1
|
Lee S, Payne C, Rees S, Ahrens H, Arve L, Asmus E, Bojack G, Arsequell ELB, Gatzweiler E, Helmke H, Kallus C, Laber B, Lange G, Lehr S, Menne H, Rosinger CH, Schulte W, Sommer K, Barber DM. Investigation of acetyl-CoA carboxylase-inhibiting herbicides that exhibit soybean crop selectivity. PEST MANAGEMENT SCIENCE 2024. [PMID: 39394802 DOI: 10.1002/ps.8469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/14/2024]
Abstract
The sustainable control of weed populations, particularly resistant species, is a significant challenge in agriculture around the world. The α-aryl-keto-enol (aryl-KTE) class of acetyl-CoA carboxylase (ACCase)-inhibiting herbicides represent a possible solution for the control of resistant grasses even though achieving crop selectivity remains a challenge. Herein, we present some of our investigations into identifying the most promising structural features within the aryl-KTE class that give the highest chance of achieving soybean crop selectivity, whilst also maintaining strong and broad efficacy against problematic weed species. We further examined our results by preparing new aryl-KTE molecules which were evaluated in glasshouse screening assays for their herbicidal efficacy as well as their soybean selectivity. We consider that uniting this approach with other optimization criteria, such as toxicological and environmental safety profiles, will enable the streamlining of crop protection optimizations programmes, ultimately delivering safer and more sustainable solutions to farmers and consumers. © 2024 The Author(s). Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Stephanie Lee
- Research and Development, Weed Control Research, Bayer AG, Crop Science Division, Industriepark Höchst, Frankfurt am Main, Germany
| | - China Payne
- Research and Development, Weed Control Research, Bayer AG, Crop Science Division, Industriepark Höchst, Frankfurt am Main, Germany
| | - Shaun Rees
- Research and Development, Weed Control Research, Bayer AG, Crop Science Division, Industriepark Höchst, Frankfurt am Main, Germany
| | - Hartmut Ahrens
- Research and Development, Weed Control Research, Bayer AG, Crop Science Division, Industriepark Höchst, Frankfurt am Main, Germany
| | - Lars Arve
- Research and Development, Weed Control Research, Bayer AG, Crop Science Division, Industriepark Höchst, Frankfurt am Main, Germany
| | - Elisabeth Asmus
- Research and Development, Weed Control Research, Bayer AG, Crop Science Division, Industriepark Höchst, Frankfurt am Main, Germany
| | - Guido Bojack
- Research and Development, Weed Control Research, Bayer AG, Crop Science Division, Industriepark Höchst, Frankfurt am Main, Germany
| | - Estel la Buscató Arsequell
- Research and Development, Weed Control Research, Bayer AG, Crop Science Division, Industriepark Höchst, Frankfurt am Main, Germany
| | - Elmar Gatzweiler
- Research and Development, Weed Control Research, Bayer AG, Crop Science Division, Industriepark Höchst, Frankfurt am Main, Germany
| | - Hendrik Helmke
- Research and Development, Weed Control Research, Bayer AG, Crop Science Division, Industriepark Höchst, Frankfurt am Main, Germany
| | - Christopher Kallus
- Research and Development, Weed Control Research, Bayer AG, Crop Science Division, Industriepark Höchst, Frankfurt am Main, Germany
| | - Bernd Laber
- Research and Development, Weed Control Research, Bayer AG, Crop Science Division, Industriepark Höchst, Frankfurt am Main, Germany
| | - Gudrun Lange
- Research and Development, Weed Control Research, Bayer AG, Crop Science Division, Industriepark Höchst, Frankfurt am Main, Germany
| | - Stefan Lehr
- Research and Development, Weed Control Research, Bayer AG, Crop Science Division, Industriepark Höchst, Frankfurt am Main, Germany
| | - Hubert Menne
- Research and Development, Weed Control Research, Bayer AG, Crop Science Division, Industriepark Höchst, Frankfurt am Main, Germany
| | - Christopher H Rosinger
- Research and Development, Weed Control Research, Bayer AG, Crop Science Division, Industriepark Höchst, Frankfurt am Main, Germany
| | - Wolfgang Schulte
- Research and Development, Weed Control Research, Bayer AG, Crop Science Division, Industriepark Höchst, Frankfurt am Main, Germany
| | - Kai Sommer
- Research and Development, Weed Control Research, Bayer AG, Crop Science Division, Industriepark Höchst, Frankfurt am Main, Germany
| | - David M Barber
- Research and Development, Weed Control Research, Bayer AG, Crop Science Division, Industriepark Höchst, Frankfurt am Main, Germany
| |
Collapse
|
2
|
Maienfisch P, Koerber K. Recent innovations in crop protection research. PEST MANAGEMENT SCIENCE 2024. [PMID: 39344983 DOI: 10.1002/ps.8441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/05/2024] [Accepted: 09/07/2024] [Indexed: 10/01/2024]
