1
|
Liu H, Wu XQ, Qin XL, Zhu JH, Xu JD, Zhou SS, Kong M, Shen H, Huo JG, Li SL, Zhu H. Metals/bisulfite system involved generation of 24-sulfonic-25-ene ginsenoside Rg1, a potential quality control marker for sulfur-fumigated ginseng. Food Chem 2024; 448:139112. [PMID: 38569404 DOI: 10.1016/j.foodchem.2024.139112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/12/2024] [Accepted: 03/19/2024] [Indexed: 04/05/2024]
Abstract
Ginseng is a most popular health-promoting food with ginsenosides as its main bioactive ingredients. Illegal sulfur-fumigation causes ginsenosides convert to toxic sulfur-containing derivatives, and reduced the efficacy/safety of ginseng. 24-sulfo-25-ene ginsenoside Rg1 (25-ene SRg1), one of the sulfur-containing derivatives, is a potential quality control marker of fumigated ginseng, but with low accessibility owing to its unknown generation mechanism. In this study, metals/bisulfite system involved generation mechanism was investigated and verified. The generation of 25-ene SRg1 in sulfur-fumigated ginseng is that SO2, formed during sulfur-fumigation, reacted with water and ionized into HSO3-. On the one hand, under the metals/bisulfite system, HSO3- generates HSO5- and free radicals which converted ginsenoside Rg1 to 24,25-epoxide Rg1; on the other hand, as a nucleophilic group, HSO3- reacted with 24,25-epoxide Rg1 and further dehydrated to 25-ene SRg1. This study provided a technical support for the promotion of 25-ene SRg1 as the characteristic quality control marker of sulfur-fumigated ginseng.
Collapse
Affiliation(s)
- Hui Liu
- Department of Pharmaceutical Analysis, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China; Department of Pharmacy, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430016, China
| | - Xiao-Qian Wu
- Department of Oncology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
| | - Xiang-Ling Qin
- Department of Pharmaceutical Analysis, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
| | - Jin-Hao Zhu
- Department of Pharmaceutical Analysis, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
| | - Jin-Di Xu
- Department of Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine, China
| | - Shan-Shan Zhou
- Department of Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine, China
| | - Ming Kong
- Department of Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine, China
| | - Hong Shen
- Department of Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine, China
| | - Jie-Ge Huo
- Department of Oncology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China.
| | - Song-Lin Li
- Department of Pharmaceutical Analysis, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China; Department of Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine, China.
| | - He Zhu
- Drug Clinical Trial Center, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou 225300, China; Department of Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine, China.
| |
Collapse
|
2
|
Wan F, Chen ZW, Xu TT, Guan JJ, Cui XM, Kang CZ, Zhou T, Wang CX, Guo LP, Yang Y. Selection and application of aptamers for p-hydroxybenzyl hydrogen sulfite after Gastrodia elata Bl. fumigated with sulfur. Talanta 2024; 269:125461. [PMID: 38056416 DOI: 10.1016/j.talanta.2023.125461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 10/01/2023] [Accepted: 11/20/2023] [Indexed: 12/08/2023]
Abstract
Gastrodia elata Bl. is a widely used traditional Chinese medicine known for its medicinal properties. However, during the drying process, G. elata is often fumigated with sulfur to prevent corrosion and improve its appearance. Sulfur-fumigation can result in a reduction in the effective components of the herb and can also be hazardous to human health due to the remaining sulfur dioxide. Sulfur-fumigation of G. elata poses a significant challenge to both end-users and researchers. The detection of p-hydroxybenzyl hydrogen sulfite (p-HS) is a useful tool in determining whether G. elata has been fumigated with sulfur. Unfortunately, the current method for detecting p-HS is costly and requires sophisticated instruments. Therefore, there is a need to develop a more cost-effective and user-friendly method for the detection of p-HS. This study utilized the Capture-SELEX technique to screen high-affinity aptamers for p-HS, which were subsequently characterized by isothermal titration calorimetry (ITC). An aptamer sequence (seq 6) with a high affinity of Kd = 26.5 μM was obtained following 8 rounds of selection against p-HS. With the aptamer serving as the recognition element and gold nanoparticles as the colorimetric indicator, a simple and efficient colorimetric sensor was developed for the specific detection of p-HS. This detection method exhibited a limit of detection of 1 μg/ml, while the p-HS recoveries demonstrated a range of between 88.5 % and 105 % for samples of G. elata obtained in the market. In summary, the aptamer exhibited a high affinity for p-HS, and the sensor developed through the use of a colloidal gold detector based on nucleic acid aptamer can be utilized for rapid detection of sulfur-fumigated G. elata. With these findings, this research paper provides valuable scientific insights and highlights significant potential for future studies in this area.
Collapse
Affiliation(s)
- Fen Wan
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China
| | - Zhuo-Wen Chen
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China
| | - Ting-Ting Xu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China
| | - Jin-Jie Guan
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China
| | - Xiu-Ming Cui
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China; Yunnan Provincial Key Laboratory of Panax Notoginseng, Kunming, 650500, China
| | - Chuan-Zhi Kang
- China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Tao Zhou
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Cheng-Xiao Wang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China; Yunnan Provincial Key Laboratory of Panax Notoginseng, Kunming, 650500, China
| | - Lan-Ping Guo
- China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Ye Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China; Yunnan Provincial Key Laboratory of Panax Notoginseng, Kunming, 650500, China.
