1
|
Li Q, Chen Y, Zhao X, Lu B, Qu T, Tang L, Zheng Q. Ginsenoside 24-OH-PD from red ginseng inhibits acute T-lymphocytic leukaemia by activating the mitochondrial pathway. PLoS One 2023; 18:e0285966. [PMID: 37205671 PMCID: PMC10198485 DOI: 10.1371/journal.pone.0285966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 05/04/2023] [Indexed: 05/21/2023] Open
Abstract
Ginsenoside 24-hydroxy-ginsengdiol (24-OH-PD), extracted from red ginseng, is a novel diol-type ginsenoside, strongly inhibits the growth of human T-cell acute lymphoblastic leukaemia (T-ALL) CCRF-CEM cells. Our research aimed at investigating the mechanism underlying this inhibition. Cell viability was determined using the cell counting kit-8 (CCK-8) assay, and NOD/SCID mice bearing CCRF-CEM cells were used to verify the therapeutic effect of 24-OH-PD on T-ALL in vivo. We equally analysed pathways related to 24-OH-PD in CCRF-CEM cells using RNA-Seq analysis. Cell apoptosis, reactive oxygen species (ROS), mitochondrial membrane potential (ΔΨm), and mitochondrial permeability transition pore (mPTP) levels were detected by flow cytometry. The activity of caspase3 and caspase9 was detected by enzyme activity detection kits. The expression levels of apoptosis-related proteins and mRNA were determined through western blotting and quantitative reverse-transcription PCR assays (qRT-PCR). CCK-8 assay and animal xenograft experiments confirmed that 24-OH-PD significantly inhibited T-ALL in a dose-dependent manner, both in vivo and in vitro. RNA-Seq results suggest that mitochondria-mediated apoptosis pathway plays an important role in this process. Furthermore, intracellular ROS levels increased, mPTP opened, and ΔΨm decreased following 24-OH-PD treatment. Pretreatment with the antioxidant, NAC, reversed the effects of 24-OH-PD on apoptosis and ROS generation. Moreover, 24-OH-PD treatment increased the expression of Bax and caspase family members, thereby releasing cytochrome c (Cytc) and inducing apoptosis. Our findings showed that, 24-OH-PD induces apoptosis in CCRF-CEM cells by activating the mitochondrial-dependent apoptosis pathway through ROS accumulation. This inhibitory effect implies that 24-OH-PD could be further developed as treatment of T-ALL.
Collapse
Affiliation(s)
- Qingmiao Li
- Department of Pharmacy, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yongfu Chen
- Department of Pharmacy, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xiaolin Zhao
- Department of Pharmacy, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Bocheng Lu
- Shanxi Traditional Chinese Medicine Hospital, Taiyuan, Shanxi, China
| | - Tingli Qu
- Department of Pharmacy, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Li Tang
- Department of Pharmacy, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Qian Zheng
- Department of Pharmacy, Shanxi Medical University, Taiyuan, Shanxi, China
| |
Collapse
|
2
|
Shi X, Li M, Huang Q, Xie L, Huang Z. Monacolin K Induces Apoptosis of Human Glioma U251 Cells by Triggering ROS-Mediated Oxidative Damage and Regulating MAPKs and NF-κB Pathways. ACS Chem Neurosci 2023; 14:1331-1341. [PMID: 36917811 DOI: 10.1021/acschemneuro.3c00104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Monacolin K (MK), a polyketo secondary metabolic compound of the mold genus Monascus, can promote the apoptosis of malignant cancer cells, possessing potential antitumor properties. However, its mechanism of action on gliomas remains unclear. Here, we explored and investigated the potential of the monacolin K's antitumor effect on human glioma U251 cells and its possible molecular mechanism. Results showed that the application of 10 μM monacolin K inhibited the proliferation of U251 cells, with an inhibitory rate of up to 53.4%. Additionally, monacolin K induced the generation of reactive oxygen species and activated mitochondria-mediated pathways, including decreased MMP, activation of caspase3/caspase9, decreased Na+/K+-ATPase and Ca2+-ATPase activities, and disruption of the antioxidant system, resulting in the disruption of intracellular reduction-oxidation homeostasis. Monacolin K also activated MAPK and NF-κB pathways, upregulating P38 activity and downregulating JNK/ERK/P65/IκBα expression, ultimately leading to apoptosis of U251 cells. Importantly, monacolin K was not cytotoxic to normal human cells, hUC-MSCs. We concluded that monacolin K can induce apoptosis in U251 cells by triggering ROS-mediated oxidative damage and regulating MAPKs and NF-κB pathways.
Collapse
Affiliation(s)
- Xiaoyi Shi
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China.,Sino-German Joint Research Institute, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
| | - Meng Li
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China.,Sino-German Joint Research Institute, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
| | - Qiming Huang
- College of Life Sciences, Nanchang University, No. 999 Xuefu Avenue, Nanchang 330031, China.,The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China
| | - Liuming Xie
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China.,Sino-German Joint Research Institute, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
| | - Zhibing Huang
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China.,Sino-German Joint Research Institute, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
| |
Collapse
|