Abstract
As the world's population continues to grow and demand for food increases, the agricultural industry faces the challenge of producing higher yields while ensuring the safety and quality of harvests, operators, and consumers. The emergence of resistance, pest shifts, and stricter regulatory requirements also urgently calls for further advances in crop protection and the discovery of new innovative products for sustainable crop protection. This study reviews recent highlights in innovation as presented at the 15th IUPAC International Congress of Crop Protection Chemistry held in New Delhi, in 2023. The following new products are discussed: the insecticides Indazapyroxamet, Dimpropyridaz and Fenmezoditiaz, the fungicides Mefentrifluconazole and Pyridachlomethyl, the nematicide Cyclobutrifluram, the herbicides Rimisoxafen, Dimesulfazet, and Epyrifenacil as well as the abiotic stress management product Anisiflupurin. In addition, the latest innovative research areas and discovery highlights in all areas of crop protection will be presented, including insecticidal alkyl sulfones and 1,3,4-trisubstituted pyrazoles, fungicidal picolinamides, herbicidal ketoenols, and trifluoromethylpyrazoles, as well as the latest advances in crop enhancement and green pest control research. © 2024 The Author(s). Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
| | - Karsten Koerber
- Global Research Crop Protection, BASF SE, Ludwigshafen, Germany
| |
Collapse
|
3
|
Jackson V, Sherer C, Jordan L, Clohessy T. Unveiling the potential: exploring the efficacy of complex III inhibitors in fungal disease control. PEST MANAGEMENT SCIENCE 2024. [PMID: 39177294 DOI: 10.1002/ps.8384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/02/2024] [Accepted: 08/07/2024] [Indexed: 08/24/2024]
Abstract
Phytopathogenic fungi are a key challenge to maximizing crop yield and quality for a growing global population. In this review, we give an overview of representative compounds that inhibit complex III, also known as bc1 complex, covering quinone inside inhibitors, quinone outside inhibitors, and quinone inside and outside inhibitors via the stigmatellin binding mode. Novel solutions to the escalating problem of resistance are still required, therefore compounds with alternative scaffolds, alternative docking modes, different mechanisms of action and improved efficacy against complex III necessitate ongoing research. © 2024 Society of Chemical Industry.
Collapse
|
4
|
Fahrenhorst-Jones T, Lee S, Bollenbach-Wahl B, Bojack G, Braun R, Frackenpohl J, Heinemann I, Laber B, Lange G, Peters O, Reingruber AM, Schmutzler D, Barber DM. Scaffold hopping approaches for the exploration of herbicidally active compounds inhibiting Acyl-ACP Thioesterase. PEST MANAGEMENT SCIENCE 2024. [PMID: 39158367 DOI: 10.1002/ps.8370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/22/2024] [Accepted: 07/26/2024] [Indexed: 08/20/2024]
Abstract
BACKGROUND The sustainable control of weed populations is a significant challenge facing farmers around the world. Although various methods for the control of weeds exist, the use of small molecule herbicides remains the most effective and versatile approach. Striving to find novel herbicides that combat resistant weeds via the targeting of plant specific modes of action (MoAs), we further investigated the bicyclic class of acyl-acyl carrier protein (ACP) thioesterase (FAT) inhibitors in an effort to find safe and efficacious lead candidates. RESULTS Utilizing scaffold hopping and bioisosteric replacements strategies, we explored new bicyclic inhibitors of FAT. Amongst the investigated compounds we identified new structural motifs that showed promising target affinity coupled with good in vivo efficacy against commercially important weed species. We further studied the structure-activity relationship (SAR) of the novel dihydropyranopyridine structural class which showed promise as a new type of FAT inhibiting herbicides. CONCLUSION The current work presents how scaffold hopping approaches can be implemented to successfully find novel and efficacious herbicidal structures that can be further optimized for potential use in sustainable agricultural practices. The identified dihydropyranopyridine bicyclic class of herbicides were demonstrated to have in vitro inhibitory activity against the plant specific MoA FAT as well as showing promising control of a variety of weed species, particularly grass weeds in greenhouse trials on levels competitive with commercial standards. © 2024 The Author(s). Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Tyler Fahrenhorst-Jones
