1
|
He J, Liu X, Zhang J, Wang R, Cao X, Liu G. Gut microbiome-derived hydrolases-an underrated target of natural product metabolism. Front Cell Infect Microbiol 2024; 14:1392249. [PMID: 38915922 PMCID: PMC11194327 DOI: 10.3389/fcimb.2024.1392249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/16/2024] [Indexed: 06/26/2024] Open
Abstract
In recent years, there has been increasing interest in studying gut microbiome-derived hydrolases in relation to oral drug metabolism, particularly focusing on natural product drugs. Despite the significance of natural product drugs in the field of oral medications, there is a lack of research on the regulatory interplay between gut microbiome-derived hydrolases and these drugs. This review delves into the interaction between intestinal microbiome-derived hydrolases and natural product drugs metabolism from three key perspectives. Firstly, it examines the impact of glycoside hydrolases, amide hydrolases, carboxylesterase, bile salt hydrolases, and epoxide hydrolase on the structure of natural products. Secondly, it explores how natural product drugs influence microbiome-derived hydrolases. Lastly, it analyzes the impact of interactions between hydrolases and natural products on disease development and the challenges in developing microbial-derived enzymes. The overarching goal of this review is to lay a solid theoretical foundation for the advancement of research and development in new natural product drugs and personalized treatment.
Collapse
Affiliation(s)
- Jiaxin He
- People’s Hospital of Ningxia Hui Autonomous Region, Pharmacy Department, Yinchuan, China
| | - Xiaofeng Liu
- People’s Hospital of Ningxia Hui Autonomous Region, Pharmacy Department, Yinchuan, China
| | - Junming Zhang
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Rong Wang
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Xinyuan Cao
- People’s Hospital of Ningxia Hui Autonomous Region, Pharmacy Department, Yinchuan, China
- Ningxia Medical University, School of Basic Medicine, Yinchuan, China
| | - Ge Liu
- Ningxia Medical University, School of Basic Medicine, Yinchuan, China
| |
Collapse
|
2
|
Guo J, Li L, Cai Y, Kang Y. The development of probiotics and prebiotics therapy to ulcerative colitis: a therapy that has gained considerable momentum. Cell Commun Signal 2024; 22:268. [PMID: 38745207 PMCID: PMC11094941 DOI: 10.1186/s12964-024-01611-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 04/10/2024] [Indexed: 05/16/2024] Open
Abstract
Ulcerative colitis (UC) is increasingly common, and it is gradually become a kind of global epidemic. UC is a type of inflammatory bowel disease (IBD), and it is a lifetime recurrent disease. UC as a common disease has become a financial burden for many people and has the potential to develop into cancer if not prevented or treated. There are multiple factors such as genetic factors, host immune system disorders, and environmental factors to cause UC. A growing body of research have suggested that intestinal microbiota as an environmental factor play an important role in the occurrence and development of UC. Meanwhile, evidence to date suggests that manipulating the gut microbiome may represent effective treatment for the prevention or management of UC. In addition, the main clinical drugs to treat UC are amino salicylate and corticosteroid. These clinical drugs always have some side effects and low success rate when treating patients with UC. Therefore, there is an urgent need for safe and efficient methods to treat UC. Based on this, probiotics and prebiotics may be a valuable treatment for UC. In order to promote the wide clinical application of probiotics and prebiotics in the treatment of UC. This review aims to summarize the recent literature as an aid to better understanding how the probiotics and prebiotics contributes to UC while evaluating and prospecting the therapeutic effect of the probiotics and prebiotics in the treatment of UC based on previous publications.
