1
|
Hu M, Guo X, Tian Y, Li Y, Liu Y, Huang X, Chen G, Che Z. Synthesis of paeonol hydrazone derivatives and their anti-oomycete, anti-fungal, and nematicidal activities. PEST MANAGEMENT SCIENCE 2024; 80:5746-5758. [PMID: 39003636 DOI: 10.1002/ps.8306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/20/2024] [Accepted: 06/28/2024] [Indexed: 07/15/2024]
Abstract
BACKGROUND The natural product paeonol is a rich and sustainable natural bioresource, and its derivatives have various unique biological efficacy. As is well known, Schiff bases are a class of organic compounds with a wide range of biological activities, including anti-fungal, insecticidal, anti-viral, and nematicidal. RESULTS To discover biorational natural product-based pesticides, nine intermediates (2-10), 12 sulfonylhydrazones (11a-11c, 12a-12c, 13a-13c, and 14a-14c) and 20 benzylidene hydrazones (18a-18r, 19a, and 20a) were synthesized by structural modification of paeonol, and their structures were characterized by proton nuclear magnetic resonance (1H NMR), carbon-13 (13C) NMR, and high-resolution mass spectrometry (HRMS). The stereochemical configurations of compounds 14a, 18d, and 18r were unambiguously confirmed by single-crystal X-ray diffraction. Furthermore, bioactivities of these compounds as anti-oomycete, anti-fungal, and nematicidal agents against three serious agricultural pests, Phytophthora capsici, Fusarium graminearum, and Heterodera glycines were evaluated. Among all tested compounds: (i) compound 7 exhibited promising anti-oomycete against Phytophthora capsici, with a half maximal effective concentration (EC50) value of 15.81 mg L-1; (ii) compounds 2, 7, 10, and 19a displayed promising anti-fungal against F. graminearum, with EC50 values of 12.22, 14.72, 23.39, and 33.10 mg L-1, respectively; (iii) ten compounds (12a-12c, 14c, 18g-18j, 18m, and 19a) showed significant nematicidal activity against H. glycines, with median lethal concentration (LC50) values all less than 30.00 mg L-1. Especially for compound 18g, its LC50 value is the smallest, at 12.65 mg L-1. CONCLUSION The research results indicate that introducing nitro groups at the C5 position of paeonol, or introducing halogens at both C5 and C3 positions, can significantly enhance its biological activity against Phytophthora capsici, F. graminearum, and H. glycines. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Mei Hu
- Laboratory of Pesticidal Design and Synthesis, Department of Plant Protection, College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, China
| | - Xiaolong Guo
- Laboratory of Pesticidal Design and Synthesis, Department of Plant Protection, College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, China
| | - Yuee Tian
- Laboratory of Pesticidal Design and Synthesis, Department of Plant Protection, College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, China
| | - Yan Li
- Laboratory of Pesticidal Design and Synthesis, Department of Plant Protection, College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, China
| | - Yibo Liu
- Laboratory of Pesticidal Design and Synthesis, Department of Plant Protection, College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, China
| | - Xiaobo Huang
- Laboratory of Pesticidal Design and Synthesis, Department of Plant Protection, College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, China
| | - Genqiang Chen
- Laboratory of Pesticidal Design and Synthesis, Department of Plant Protection, College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, China
| | - Zhiping Che
- Laboratory of Pesticidal Design and Synthesis, Department of Plant Protection, College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, China
| |
Collapse
|
2
|
Li Y, Li M, Shakoor N, Wang Q, Zhu G, Jiang Y, Wang Q, Azeem I, Sun Y, Zhao W, Gao L, Zhang P, Rui Y. Metal-Organic Frameworks for Sustainable Crop Disease Management: Current Applications, Mechanistic Insights, and Future Challenges. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:22985-23007. [PMID: 39380155 DOI: 10.1021/acs.jafc.4c04007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Efficient management of crop diseases and yield enhancement are essential for addressing the increasing food demands due to global population growth. Metal-organic frameworks (MOFs), which have rapidly evolved throughout the 21st century, are notable for their vast surface area, porosity, and adaptability, establishing them as highly effective vehicles for controlled drug delivery. This review methodically categorizes common MOFs employed in crop disease management and details their effectiveness against various pathogens. Additionally, by critically evaluating existing research, it outlines strategic approaches for the design of drug-delivery MOFs and explains the mechanisms through which MOFs enhance disease resistance. Finally, this paper identifies the current challenges in MOF research for crop disease management and suggests directions for future research. Through this in-depth review, the paper seeks to enrich the understanding of MOFs applications in crop disease management and offers valuable insights for researchers and practitioners.