- Research and Development, Weed Control Research, Bayer AG, Crop Science Division, Industriepark Höchst, Frankfurt am Main, Germany
| | - Stephanie Lee
- Research and Development, Weed Control Research, Bayer AG, Crop Science Division, Industriepark Höchst, Frankfurt am Main, Germany
| | - Birgit Bollenbach-Wahl
- Research and Development, Weed Control Research, Bayer AG, Crop Science Division, Industriepark Höchst, Frankfurt am Main, Germany
| | - Guido Bojack
- Research and Development, Weed Control Research, Bayer AG, Crop Science Division, Industriepark Höchst, Frankfurt am Main, Germany
| | - Ralf Braun
- Research and Development, Weed Control Research, Bayer AG, Crop Science Division, Industriepark Höchst, Frankfurt am Main, Germany
| | - Jens Frackenpohl
- Research and Development, Weed Control Research, Bayer AG, Crop Science Division, Industriepark Höchst, Frankfurt am Main, Germany
| | - Ines Heinemann
- Research and Development, Weed Control Research, Bayer AG, Crop Science Division, Industriepark Höchst, Frankfurt am Main, Germany
| | - Bernd Laber
- Research and Development, Weed Control Research, Bayer AG, Crop Science Division, Industriepark Höchst, Frankfurt am Main, Germany
| | - Gudrun Lange
- Research and Development, Weed Control Research, Bayer AG, Crop Science Division, Industriepark Höchst, Frankfurt am Main, Germany
| | - Olaf Peters
- Research and Development, Weed Control Research, Bayer AG, Crop Science Division, Industriepark Höchst, Frankfurt am Main, Germany
| | - Anna M Reingruber
- Research and Development, Weed Control Research, Bayer AG, Crop Science Division, Industriepark Höchst, Frankfurt am Main, Germany
| | - Dirk Schmutzler
- Research and Development, Weed Control Research, Bayer AG, Crop Science Division, Industriepark Höchst, Frankfurt am Main, Germany
| | - David M Barber
- Research and Development, Weed Control Research, Bayer AG, Crop Science Division, Industriepark Höchst, Frankfurt am Main, Germany
| |
Collapse
|
5
|
Chen Y, Liu H, Wang J, Wang K, Zhang Z, He B, Ye Y. Design, Synthesis, and Antifungal Evaluation of Diverse Heterocyclic Hydrazide Derivatives as Potential Succinate Dehydrogenase Inhibitors. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:12915-12924. [PMID: 38807027 DOI: 10.1021/acs.jafc.3c08927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Plant pathogenic fungi pose a significant threat to agricultural production, necessitating the development of new and more effective fungicides. The ring replacement strategy has emerged as a highly successful approach in molecular design. In this study, we employed the ring replacement strategy to successfully design and synthesize 32 novel hydrazide derivatives containing diverse heterocycles, such as thiazole, isoxazole, pyrazole, thiadiazole, 1,3,4-oxadiazole, 1,2,4-oxadiazole, thiophene, pyridine, and pyrazine. Their antifungal activities were evaluated in vitro and in vivo. Bioassay results revealed that most of the title compounds displayed remarkable antifungal activities in vitro against four tested phytopathogenic fungi, including Fusarium graminearum, Botrytis cinerea, Sclerotinia sclerotiorum, and Rhizoctonia solani. Especially, compound 5aa displayed a broad spectrum of antifungal activity against F. graminearum, B. cinerea, S. sclerotiorum, and R. solani, with the corresponding EC50 values of 0.12, 4.48, 0.33, and 0.15 μg/mL, respectively. In the antifungal growth assay, compound 5aa displayed a protection efficacy of 75.5% against Fusarium head blight (FHB) at a concentration of 200 μg/mL. In another in vivo antifungal activity evaluation, compound 5aa exhibited a noteworthy protective efficacy of 92.0% against rape Sclerotinia rot (RSR) at a concentration of 100 μg/mL, which was comparable to the positive control tebuconazole (97.5%). The existing results suggest that compound 5aa has a broad-spectrum antifungal activity. Electron microscopy observations showed that compound 5aa might cause mycelial abnormalities and organelle damage in F. graminearum. Moreover, in the in vitro enzyme assay, we found that the target compounds 5aa, 5ab, and 5ca displayed significant inhibitory effects toward succinate dehydrogenase, with the corresponding IC50 values of 1.62, 1.74, and 1.96 μM, respectively, which were superior to that of boscalid (IC50 = 2.38 μM). Additionally, molecular docking and molecular dynamics simulation results revealed that compounds 5aa, 5ab, and 5ca have the capacity to bind in the active pocket of succinate dehydrogenase (SDH), establishing hydrogen-bonding interactions with neighboring amino acid residues.