Collapse
Affiliation(s)
- Jing Guo
- Department of microbiology and immunology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Liping Li
- Department of microbiology and immunology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yue Cai
- Faculty of Life science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Yongbo Kang
- Department of microbiology and immunology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, China.
| |
Collapse
|
3
|
Alaba TE, Holman JM, Ishaq SL, Li Y. Current Knowledge on the Preparation and Benefits of Cruciferous Vegetables as Relates to In Vitro, In Vivo, and Clinical Models of Inflammatory Bowel Disease. Curr Dev Nutr 2024; 8:102160. [PMID: 38779039 PMCID: PMC11108850 DOI: 10.1016/j.cdnut.2024.102160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 04/01/2024] [Accepted: 04/14/2024] [Indexed: 05/25/2024] Open
Abstract
Inflammatory bowel disease is a chronic condition with a significant economic and social burden. The disease is complex and challenging to treat because it involves several pathologies, such as inflammation, oxidative stress, dysbiosis, and intestinal damage. The search for an effective treatment has identified cruciferous vegetables and their phytochemicals as potential management options for inflammatory bowel disease because they contain prebiotics, probiotics, and anti-inflammatory and antioxidant metabolites essential for a healthy gut. This critical narrative style review provides a robust insight into the pharmacological effects and benefits of crucifers and their documented bioactive compounds in in vitro and in vivo models, as well as clinical inflammatory bowel disease. The review highlights the significant impact of crucifer preparation and the presence of glucosinolates, isothiocyanates, flavonoids, and polyphenolic compounds, which are essential for the anti-inflammatory and antioxidative benefits of cruciferous vegetables, as well as their ability to promote the healthy microbial community and maintain the intestinal barrier. This review may serve as a viable nutritional guide for future research on methods and features essential to developing experiments, preventions, and treatments for inflammatory bowel disease. There is limited clinical information and future research may utilize current innovative tools, such as metabolomics, for adequate knowledge and effective translation into clinical therapy.
Collapse
Affiliation(s)
- Tolu E Alaba
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME, United States
| | - Johanna M Holman
- School of Food and Agriculture, University of Maine, Orono, ME, United States
| | - Suzanne L Ishaq
- School of Food and Agriculture, University of Maine, Orono, ME, United States
| | - Yanyan Li
- School of Food and Agriculture, University of Maine, Orono, ME, United States
- School of Pharmacy and Pharmaceutical Sciences, SUNY Binghamton University, Johnson City, NY, United States
| |
Collapse
|
4
|
Tang J, Zhao M, Miao X, Chen H, Zhao B, Wang Y, Guo Y, Wang T, Cheng X, Ruan H, Zhang J. Bifidobacterium longum GL001 alleviates rat intestinal ischemia-reperfusion injury by modulating gut microbiota composition and intestinal tissue metabolism. Food Funct 2024; 15:3653-3668. [PMID: 38487897 DOI: 10.1039/d3fo03669c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Intestinal ischemia-reperfusion (IIR) injury leads to inflammation and oxidative stress, resulting in intestinal barrier damage. Probiotics, due to their anti-inflammatory and antioxidant properties, are considered for potential intervention to protect the intestinal barrier during IIR injury. Bifidobacterium longum, a recognized probiotic, has targeted effects on IIR injury, but its mechanisms of action are not yet understood. To investigate the mechanism of Bifidobacterium longum intervention in IIR injury, we conducted a study using a rat IIR injury model. The results showed that Bifidobacterium longum could alleviate inflammation and oxidative stress induced by IIR injury by suppressing the NF-κB inflammatory pathway and activating the Keap1/Nrf2 signaling pathway. Bifidobacterium longum GL001 also increased the abundance of the gut microbiota such as Oscillospira, Ouminococcus, Corynebacterium, Lactobacillus, and Akkermansia, while decreasing the abundance of Allobaculum, [Prevotella], Bacteroidaceae, Bacteroides, Shigella, and Helicobacter. In addition, Bifidobacterium longum GL001 reversed the changes in amino acids and bile acids induced by IIR injury and reduced the levels of DL-cysteine, an oxidative stress marker, in intestinal tissue. Spearman correlation analysis showed that L-cystine was positively correlated with Lactobacillus and negatively correlated with Shigella, while DL-proline was positively correlated with Akkermansia. Moreover, bile acids, cholic acid and lithocholic acid, were negatively correlated with Lactobacillus and positively correlated with Shigella. Therefore, Bifidobacterium longum GL001 may alleviate IIR injury by regulating the gut microbiota to modulate intestinal lipid peroxidation and bile acid metabolism.