Collapse
Affiliation(s)
- Yuanbo Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Mingshu Li
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Noman Shakoor
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Quanlong Wang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Guikai Zhu
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Yaqi Jiang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Qibin Wang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Imran Azeem
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Yi Sun
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Weichen Zhao
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Li Gao
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences Institute of Plant Protection, Beijing 100193, China
| | - Peng Zhang
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Yukui Rui
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
- China Agricultural University Professor Workstation of Tangshan Jinhai New Material Co., Ltd., Tangshan 063305, China
- China Agricultural University Professor Workstation of Wuqiang County, Hengshui 053000, China
| |
Collapse
|
3
|
Wu ZW, Ye CY, Ye ZT, Zhang XX, Zhang QY, Zhang Y, Zhou J, Su HEM, Chen XY, Su T, Yu JS, Qian X. Discovery of Enantiopure ( S)-Methoprene Derivatives as Potent Biochemical Pesticide Candidates. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 39443167 DOI: 10.1021/acs.jafc.4c05795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
(S)-Methoprene has been widely applied as a powerful biochemical pesticide to control disease vectors and other pestiferous arthropods of economic importance. As a juvenile hormone analogue, many products based on (S)-methoprene are developed and commercialized in the USA, Europe, and elsewhere. However, the agricultural use of (S)-methoprene and its analogues remains underexplored. Here, based on an intermediate derivatization strategy and structural modification, a series of enantiopure (S)-methoprene derivatives were designed for their expected bioactivity against two crop-threatening pests. Six compounds showed more than 2-fold stronger inhibition of emergence against Plutella xylostella than (S)-methoprene, among which one that was designated as B2 showed even superior activity to the conventional chemical pesticide and biopesticide with IE50 of 0.02 mg/L. Nine compounds exhibited over 2-fold higher bioactivity against Aphis craccivora growth than (S)-methoprene. The physicochemical property evaluation and toxicological test showed that the potent (S)-methoprene derivatives were low toxic to the nontarget organism and the environment. Molecular docking studies further demonstrated that the high bioactivity of B2 may be partially attributed to its great affinity for binding to juvenile hormone receptors of P. xylostella. The current study suggests that B2 is a biochemical pesticide candidate with potency to be developed as a new agrochemical for lepidopteran control.
Collapse
Affiliation(s)
- Zhong-Wei Wu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, and State Key Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Chen-Yu Ye
- Institute of Eco-Chongming, School of Ecological and Environmental Science, East China Normal University, Shanghai 200241, China
| | - Zhong-Tian Ye
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, and State Key Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Xue-Xin Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, and State Key Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Qin-Yu Zhang
- Institute of Eco-Chongming, School of Ecological and Environmental Science, East China Normal University, Shanghai 200241, China
| | - Ying Zhang
- Institute of Eco-Chongming, School of Ecological and Environmental Science, East China Normal University, Shanghai 200241, China
| | - Jian Zhou
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, and State Key Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Heng E M Su
- Synergetica International Inc., Marlboro, New Jersey 07746, United States
| | - Xiao-Yong Chen
- Institute of Eco-Chongming, School of Ecological and Environmental Science, East China Normal University, Shanghai 200241, China
| | - Tianyun Su
- EcoZone International LLC, Riverside, California 92506, United States
| | - Jin-Sheng Yu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, and State Key Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Xuhong Qian
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, and State Key Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
4
|
Fu W, Yuan Q, Zhang H, Li X, Lu Y, Yan W, Ye Y, Liu X, Li Z, Shao X. Novel SDH Inhibitors as Antifungal Leads: From Azobenzene Derivatives to the 1,2,4-Oxadiazole Compounds. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 39437427 DOI: 10.1021/acs.jafc.4c05500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Azo-incorporating was reported to be an effective strategy for increasing SDH inhibitory activity but for poor in vivo control effects. Herein, the azo-incorporated compounds were structurally optimized to retain a preferential conformation by replacing the azo bond with their bioisosteres. Interestingly, the 1,2,4-oxadiazole compound D2 displayed a broad fungicidal spectrum as well as fluxapyroxad. More excitedly, compound D2 showed excellent antifungal activities against rice sheath blight disease both in vitro (EC50 = 0.001 μg/mL) and in vivo (EC50 = 1.08 μg/mL, EC95 = 4.67 μg/mL). In addition, an extra π-π interaction was found between the 1,2,4-oxadiazole ring of compound D2 and the phenyl ring of residue D_Y586, which might interpret the enhanced potency of compound D2 against Rhizoctonia solani. Further structural optimizations of the 1,2,4-oxadiazole compounds gave several analogues that made a breakthrough in controlling rice blast disease. These 1,2,4-oxadiazole compounds, derived from azobenzene derivatives, could be antifungal leads especially against R. solani and Magnaporthe grisea, exemplifying an interesting mode of pesticide discovery and providing theoretical guidance for innovation of the SDHI fungicide.