Collapse
Affiliation(s)
- Yiliang Chen
- State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan, Anhui 243032, People's Republic of China
| | - Hao Liu
- State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Jiahao Wang
- State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Kaiyan Wang
- State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Zhenhua Zhang
- State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Bo He
- State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Yonghao Ye
- State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| |
Collapse
|
6
|
Abel SAG, Alnafta N, Asmus E, Bollenbach-Wahl B, Braun R, Dittgen J, Endler A, Frackenpohl J, Freigang J, Gatzweiler E, Heinemann I, Helmke H, Laber B, Lange G, Machettira A, McArthur G, Müller T, Odaybat M, Reingruber AM, Roth S, Rosinger CH, Schmutzler D, Schulte W, Stoppel R, Tiebes J, Volpin G, Barber DM. A Study in Scaffold Hopping: Discovery and Optimization of Thiazolopyridines as Potent Herbicides That Inhibit Acyl-ACP Thioesterase. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:18212-18226. [PMID: 37677080 DOI: 10.1021/acs.jafc.3c02490] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
In the search for new chemical entities that can control resistant weeds by addressing novel modes of action (MoAs), we were interested in further exploring a compound class that contained a 1,8-naphthyridine core. By leveraging scaffold hopping methodologies, we were able to discover the new thiazolopyridine compound class that act as potent herbicidal molecules. Further biochemical investigations allowed us to identify that the thiazolopyridines inhibit acyl-acyl carrier protein (ACP) thioesterase (FAT), with this being further confirmed via an X-ray cocrystal structure. Greenhouse trials revealed that the thiazolopyridines display excellent control of grass weed species in pre-emergence application coupled with dose response windows that enable partial selectivity in certain crops.
Collapse
Affiliation(s)
- Steven A G Abel
- Research and Development, Weed Control Research, Bayer AG, Crop Science Division, Industriepark Höchst, 65926, Frankfurt am Main, Germany
| | - Neanne Alnafta
- Research and Development, Weed Control Research, Bayer AG, Crop Science Division, Industriepark Höchst, 65926, Frankfurt am Main, Germany
| | - Elisabeth Asmus
- Research and Development, Weed Control Research, Bayer AG, Crop Science Division, Industriepark Höchst, 65926, Frankfurt am Main, Germany
| | - Birgit Bollenbach-Wahl
- Research and Development, Weed Control Research, Bayer AG, Crop Science Division, Industriepark Höchst, 65926, Frankfurt am Main, Germany
| | - Ralf Braun
- Research and Development, Weed Control Research, Bayer AG, Crop Science Division, Industriepark Höchst, 65926, Frankfurt am Main, Germany
| | - Jan Dittgen
- Research and Development, Weed Control Research, Bayer AG, Crop Science Division, Industriepark Höchst, 65926, Frankfurt am Main, Germany
| | - Anne Endler
- Targenomix GmbH, Am Mühlenberg 11, 14476, Potsdam, Germany
| | - Jens Frackenpohl
- Research and Development, Weed Control Research, Bayer AG, Crop Science Division, Industriepark Höchst, 65926, Frankfurt am Main, Germany
| | - Jörg Freigang
- Research and Development, Hit Discovery, Bayer AG, Crop Science Division, Alfred-Nobel-Straße 50, 40789, Monheim am Rhein, Germany
| | - Elmar Gatzweiler
- Research and Development, Weed Control Research, Bayer AG, Crop Science Division, Industriepark Höchst, 65926, Frankfurt am Main, Germany
| | - Ines Heinemann
- Research and Development, Weed Control Research, Bayer AG, Crop Science Division, Industriepark Höchst, 65926, Frankfurt am Main, Germany
| | - Hendrik Helmke