Collapse
Affiliation(s)
- Jilang Tang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, China
| | - Mingchao Zhao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, China
| | - Xue Miao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, China
| | - Hong Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, China
| | - Binger Zhao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, China
| | - Yingying Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, China
| | - Yingchao Guo
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, China
| | - Tiantian Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, China
| | - Xin Cheng
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, China
| | - Hongri Ruan
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, China
| | - Jiantao Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, China
| |
Collapse
|
5
|
Bouranis JA, Beaver LM, Wong CP, Choi J, Hamer S, Davis EW, Brown KS, Jiang D, Sharpton TJ, Stevens JF, Ho E. Sulforaphane and Sulforaphane-Nitrile Metabolism in Humans Following Broccoli Sprout Consumption: Inter-individual Variation, Association with Gut Microbiome Composition, and Differential Bioactivity. Mol Nutr Food Res 2024; 68:e2300286. [PMID: 38143283 PMCID: PMC10922398 DOI: 10.1002/mnfr.202300286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 11/14/2023] [Indexed: 12/26/2023]
Abstract
SCOPE The glucosinolate glucoraphanin from broccoli is converted to sulforaphane (SFN) or sulforaphane-nitrile (SFN-NIT) by plant enzymes or the gut microbiome. Human feeding studies typically observe high inter-individual variation in absorption and excretion of SFN, however, the source of this variation is not fully known. To address this, a human feeding trial to comprehensively evaluate inter-individual variation in the absorption and excretion of all known SFN metabolites in urine, plasma, and stool, and tested the hypothesis that gut microbiome composition influences inter-individual variation in total SFN excretion has been conducted. METHODS AND RESULTS Participants (n = 55) consumed a single serving of broccoli or alfalfa sprouts and plasma, stool, and total urine are collected over 72 h for quantification of SFN metabolites and gut microbiome profiling using 16S gene sequencing. SFN-NIT excretion is markedly slower than SFN excretion (72 h vs 24 h). Members of genus Bifidobacterium, Dorea, and Ruminococcus torques are positively associated with SFN metabolite excretion while members of genus Alistipes and Blautia has a negative association. CONCLUSION This is the first report of SFN-NIT metabolite levels in human plasma, urine, and stool following consumption of broccoli sprouts. The results help explain factors driving inter-individual variation in SFN metabolism and are relevant for precision nutrition.
Collapse
Affiliation(s)
- John A Bouranis
- College of Health, Oregon State University, Corvallis, Oregon, USA
- Linus Pauling Institute, Oregon State University, Corvallis, Oregon, USA
| | - Laura M Beaver
- College of Health, Oregon State University, Corvallis, Oregon, USA
- Linus Pauling Institute, Oregon State University, Corvallis, Oregon, USA
| | - Carmen P Wong
- College of Health, Oregon State University, Corvallis, Oregon, USA
- Linus Pauling Institute, Oregon State University, Corvallis, Oregon, USA
| | - Jaewoo Choi
- Linus Pauling Institute, Oregon State University, Corvallis, Oregon, USA
| | - Sean Hamer
- College of Health, Oregon State University, Corvallis, Oregon, USA
- Linus Pauling Institute, Oregon State University, Corvallis, Oregon, USA
| | - Ed W Davis
- Linus Pauling Institute, Oregon State University, Corvallis, Oregon, USA
- Center for Quantitative Life Sciences, Oregon State University, Corvallis, Oregon, USA
| | - Kevin S Brown
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, Oregon, USA
| | - Duo Jiang
- Department of Statistics, Oregon State University, Corvallis, Oregon, USA
| | - Thomas J Sharpton
- Department of Statistics, Oregon State University, Corvallis, Oregon, USA
- Department of Microbiology, Oregon State University, Corvallis, Oregon, USA
| | - Jan F Stevens
- Linus Pauling Institute, Oregon State University, Corvallis, Oregon, USA
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, Oregon, USA
| | - Emily Ho
- College of Health, Oregon State University, Corvallis, Oregon, USA
- Linus Pauling Institute, Oregon State University, Corvallis, Oregon, USA
| |
Collapse
|