Collapse
Affiliation(s)
- Wen Fu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
- National Key Laboratory of Green Pesticide, Guizhou University, Guiyang, Guizhou 550025, China
| | - Qinglong Yuan
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Hangji Zhang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Xiaoyan Li
- College of Humanities and Economic Management, Yantai Institute of China Agricultural University, Yantai, Shandong 264670, China
| | - Yiming Lu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Wenming Yan
- Shandong Yingxin Chemical Co., Ltd, Binzhou, Shandong 256600, China
| | - Yonghao Ye
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Xili Liu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Zhong Li
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xusheng Shao
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
5
|
Guo YH, Liu YB, Ma YY, Li Y, Tian YE, Huang XB, Qian L, Liu SM, Chen GQ, Che ZP. Design, synthesis, and anti-oomycete activity of 3-acyloxymaltol/ethyl maltol derivatives. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2024; 26:1166-1174. [PMID: 38859556 DOI: 10.1080/10286020.2024.2355144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 05/09/2024] [Accepted: 05/09/2024] [Indexed: 06/12/2024]
Abstract
Twenty 3-acyloxymaltol/ethyl maltol derivatives (7a-j and 8a-j) were synthesized and evaluated in vitro for their anti-oomycete activity against Phytophthora capsici, respectively. Among all of twenty derivatives, more than half of the compounds 7f, 7h, 8a-h and 8j had anti-oomycete activity higher than the positive control zoxamide (EC50 = 22.23 mg/L), and the EC50 values of 18.66, 20.32, 12.80, 16.18, 10.59, 14.98, 16.80, 10.36, 15.32, 12.64, and 13.59 mg/L, respectively. Especially, compounds 8c and 8f exhibited the best anti-oomycete activity against P. capsici with EC50 values of 10.59 and 10.36 mg/L, respectively. Overall, hydroxyl group of maltol/ethyl maltol is important active modification site.