- Research and Development, Weed Control Research, Bayer AG, Crop Science Division, Industriepark Höchst, 65926, Frankfurt am Main, Germany
| | - Bernd Laber
- Research and Development, Weed Control Research, Bayer AG, Crop Science Division, Industriepark Höchst, 65926, Frankfurt am Main, Germany
| | - Gudrun Lange
- Research and Development, Weed Control Research, Bayer AG, Crop Science Division, Industriepark Höchst, 65926, Frankfurt am Main, Germany
| | - Anu Machettira
- Research and Development, Weed Control Research, Bayer AG, Crop Science Division, Industriepark Höchst, 65926, Frankfurt am Main, Germany
| | - Gillian McArthur
- Research and Development, Weed Control Research, Bayer AG, Crop Science Division, Industriepark Höchst, 65926, Frankfurt am Main, Germany
| | - Thomas Müller
- Research and Development, Weed Control Research, Bayer AG, Crop Science Division, Industriepark Höchst, 65926, Frankfurt am Main, Germany
| | - Magdalena Odaybat
- Research and Development, Weed Control Research, Bayer AG, Crop Science Division, Industriepark Höchst, 65926, Frankfurt am Main, Germany
| | - Anna M Reingruber
- Research and Development, Weed Control Research, Bayer AG, Crop Science Division, Industriepark Höchst, 65926, Frankfurt am Main, Germany
| | - Sina Roth
- Research and Development, Weed Control Research, Bayer AG, Crop Science Division, Industriepark Höchst, 65926, Frankfurt am Main, Germany
| | - Christopher H Rosinger
- Research and Development, Weed Control Research, Bayer AG, Crop Science Division, Industriepark Höchst, 65926, Frankfurt am Main, Germany
| | - Dirk Schmutzler
- Research and Development, Weed Control Research, Bayer AG, Crop Science Division, Industriepark Höchst, 65926, Frankfurt am Main, Germany
| | - Wolfgang Schulte
- Research and Development, Weed Control Research, Bayer AG, Crop Science Division, Industriepark Höchst, 65926, Frankfurt am Main, Germany
| | - Rhea Stoppel
- Research and Development, Weed Control Research, Bayer AG, Crop Science Division, Industriepark Höchst, 65926, Frankfurt am Main, Germany
| | - Jörg Tiebes
- Research and Development, Weed Control Research, Bayer AG, Crop Science Division, Industriepark Höchst, 65926, Frankfurt am Main, Germany
| | - Giulio Volpin
- Research and Development, Small Molecules Technologies, Bayer AG, Crop Science Division, Industriepark Höchst, 65926, Frankfurt am Main, Germany
| | - David M Barber
- Research and Development, Weed Control Research, Bayer AG, Crop Science Division, Industriepark Höchst, 65926, Frankfurt am Main, Germany
| |
Collapse
|
7
|
Steinborn C, Tancredi A, Habiger C, Diederich C, Kramer J, Reingruber AM, Laber B, Freigang J, Lange G, Schmutzler D, Machettira A, Besong G, Magauer T, Barber DM. Investigations into Simplified Analogues of the Herbicidal Natural Product (+)-Cornexistin. Chemistry 2023; 29:e202300199. [PMID: 36807428 PMCID: PMC7614749 DOI: 10.1002/chem.202300199] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/17/2023] [Accepted: 02/20/2023] [Indexed: 02/22/2023]
Abstract
We report the design, synthesis and biological evaluation of simplified analogues of the herbicidal natural product (+)-cornexistin. Guided by an X-Ray co-crystal structure of cornexistin bound to transketolase from Zea mays, we attempted to identify the key interactions that are necessary for cornexistin to maintain its herbicidal profile. This resulted in the preparation of three novel analogues investigating the importance of substituents that are located on the nine-membered ring of cornexistin. One analogue maintained a good level of biological activity and could provide researchers insights in how to further optimize the structure of cornexistin for commercialization in the future.
