1
|
Bej S, Cho EB. State-of-the-art progress and prospect of metal-organic frameworks and composites for photoelectrochemical amino-drugs sensing. ENVIRONMENTAL RESEARCH 2025; 270:120946. [PMID: 39884535 DOI: 10.1016/j.envres.2025.120946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 01/22/2025] [Accepted: 01/23/2025] [Indexed: 02/01/2025]
Abstract
Unregulated discharge of antibiotics in waterbodies has posed a significant threat to the aquatic flora and fauna in post-pandemic times. This alarming situation has ascertained the need for suitable sensors to detect persistent antibiotic residues. In this context, functional hybrid materials centralized on reticular metal-organic frameworks (MOFs)/composites have been a research hot spot for photoelectrochemical host-guest recognition events over the past two decades. The unique amalgamation of the robust framework, ease of synthesis, and tunable photophysical properties complemented with in silico approaches render these materials highly promising for recognition events over other contemporaries. The present review provides a critical analysis of the state-of-the-art advancement of MOFs along with their allied composites toward the detection of targeted amino-drug residues (nitrofurazone, norfloxacin, ciprofloxacin, tetracycline, acetaminophen) within the last quinquennial period (approximately 2019-2024). Detection of the targeted drug residues by electrochemical and fluorometric pathways and their host-guest mechanistic pathways have been precisely described. Additionally, different functionalization methods and luminescence strategies with their structural viewpoint have been concisely summarized. Moreover, we delve into the futuristic possibility of integrating artificial intelligence (AI) and machine learning (ML) for better quantification of antibiotics. Finally, the unmet challenges and future research directions of the current research strategies have been outlined for automatic ML (AutoML) assisted next-generation POCT device fabrication.
Collapse
Affiliation(s)
- Sourav Bej
- Energy Convergence Research Center, Seoul National University of Science and Technology, 232 Gongneung-ro, Nowon-gu, Seoul, 01811, Republic of Korea
| | - Eun-Bum Cho
- Energy Convergence Research Center, Seoul National University of Science and Technology, 232 Gongneung-ro, Nowon-gu, Seoul, 01811, Republic of Korea; Department of Fine Chemistry, Seoul National University of Science and Technology, 232, Gongneung-ro, Nowon-gu, Seoul, 01811, Republic of Korea; Institute for Applied Chemistry, Seoul National University of Science and Technology, 232 Gongneung-ro, Nowon-gu, Seoul, 01811, Republic of Korea.
| |
Collapse
|
2
|
Liu CP, Lin TE, Chiang JC, Chen BJ, Chien PH, Chien SY, Lee GH, Liu YH, Lu KL. An exceptional water stable terbium-based metal-organic framework for selective detection of pesticides. RSC Adv 2024; 14:35220-35226. [PMID: 39502867 PMCID: PMC11536185 DOI: 10.1039/d4ra06622g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 10/24/2024] [Indexed: 11/08/2024] Open
Abstract
A terbium-based metal-organic framework (MOF) with exceptional water stability for highly selective detection of pesticide thiamethoxam (TMX) in aqueous solution is reported. To date, most reported lanthanide metal-organic frameworks (Ln-MOFs) still exhibit poor water stability, which may limit their practical applications in bio-sensing and detecting pollutants in environmental water samples. In this work, a Tb-MOF [Tb(BDC)1.5(DEF)·0.5H2O] n (1, BDC = 1,4-benzene dicarboxylate, DEF = N,N-diethylformamide) was prepared by hydrothermal reactions of 1,4-benzenedicarboxylic acid with the corresponding rare earth ions of Tb3+. Impressively, water stability surveys of compound 1 indicated that it maintained at least 90% of its emission intensity after storage in water for several months. This characteristic of long water stability is unusual as compared to other Ln-MOFs, making compound 1 an excellent candidate for sensing applications in the aqueous phase. In particular, the green emission of compound 1 could be quenched by the pesticide thiamethoxam (TMX), which was attributed to both the static and dynamic quenching processes based on an upward-curving Stern-Volmer plot. The quenching mechanism was speculatively attributed to the inner filter effect combined with the complex formation based on the electrostatic interaction of compound 1 and TMX, resulting in the promotion of the quenching efficiency. Finally, compound 1 was demonstrated to detect TMX in aqueous solution with rapid response and high selectivity.