Collapse
Affiliation(s)
- Yi-Hao Guo
- Laboratory of Pesticidal Design & Synthesis, Department of Plant Protection, College of Horticultrue and Plant Protection, Henan University of Science and Technology, Luoyang 471023, China
| | - Yi-Bo Liu
- Laboratory of Pesticidal Design & Synthesis, Department of Plant Protection, College of Horticultrue and Plant Protection, Henan University of Science and Technology, Luoyang 471023, China
| | - Ying-Ying Ma
- Laboratory of Pesticidal Design & Synthesis, Department of Plant Protection, College of Horticultrue and Plant Protection, Henan University of Science and Technology, Luoyang 471023, China
| | - Yan Li
- Laboratory of Pesticidal Design & Synthesis, Department of Plant Protection, College of Horticultrue and Plant Protection, Henan University of Science and Technology, Luoyang 471023, China
| | - Yue-E Tian
- Laboratory of Pesticidal Design & Synthesis, Department of Plant Protection, College of Horticultrue and Plant Protection, Henan University of Science and Technology, Luoyang 471023, China
| | - Xiao-Bo Huang
- Laboratory of Pesticidal Design & Synthesis, Department of Plant Protection, College of Horticultrue and Plant Protection, Henan University of Science and Technology, Luoyang 471023, China
| | - Le Qian
- Laboratory of Pesticidal Design & Synthesis, Department of Plant Protection, College of Horticultrue and Plant Protection, Henan University of Science and Technology, Luoyang 471023, China
| | - Sheng-Ming Liu
- Laboratory of Pesticidal Design & Synthesis, Department of Plant Protection, College of Horticultrue and Plant Protection, Henan University of Science and Technology, Luoyang 471023, China
| | - Gen-Qiang Chen
- Laboratory of Pesticidal Design & Synthesis, Department of Plant Protection, College of Horticultrue and Plant Protection, Henan University of Science and Technology, Luoyang 471023, China
| | - Zhi-Ping Che
- Laboratory of Pesticidal Design & Synthesis, Department of Plant Protection, College of Horticultrue and Plant Protection, Henan University of Science and Technology, Luoyang 471023, China
| |
Collapse
|
6
|
Zhang D, Wang C, Zhang Y, Yu Z, Hong Z, Jia D, Ma D, Gu Y, Xu H, Xi Z. Discovery of Novel (5-Mercapto-4-phenyl-4 H-1,2,4-triazol-3-yl)methyl Phenyl Carbamate as a Potent Phytoene Desaturase Inhibitor through Scaffold Hopping and Linker Modification. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:18898-18908. [PMID: 39147603 DOI: 10.1021/acs.jafc.4c05989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Phytoene desaturase (PDS) is a key rate-limiting enzyme in the carotenoid biosynthesis pathway. Although commercial PDS inhibitors have been developed for decades, it remains necessary to develop novel PDS inhibitors with higher bioactivity. In this work, we used the scaffold hopping and linker modification approaches to design and synthesize a series of compounds (7a-7o, 8a-8l, and 14a-14d). The postemergence application assay demonstrated that 8e and 7e separately showed the best herbicidal activity at 750 g a.i./ha and lower doses (187.5 g, 375g a.i./ha) without no significant toxicity to maize and wheat. The surface plasmon resonance revealed strong binding affinity between 7e and Synechococcus PDS (SynPDS). The HPLC analysis confirmed that 8e at 750 g a.i./ha caused significant phytoene accumulation in Arabidopsis seedlings. This work demonstrates the efficacy of structure-guided optimization through scaffold hopping and linker modification to design potent PDS inhibitors with enhanced bioactivity and crop safety.
Collapse
Affiliation(s)
- Di Zhang
- National Pesticide Engineering Research Center (Tianjin), Department of Chemical Biology, State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
- Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, P. R. China
| | - Chunxue Wang
- National Pesticide Engineering Research Center (Tianjin), Department of Chemical Biology, State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
- Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, P. R. China
| | - Yichi Zhang
- National Pesticide Engineering Research Center (Tianjin), Department of Chemical Biology, State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
- Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, P. R. China
| | - Zhilei Yu
- National Pesticide Engineering Research Center (Tianjin), Department of Chemical Biology, State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
- Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, P. R. China
| | - Zeyu Hong
- National Pesticide Engineering Research Center (Tianjin), Department of Chemical Biology, State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
- Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, P. R. China
| | - Ding Jia
- National Pesticide Engineering Research Center (Tianjin), Department of Chemical Biology, State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
- Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, P. R. China
| | - Dejun Ma
- National Pesticide Engineering Research Center (Tianjin), Department of Chemical Biology, State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
- Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, P. R. China
| | - Yucheng Gu
- Syngenta Jealott's Hill International Research Centre, Bracknell RG42 6EY, U.K
| | - Han Xu
- National Pesticide Engineering Research Center (Tianjin), Department of Chemical Biology, State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
- Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, P. R. China
| | - Zhen Xi
- National Pesticide Engineering Research Center (Tianjin), Department of Chemical Biology, State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
- Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
7
|
Tian Y, Ma S, Liu Y, Li Y, Chen G, Che Z. Synthesis of Novel 4-Acyloxy-2'-Bromo-6'-Chloropodophyllotoxin Derivatives Displaying Significant Insecticidal Activity Against Mythimna Separata. Chem Biodivers 2024; 21:e202400929. [PMID: 38661022 DOI: 10.1002/cbdv.202400929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 04/26/2024]
Abstract
In order to explore novel natural product-based insecticidal agent, two important intermediates (2 and 3) and 4-acyloxy-2'-bromo-6'-chloropodophyllotoxin derivatives (4 a-f and 5 a-f) were designed and prepared, and their structures were confirmed by 1H-NMR, 13C NMR, HRMS, ESI-MS, optical rotation and melting point (mp). The stereochemical configuration of compound 4 b was unambiguously confirmed by single-crystal X-ray diffraction. Moreover, we evaluated the insecticidal activity of target compounds 4 a-f and 5 a-f against a serious agricultural pest of Mythimna separata by using the leaf-dipping method. Among all tested compounds, compounds 4 d, 5 d and 5 f exhibited stronger insecticidal activity with a final mortality rate exceeding 60 %. Especially compound 5 d exhibited the best insecticidal activity, with a final mortality rate of 74.1 %. It has been proven that introducing bromine or chlorine atoms at the C-2', C-2' and C-6' positions of the E ring of podophyllotoxin can produce more potent compounds. In addition, the configuration of the C-4 position is important for insecticidal activity, and 4β-configuration is optimal. This will pave the way for further design, structural modification, and development of derivatives of podophyllotoxin as insecticidal agents.