Collapse
Affiliation(s)
- Christian Steinborn
- Institute of Organic Chemistry and Center for Molecular Biosciences, University of Innsbruck, Innrain 80-82, 6020, Innsbruck, Austria
| | - Aldo Tancredi
- Institute of Organic Chemistry and Center for Molecular Biosciences, University of Innsbruck, Innrain 80-82, 6020, Innsbruck, Austria
| | - Christoph Habiger
- Institute of Organic Chemistry and Center for Molecular Biosciences, University of Innsbruck, Innrain 80-82, 6020, Innsbruck, Austria
| | - Christina Diederich
- Research & Development, Weed Control Bayer AG, Crop Science Division, Industriepark Höchst, 65926, Frankfurt am Main, Germany
| | - Jan Kramer
- Research & Development, Weed Control Bayer AG, Crop Science Division, Industriepark Höchst, 65926, Frankfurt am Main, Germany
| | - Anna M Reingruber
- Research & Development, Weed Control Bayer AG, Crop Science Division, Industriepark Höchst, 65926, Frankfurt am Main, Germany
| | - Bernd Laber
- Research & Development, Weed Control Bayer AG, Crop Science Division, Industriepark Höchst, 65926, Frankfurt am Main, Germany
| | - Jörg Freigang
- Research & Development, Hit Discovery Bayer AG, Crop Science Division, Alfred-Nobel-Straße 50, 40789, Monheim am Rhein, Germany
| | - Gudrun Lange
- Research & Development, Weed Control Bayer AG, Crop Science Division, Industriepark Höchst, 65926, Frankfurt am Main, Germany
| | - Dirk Schmutzler
- Research & Development, Weed Control Bayer AG, Crop Science Division, Industriepark Höchst, 65926, Frankfurt am Main, Germany
| | - Anu Machettira
- Research & Development, Weed Control Bayer AG, Crop Science Division, Industriepark Höchst, 65926, Frankfurt am Main, Germany
| | - Gilbert Besong
- Research & Development, Weed Control Bayer AG, Crop Science Division, Industriepark Höchst, 65926, Frankfurt am Main, Germany
| | - Thomas Magauer
- Institute of Organic Chemistry and Center for Molecular Biosciences, University of Innsbruck, Innrain 80-82, 6020, Innsbruck, Austria
| | - David M Barber
- Research & Development, Weed Control Bayer AG, Crop Science Division, Industriepark Höchst, 65926, Frankfurt am Main, Germany
| |
Collapse
|
8
|
Yao G, Wang M, Li B, Peng H, Yang S, Zhao C, Xu H. Design, synthesis, and biological activity of novel spiro-pyrazolo[1,5-a]quinazolines derivatives as potential insecticides. PEST MANAGEMENT SCIENCE 2023; 79:1164-1174. [PMID: 36371599 DOI: 10.1002/ps.7287] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/23/2022] [Accepted: 11/13/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Arylpyrazole insecticides display broad-spectrum insecticidal activity against insect pests. However, the high toxicity toward honeybees associated with fipronil prohibits its agronomic utility. To explore reducing the toxicity of aryl pyrazole analogs to bees, a series of new spiro-pyrazolo[1,5-a]quinazoline derivatives were designed and synthesized. RESULTS Bioassay results showed that these compounds exhibited good insecticidal activity. In particular, the insecticidal activity of compound 5f against Plutella xylostella larvae (median lethal contentration, LC50 = 1.43 mg L-1 ) was equivalent to that of fipronil. Moreover, some compounds also showed good insecticidal activity against Solenopsis invicta. Importantly, the bee toxicity study confirmed that compound 5f had much lower acute oral toxicity, with a median lethal dose (LD50 ) = 1.15 μg bee-1 that was three to four orders of magnitude greater than that of fipronil (0.0012 μg bee-1 ). Electrophysiological studies were conducted using honeybee γ-aminobutyric acid receptor heterologously expressed in Xenopus oocytes to explain the reduced bee toxicity of compound 5f. The inhibitory effect of compound 5f (16.29 μmol L-1 ) was determined to be approximately 700-fold lower than that of fipronil (0.023 μmol L-1 ). CONCLUSION These spiro-pyrazolo[1,5-a]quinazoline derivatives could be potential candidates and lead structures for the discovery of novel insecticides with low bee toxicity. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Guangkai Yao
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, College of Plant Protection, South China Agricultural University, Guangzhou, People's Republic of China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, People's Republic of China
| | - Mengfan Wang
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, College of Plant Protection, South China Agricultural University, Guangzhou, People's Republic of China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, People's Republic of China
| | - Benjie Li
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, College of Plant Protection, South China Agricultural University, Guangzhou, People's Republic of China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, People's Republic of China
| | - Hongxiang Peng
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, College of Plant Protection, South China Agricultural University, Guangzhou, People's Republic of China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, People's Republic of China
| | - Shuai Yang
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, College of Plant Protection, South China Agricultural University, Guangzhou, People's Republic of China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, People's Republic of China
| | - Chen Zhao
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, College of Plant Protection, South China Agricultural University, Guangzhou, People's Republic of China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, People's Republic of China
| | - Hanhong Xu
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, College of Plant Protection, South China Agricultural University, Guangzhou, People's Republic of China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, People's Republic of China
| |
Collapse
|
9
|
Efficient synthesis of 2-aryl benzothiazoles mediated by Vitreoscilla hemoglobin. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|