Collapse
Affiliation(s)
- Ching-Ping Liu
- Department of Chemistry, Fu Jen Catholic University New Taipei City 242062 Taiwan
| | - Ting-En Lin
- Department of Chemistry, Fu Jen Catholic University New Taipei City 242062 Taiwan
| | - Jung-Chang Chiang
- Department of Chemistry, Fu Jen Catholic University New Taipei City 242062 Taiwan
| | - Bo-Jhen Chen
- Department of Chemistry, Fu Jen Catholic University New Taipei City 242062 Taiwan
| | - Po-Hsiu Chien
- Department of Chemistry, Fu Jen Catholic University New Taipei City 242062 Taiwan
| | - Su-Ying Chien
- Instrumentation Center, National Taiwan University Taipei 10617 Taiwan
| | - Gene-Hsiang Lee
- Instrumentation Center, National Taiwan University Taipei 10617 Taiwan
| | - Yen-Hsiang Liu
- Department of Chemistry, Fu Jen Catholic University New Taipei City 242062 Taiwan
| | - Kuang-Lieh Lu
- Department of Chemistry, Fu Jen Catholic University New Taipei City 242062 Taiwan
- Institute of Chemistry, Academia Sinica Taipei 115 Taiwan
| |
Collapse
|
3
|
Dai H, Zhang Y, Jin X, Yang W, Luo Y, Yang K, Fu Y, Xu W. Reaction Time Induced a Two-Step Dissolution and Recrystallization Structural Transformation with Three Eu Metal-Organic Frameworks: Crystal Structures and Multiresponsive Fluorescence Detection. Inorg Chem 2024; 63:18058-18072. [PMID: 39287663 DOI: 10.1021/acs.inorgchem.4c02643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Under solvothermal conditions, three 3D lanthanide metal-organic frameworks (Ln-MOFs): [Eu(H2DHTA)1.5(DMF)2]·DMF (1), [Eu(H2DHTA)0.5(DHTA)0.5(DMF)(H2O)]·2H2O (2), and Eu(HCOO)3 (3) (H4DHTA = 2,5-dihydroxyterephthalic acid) have been synthesized by different reaction times. Interestingly, induced by reaction time, compounds 1-3 underwent a two-step dissolution and recrystallization structural transformation (DRST) reaction. Investigations on the DRST processes were carried out, and the transformation pathway was deduced, which was verified by XRD analyses. Notably, compound 2 demonstrates pronounced luminescence as well as high stability in water and other organic solvents. The fluorescent detection of furan antibiotics can serve as turn-off effects, and glutamic acid (Glu), aspartic acid (Asp), and riboflavin (VB2) can serve as the turn-on effect. To explain the enhancing and quenching mechanisms, XRD, UV-visible absorption spectroscopy, electrochemistry, IR spectra, theoretical calculation, fluorescence lifetimes, and XPS were discussed. Additionally, MOF-coated test strips were utilized to detect these analytes, exhibiting excellent agreement with fluorescence spectroscopy. This work provides an example for more effective designs to employ Ln-MOFs as multiresponsive fluorescent sensors for detection of environmental pollutants in aqueous solution.
Collapse
Affiliation(s)
- Huan Dai
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
- Department of Pharmaceutical Engineering and Biotechnology, Zhejiang Pharmaceutical University, Ningbo 315199, China
| | - Ya Zhang
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Xiaoping Jin
- Department of Pharmaceutical Engineering and Biotechnology, Zhejiang Pharmaceutical University, Ningbo 315199, China
| | - Wensu Yang
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
- Department of Pharmaceutical Engineering and Biotechnology, Zhejiang Pharmaceutical University, Ningbo 315199, China
| | - Yunjie Luo
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Ke Yang
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Yu Fu
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Wei Xu
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| |
Collapse
|
4
|
Shen Y, Ma D, Zhao M, Qian J, Li Q. Highly thermostable RhB@Zr-Eddc for the selective sensing of nitrofurazone and efficient white light emitting diode. Front Chem 2024; 12:1444036. [PMID: 39156217 PMCID: PMC11327442 DOI: 10.3389/fchem.2024.1444036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 07/24/2024] [Indexed: 08/20/2024] Open
Abstract
Highly thermostable RhB@Zr-Eddc composites with the Rhodamine B (RhB) enclosed into the nanocages of Zr-Eddc was synthesized by one-pot method under hydrothermal conditions, whose structure, morphology and stability were characterized through the X-ray powder diffractometry (XRD), scanning electron microscopy (SEM) and thermogravimetric analysis (TGA). RhB@Zr-Eddc showed the highly thermal stability up to 550°C and emitted the bright red-light emission at 605 nm, which could highly selective detect the nitrofurazone (NFZ) among eleven other antibiotics in aqueous solution. Furthermore, via combining the RhB@Zr-Eddc with commercial green phosphor (Y3Al5O12:Ce3+, Ga3+), the mixture was encapsulated onto a 455 nm blue LED chip, creating an ex-cellent white light emitting diode (WLED) device with the correlated colour temperature (CCT) of 4710 K, luminous efficiency (LE) of 43.17 lm/w and Color Rendering Index (CRI) of 89.2.