Collapse
Affiliation(s)
- Yuee Tian
- Laboratory of Pesticidal Design & Synthesis, Department of Plant Protection, College of Horticultrue and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, China
| | - Shiyue Ma
- Laboratory of Pesticidal Design & Synthesis, Department of Plant Protection, College of Horticultrue and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, China
| | - Yibo Liu
- Laboratory of Pesticidal Design & Synthesis, Department of Plant Protection, College of Horticultrue and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, China
| | - Yan Li
- Laboratory of Pesticidal Design & Synthesis, Department of Plant Protection, College of Horticultrue and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, China
| | - Genqiang Chen
- Laboratory of Pesticidal Design & Synthesis, Department of Plant Protection, College of Horticultrue and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, China
| | - Zhiping Che
- Laboratory of Pesticidal Design & Synthesis, Department of Plant Protection, College of Horticultrue and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, China
| |
Collapse
|
8
|
Song R, Zhang Y, Lu P, Wu J, Li QX, Song B. Status and Perspective on Green Pesticide Utilizations and Food Security. Annu Rev Food Sci Technol 2024; 15:473-493. [PMID: 38134385 DOI: 10.1146/annurev-food-072023-034519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2023]
Abstract
Pesticides protect crops against pests, and green pesticides are referred to as effective, safe, and eco-friendly pesticides that are sustainably synthesized and manufactured (i.e., green chemistry production). Owing to their high efficacy, safety, and ecological compatibility, green pesticides have become a main direction of global pesticide research and development (R&D). Green pesticides attract attention because of their close association with the quality and safety of agricultural produce. In this review, we briefly define green pesticides and outline their significance, current registration, commercialization, and applications in China, the European Union, and the United States. Subsequently, we engage in an in-depth analysis of the impact of newly launched green pesticides on the environment and ecosystems. Finally, we focus on the potential risks of dietary exposure to green pesticides and the possible hazards of chronic toxicity and carcinogenicity. The status of and perspective on green pesticides can hopefully inspire green pesticide R&D and applications to ensure agricultural production and safeguard human and ecological health.
Collapse
Affiliation(s)
- Runjiang Song
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China;
| | - Yuping Zhang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China;
| | - Ping Lu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China;
| | - Jian Wu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China;
| | - Qing X Li
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, Hawaii, USA;
| | - Baoan Song
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China;
| |
Collapse
|
9
|
Wei R, Liu Y, Yin W, Wang R, Tian Y, Huang X, Qian L, Liu S, Chen G, Che Z. Design, synthesis and anti-oomycete activity of 2-acyloxyhinokitiol derivatives. Nat Prod Res 2024:1-10. [PMID: 38501725 DOI: 10.1080/14786419.2024.2331021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 03/02/2024] [Indexed: 03/20/2024]
Abstract
In order to explore novel natural product-based anti-oomycete agent, ten 2-acyloxyhinokitiol derivatives (5a-j) were designed and synthesised, and structurally confirmed by 1H NMR,13C NMR, HRMS, and melting point. The stereochemical configuration of compound 5f was unambiguously confirmed by single-crystal X-ray diffraction. Furthermore, we evaluated the target compounds 5a-j as anti-oomycete activity against a serious agricultural disease of Phytophthora capsici. Among the ten hinokitiol ester derivatives tested, four compounds 5d, 5g, 5h and 5j had anti-oomycete activity higher than the positive control zoxamide (EC50 = 23.59 mg/L), and the EC50 values of 18.90, 20.62, 13.61 and 21.29 mg/L, respectively. Especially compound 5h exhibited the best anti-oomycete activity against P. capsici with EC50 value of 13.61 mg/L. Overall, the anti-oomycete activities of 2-acyloxyhinokitiol derivatives is higher than that of 2-sulfonyloxyhinokitiol derivatives. The results laid a good foundation for the subsequent synthesis of hinokitiol ester derivatives with significant anti-oomycete activity.