| |
Collapse
|
3
|
Chan KC, Zhang WH, Chan YM, Li HL, Fang J, Luo HY, Xu J. Tryptophan sulfonate: A new chemical marker for accurate and efficient inspection of sulfur-treated food products. Food Chem 2024; 434:137360. [PMID: 37696151 DOI: 10.1016/j.foodchem.2023.137360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 09/13/2023]
Abstract
Sulfur treatment for the pesticidal and antibacterial processing of food products has been criticized since it impairs the quality of treated products. The inspection of sulfur-treated products is thus required to achieve the regulation of sulfur treatment. Sulfite assay is currently available for the inspection, but it bears the disadvantages of inaccurate results and complex experimental procedures. Here we report a new chemical marker, namely tryptophan sulfonate, that can be used for the accurate and efficient inspection of sulfur-treated foods. First, the marker was discovered in sulfur-fumigated ginger, yam, and ginseng by untargeted metabolomics. The marker identity was then elucidated using chromatographic separation, nuclear magnetic resonance analysis and chemical synthesis. Finally, to demonstrate its applicability in the inspection, a tryptophan sulfonate assay was developed to test 50 commercial food samples, and the results indicated that it performed better than the sulfite assay in terms of both accuracy and efficiency.
Collapse
Affiliation(s)
- Kam-Chun Chan
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
| | - Wei-Hao Zhang
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
| | - Yui-Man Chan
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
| | - Hiu-Lam Li
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
| | - Jing Fang
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
| | - Han-Yan Luo
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
| | - Jun Xu
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
| |
Collapse
|
4
|
Li Y, Dong P, Shang Z, Dai L, Wang S, Zhang J. Unveiling the Chemical Composition of Sulfur-Fumigated Herbs: A Triple Synthesis Approach Using UHPLC-LTQ-Orbitrap MS-A Case Study on Steroidal Saponins in Ophiopogonis Radix. Molecules 2024; 29:702. [PMID: 38338446 PMCID: PMC10856428 DOI: 10.3390/molecules29030702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 01/24/2024] [Accepted: 01/28/2024] [Indexed: 02/12/2024] Open
Abstract
Ophiopogonis Radix (OR) is a traditional Chinese medicine. In recent years, in order to achieve the purpose of drying, bleaching, sterilizing and being antiseptic, improving appearance, and easy storage, people often use sulfur fumigation for its processing. However, changes in the chemical composition of medicinal herbs caused by sulfur fumigation can lead to the transformation and loss of potent substances. Therefore, the development of methods to rapidly reveal the chemical transformation of medicinal herbs induced by sulfur fumigation can guarantee the safe clinical use of medicines. In this study, a combined full scan-parent ions list-dynamic exclusion acquisition-diagnostic product ions analysis strategy based on UHPLC-LTQ-Orbitrap MS was proposed for the analysis of steroidal saponins and their transformed components in sulfur-fumigated Ophiopogonis Radix (SF-OR). Based on precise mass measurements, chromatographic behavior, neutral loss ions, and diagnostic product ions, 286 constituents were screened and identified from SF-OR, including 191 steroidal saponins and 95 sulfur-containing derivatives (sulfates or sulfites). The results indicated that the established strategy was a valuable and effective analytical tool for comprehensively characterizing the material basis of SF-OR, and also provided a basis for potential chemical changes in other sulfur-fumigated herbs.
Collapse
Affiliation(s)
- Yanan Li
- School of Traditional Chinese Medicine, Binzhou Medical University, Yantai 264003, China
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Pingping Dong
- State Key Laboratory for Quality Research of Chinese Medicines, Macau University of Science and Technology, Macao SAR 999078, China
| | - Zhanpeng Shang
- School of Pharmacy, Beijing University of Chinese Medicine, Beijing 100191, China
| | - Long Dai
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Shaoping Wang
- School of Traditional Chinese Medicine, Binzhou Medical University, Yantai 264003, China
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Jiayu Zhang
- School of Traditional Chinese Medicine, Binzhou Medical University, Yantai 264003, China
| |
Collapse
|
5
|
Chen C, Zhou C, Yang W, Hu Y. A FRET-based ratiometric fluorescent probe for SO 32- detection in Chinese medicine and living cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 300:122902. [PMID: 37244026 DOI: 10.1016/j.saa.2023.122902] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/09/2023] [Accepted: 05/17/2023] [Indexed: 05/29/2023]
Abstract
Chinese herbal medicine is receiving more and more attention at home and abroad as a traditional Chinese clinical medicine. To make herbal medicines can be preserved for a long time, they are usually fumigated with sulfur. However, after the medicinal materials have been fumigated with sulfur, SO2 residues will remain, which, when exposed to water, will create sulfites and bisulfites. Excessive sulfites can cause a variety of severe ailments and diminish the quality and effectiveness of therapeutic plants. Therefore, developing an effective SO32-/HSO3- detection method is important. This study chose coumarin derivatives as fluorescent acceptors and pyridinium acrylonitrile structures as fluorescent donors to create a ratiometric fluorescent probe CPA using the fluorescence resonance energy transfer (FRET) effect. The probe CPA exhibited a fluorescence transition from red to green under excitation at 405 nm with an interval of 149 nm, a reaction time of less than 1 min, a low detection limit of 86 nM, and the probe CPA has good specific recognition of SO32- and is resistant to interference. In addition, CPA has low in vitro cytotoxicity and can successfully detect endogenous sulfites in living cells.
Collapse
Affiliation(s)
- Chen Chen
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30, South Puzhu Road, Nanjing 211816, China
| | - Changrui Zhou
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30, South Puzhu Road, Nanjing 211816, China
| | - Wenge Yang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30, South Puzhu Road, Nanjing 211816, China.
| | - Yonghong Hu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30, South Puzhu Road, Nanjing 211816, China
| |
Collapse
|