Collapse
Affiliation(s)
- Yanqiong Shen
- College of Chemistry and Chemical Engineering, Zhaotong University, Zhaotong, China
| | - Di Ma
- College of Chemistry and Chemical Engineering, Zhaotong University, Zhaotong, China
| | - Mian Zhao
- Experimental Center for Teaching, Hebei Medical University, Shijiazhuang, China
| | - Jinjie Qian
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, China
| | - Qipeng Li
- College of Chemistry and Chemical Engineering, Zhaotong University, Zhaotong, China
| |
Collapse
|
5
|
Wang L, Lai B, Ran X, Tang H, Cao D. A portable smartphone platform utilizing dual-sensing signals for visual determination of semicarbazide in food samples. J Mater Chem B 2024; 12:3469-3480. [PMID: 38506072 DOI: 10.1039/d4tb00001c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Semicarbazide (SEM) is a metabolite of antibiotic nitrofurazone and a food contaminant in food production, showing potential carcinogenic, mutagenic, teratogenic, and toxic effects on human health. It is urgent to develop a highly efficient and sensitive assay for visual detection of SEM. In this paper, a pyrrolopyrrole cyanine fluorescent probe (PPCy-1) was reported for visualization and quantitative analysis of SEM through a chromophore reaction sensing mechanism for the first time. The probe towards SEM exhibited a fast response (10 min), a low detection limit (0.18 μM), high selectivity, and distinct dual ratiometric fluorescence turn-on and colorimetric modes. Its practicability was further verified by detecting SEM in meat, water, and honey samples with satisfactory recovery values. More importantly, a smartphone-assisted portable testing platform was constructed based on a PPCy-1-immobilized test paper or a polyamide thin film with a color scanning APP for real-time and on-site detection of SEM. This work provides low-cost, convenient, and rapid assays for visual SEM detection, which have potential applications in food safety monitoring.
Collapse
Affiliation(s)
- Lingyun Wang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan Road, Guangzhou, 510641, China.
| | - Bihong Lai
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan Road, Guangzhou, 510641, China.
| | - Xueguang Ran
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Swine and Poultry Breeding Industry, 510641, China
| | - Hao Tang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan Road, Guangzhou, 510641, China.
| | - Derong Cao
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan Road, Guangzhou, 510641, China.
| |
Collapse
|
6
|
Fan XF, Fu L, Cui GH. Three robust Cd(II) coordination polymers as bifunctional luminescent probes for efficient detection of pefloxacin and Cr 2O 72- in water. Dalton Trans 2024; 53:5051-5063. [PMID: 38375864 DOI: 10.1039/d4dt00128a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
The accurate and rapid detection of antibiotics and heavy-metal-based toxic oxo-anions in water media employing coordination polymers (CPs) as luminescent probes has attracted a lot of attention. Three new Cd(II)-based ternary CPs derived from first-presented L ligands, including [Cd(DCTP)(L)(OH)]n (1), [Cd(TBTA)(L)(OH)]n (2), and [Cd(NPHT)(L)(H2O)]n (3) (L = 2-((1H-imidazol-1-yl)methyl)-5,6-dimethyl-1H-benzo[d]imidazole, H2DCTP = 2,5-dichloroterephthalic acid, H2TBTA = tetrabromoterephthalic acid and H2NPHT = 3-nitrophthalic acid), were successfully assembled and characterized. 1 and 2 show 2D hcb layers, which can be further extended into a 3D supramolecular framework via classic hydrogen bonding interactions. 3 features a 1D double chain that ultimately spreads into a 2D network through weak hydrogen bonding interactions. With the advantages of high stability and excellent luminescent properties, the three CPs display high sensitivity, selectivity, and good anti-interference for the sensing of pefloxacin (PEF) and Cr2O72- ions (LOD values toward PEF: 3.82 × 10-7 mol L-1 for 1, 4.06 × 10-7 mol L-1 for 2, and 1.36 × 10-8 mol L-1 for 3, and toward Cr2O72- ions: 5.97 × 10-7 mol L-1 for 1, 5.87 × 10-7 mol L-1 for 2, and 8.21 × 10-8 mol L-1 for 3). These CPs are the first examples of bifunctional luminescent sensors to detect PEF and Cr2O72- in aqueous solutions. The luminescence quenching mechanisms are explored in detail.
