry (MS). Various aspects will be addressed, such as the use of external and/or internal standards, derivatization techniques, in vivo isotopic labelling, or quantitative MS imaging. The principles, as well as the associated limitations and challenges, will be described for each approach.
Collapse
Affiliation(s)
- Nathan Ghafari
- Chemistry Department/CERMO‐FCUniversity of Quebec in Montreal (UQAM)MontrealCanada
| | - Lekha Sleno
- Chemistry Department/CERMO‐FCUniversity of Quebec in Montreal (UQAM)MontrealCanada
| |
Collapse
|
5
|
Xie X, Chen L, Chen T, Yang F, Wang Z, Hu Y, Lu J, Lu X, Li Q, Zhang X, Ma M, Wang L, Hu C, Xu G. Profiling and annotation of carbonyl compounds in Baijiu Daqu by chlorine isotope labeling-assisted ultrahigh-performance liquid chromatography-high resolution mass spectrometry. J Chromatogr A 2023; 1703:464110. [PMID: 37262933 DOI: 10.1016/j.chroma.2023.464110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 05/23/2023] [Accepted: 05/25/2023] [Indexed: 06/03/2023]
Abstract
Carbonyl compounds are among the most important flavor substances that affect the taste of Baijiu. However, high coverage analysis of carbonyl compounds is obstructed due to the poor ionization efficiency of these compounds. Here we report a chlorine isotope labeling-assisted ultrahigh-performance liquid chromatography-high resolution mass spectrometry-based method (CIL-UHPLCHRMS) for profiling and annotation of carbonyl compounds in sauce flavored-Baijiu Daqu. 4-Chloro-2-hydrazinylpyridine was demonstrated to be a good labeling reagent that could achieve highly sensitive profiling and high-coverage screening of carbonyl compounds in the absence of heavy isotope labeling reagents. In the analysis of eight carbonyl standards representing different carbonyl categories, l-(-)-fucose, 2-carboxybenzaldehyde, 2-hydroxyacetophenone and heptan-2-one could be ionized only after labeling and MS signals were significantly increased for other 4 standards with an enhancement factor ranging from 181-fold for 3-methoxysalicylaldehyde to 3141-fold for tridecan-2-one. The annotation was achieved based on multidimensional information including MS1, predicted tR, in silico MS/MS and manually annotated fragments. In total, 487 carbonyl compounds were detected in Baijiu Daqu, among which, 314 (64.5%) of them were positively or putatively identified. The outcome of the linearity (with a linear range of 2, 3 orders of magnitude), precision (less than 10%), and limit of detection (varied from 0.07 to 0.10 nM) indicated that the method was adequate for profiling carbonyl compounds in complex biological samples. The established method was successfully applied to study carbonyl compounds in Baijiu Daqu with different colors and different seasons. Taken collectively, the present work provides an effective, simple and economic strategy for comprehensive analysis of carbonyl compounds in complex matrix samples.
Collapse
Affiliation(s)
- Xiaoyu Xie
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; Key Laboratory of Phytochemical R&D of Hunan Province, Hunan Normal University, Changsha 410081, China
| | - Liangqiang Chen
- Kweichow Moutai Co., Ltd, Renhuai, Guizhou 564501, China; Kweichow Moutai Group, Renhuai, Guizhou 564501, China
| | - Tiantian Chen
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Fan Yang
- Kweichow Moutai Co., Ltd, Renhuai, Guizhou 564501, China; Kweichow Moutai Group, Renhuai, Guizhou 564501, China
| | - Zixuan Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yang Hu
- Kweichow Moutai Co., Ltd, Renhuai, Guizhou 564501, China; Kweichow Moutai Group, Renhuai, Guizhou 564501, China
| | - Jianjun Lu
- Kweichow Moutai Co., Ltd, Renhuai, Guizhou 564501, China; Kweichow Moutai Group, Renhuai, Guizhou 564501, China
| | - Xin Lu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; Liaoning Province Key Laboratory of Metabolomics, Dalian 116023, China
| | - Qi Li
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; Liaoning Province Key Laboratory of Metabolomics, Dalian 116023, China
| | - Xiuqiong Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Ming Ma
- Key Laboratory of Phytochemical R&D of Hunan Province, Hunan Normal University, Changsha 410081, China
| | - Li Wang
- Kweichow Moutai Co., Ltd, Renhuai, Guizhou 564501, China; Kweichow Moutai Group, Renhuai, Guizhou 564501, China.
| | - Chunxiu Hu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; Liaoning Province Key Laboratory of Metabolomics, Dalian 116023, China.
| | - Guowang Xu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; Liaoning Province Key Laboratory of Metabolomics, Dalian 116023, China
| |
Collapse
|
6
|
Potential Biomarkers for Alleviation of Streptococcus pneumoniae Pneumonia by QingFei Yin. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2023. [DOI: 10.1016/j.cjac.2023.100234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
7
|
Dong L, Zhao C, Zhang F, Ma Y, Song C, Penttinen P, Zhang S, Li Z. Metabolic characterization of different-aged Monascus vinegars via HS-SPME-GC-MS and CIL LC-MS approach. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
8
|
Liu M, Xu X, Wang X, Wang H, Mi Y, Gao X, Guo D, Yang W. Enhanced Identification of Ginsenosides Simultaneously from Seven Panax Herbal Extracts by Data-Dependent Acquisition Including a Preferred Precursor Ions List Derived from an In-House Programmed Virtual Library. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:13796-13807. [PMID: 36239255 DOI: 10.1021/acs.jafc.2c06781] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Data-dependent acquisition (DDA) is widely utilized for metabolite identification in natural product research and food science, which, however, can suffer from low coverage. A potential solution to improve DDA coverage is to include the precursor ions list (PIL). Here, we aimed to construct a PIL-containing DDA strategy based on an in-house library of ginsenosides (VLG) and identify ginsenosides simultaneously from seven Panax herbal extracts. VLG, combined with mass defect filtering, could efficiently screen the ginsenoside precursors and elaborate the separate PIL involved in DDA for each ginseng extract. Consequently, we could characterize 500 ginsenosides, including 176 ones with unknown masses. Using the Panax ginseng extract, the superiority of this strategy was embodied in targeting more known ginsenoside masses and newly acquiring the MS2 spectra of 13 components. Conclusively, knowledge-based large-scale molecular prediction and PIL-DDA can represent a powerful targeted/untargeted strategy beneficial to novel natural compound discovery.
Collapse
Affiliation(s)
- Meiyu Liu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China
| | - Xiaoyan Xu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China
| | - Xiaoyan Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China
| | - Hongda Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China
| | - Yueguang Mi
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China
| | - Xiumei Gao
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China
| | - Dean Guo
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China
| | - Wenzhi Yang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China
| |
Collapse
|