Collapse
Affiliation(s)
- Xiao-Fei Fan
- College of Chemical Engineering, Hebei Key Laboratory for Environment Photocatalytic and Electrocatalytic Materials, North China University of Science and Technology, No. 21 Bohai Road, Caofeidian new-city, Tangshan, Hebei, 063210, P. R. China.
| | - Lianshe Fu
- Department of Physics and CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Guang-Hua Cui
- College of Chemical Engineering, Hebei Key Laboratory for Environment Photocatalytic and Electrocatalytic Materials, North China University of Science and Technology, No. 21 Bohai Road, Caofeidian new-city, Tangshan, Hebei, 063210, P. R. China.
| |
Collapse
|
7
|
Kanwal T, Rasheed S, Hassan M, Fatima B, Xiao HM, Musharraf SG, Najam-Ul-Haq M, Hussain D. Smartphone-Assisted EY@MOF-5-Based Dual-Emission Fluorescent Sensor for Rapid On-Site Detection of Daclatasvir and Nitenpyram. ACS APPLIED MATERIALS & INTERFACES 2024; 16:1688-1704. [PMID: 38110286 DOI: 10.1021/acsami.3c12565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
Fluorescent metal-organic frameworks (MOFs) are promising sensing materials with tunable and robust structural properties and remarkable luminescent capabilities. In this study, a novel dual-emission fluorescent metal-organic framework (EY@MOF-5) composite is synthesized by a one-pot bottle-around-ship approach. Eosin Y (EY) is encapsulated in MOF-5 to enhance its fluorescence properties and selectivity, effectively addressing typical MOF-5 limitations. EY@MOF-5 serves as a versatile dual-functional fluorescent sensor for two different analytes, daclatasvir (DCT) and nitenpyram (NTP), showing an impressive linear range of 10-200 nM and 0.1-300 μM, with detection limits of 233 pM and 65 nM, respectively. The established method is ultrafast, highly sensitive, and extremely selective for DCT and NTP detection in complex biological and food samples. Fluorescence results are compared and validated with the recommended UPLC method. Then, a smartphone-integrated sensing system is introduced for on-site, real-time, and quantitative analysis of DCT and NTP. The smartphone-assisted intelligent sensing method manifests promising results for DCT and NTP monitoring in biological and food samples, demonstrating its promising potential for the on-site detection of biologically and environmentally significant analytes.
Collapse
Affiliation(s)
- Tehreem Kanwal
- HEJ Research Institute of Chemistry, International Center for Chemical and Biological Science (ICCBS), University of Karachi, Karachi 75270 Pakistan
| | - Sufian Rasheed
- HEJ Research Institute of Chemistry, International Center for Chemical and Biological Science (ICCBS), University of Karachi, Karachi 75270 Pakistan
| | - Mahjabeen Hassan
- HEJ Research Institute of Chemistry, International Center for Chemical and Biological Science (ICCBS), University of Karachi, Karachi 75270 Pakistan
| | - Batool Fatima
- Department of Biochemistry, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Hua-Ming Xiao
- Key Laboratory of Oilseeds Processing of Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Syed Ghulam Musharraf
- HEJ Research Institute of Chemistry, International Center for Chemical and Biological Science (ICCBS), University of Karachi, Karachi 75270 Pakistan
| | - Muhammad Najam-Ul-Haq
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Dilshad Hussain
- HEJ Research Institute of Chemistry, International Center for Chemical and Biological Science (ICCBS), University of Karachi, Karachi 75270 Pakistan
| |
Collapse
|
8
|
Shang ZT, Li TM, Han JH, Yu F, Li B. Zirconium Metal-Organic Framework bearing V-shape letrozole dicarboxylic acid for versatile fluorescence detection. Inorganica Chim Acta 2023. [DOI: 10.1016/j.ica.2023.121436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
9
|
A 8-fold interpenetrated metal-organic framework: Luminescent property and photocatalytic dye degradation performance. J SOLID STATE CHEM 2023. [DOI: 10.1016/j.jssc.2023.123919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
|