Collapse
Affiliation(s)
- Ruxue Wei
- Laboratory of Pesticidal Design & Synthesis, Department of Plant Protection, College of Horticultrue and Plant Protection, Henan University of Science and Technology, Luoyang, China
| | - Yibo Liu
- Laboratory of Pesticidal Design & Synthesis, Department of Plant Protection, College of Horticultrue and Plant Protection, Henan University of Science and Technology, Luoyang, China
| | - Wanying Yin
- Laboratory of Pesticidal Design & Synthesis, Department of Plant Protection, College of Horticultrue and Plant Protection, Henan University of Science and Technology, Luoyang, China
| | - Ruiguang Wang
- Laboratory of Pesticidal Design & Synthesis, Department of Plant Protection, College of Horticultrue and Plant Protection, Henan University of Science and Technology, Luoyang, China
| | - Yuee Tian
- Laboratory of Pesticidal Design & Synthesis, Department of Plant Protection, College of Horticultrue and Plant Protection, Henan University of Science and Technology, Luoyang, China
| | - Xiaobo Huang
- Laboratory of Pesticidal Design & Synthesis, Department of Plant Protection, College of Horticultrue and Plant Protection, Henan University of Science and Technology, Luoyang, China
| | - Le Qian
- Laboratory of Pesticidal Design & Synthesis, Department of Plant Protection, College of Horticultrue and Plant Protection, Henan University of Science and Technology, Luoyang, China
| | - Shengming Liu
- Laboratory of Pesticidal Design & Synthesis, Department of Plant Protection, College of Horticultrue and Plant Protection, Henan University of Science and Technology, Luoyang, China
| | - Genqiang Chen
- Laboratory of Pesticidal Design & Synthesis, Department of Plant Protection, College of Horticultrue and Plant Protection, Henan University of Science and Technology, Luoyang, China
| | - Zhiping Che
- Laboratory of Pesticidal Design & Synthesis, Department of Plant Protection, College of Horticultrue and Plant Protection, Henan University of Science and Technology, Luoyang, China
| |
Collapse
|
10
|
Liu H, Cai C, Zhang X, Li W, Ma Z, Feng J, Liu X, Lei P. Discovery of Novel Cinnamic Acid Derivatives as Fungicide Candidates. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:2492-2500. [PMID: 38271672 DOI: 10.1021/acs.jafc.3c05655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Structural diversity derivatization from natural products is an important and effective method of discovering novel green pesticides. Cinnamic acids are abundant in plants, and their unparalleled structures endow them with various excellent biological activities. A series of novel cinnamic oxime esters were designed and synthesized to develop high antifungal agrochemicals. The antifungal activity, structure-activity relationship, and action mechanism were systematically studied. Compounds 7i, 7u, 7v, and 7x exhibited satisfactory activity against Gaeumannomyces graminis var. tritici, with inhibition rates of ≥90% at 50 μg/mL. Compounds 7z and 7n demonstrated excellent activities against Valsa mali and Botrytis cinerea, with median effective concentration (EC50) values of 0.71 and 1.41 μg/mL, respectively. Compound 7z exhibited 100% protective and curative activities against apple Valsa canker at 200 μg/mL. The control effects of 7n against gray mold on tomato fruits and leaves were all >96%, exhibiting superior or similar effects to those of the commercial fungicide boscalid. Furthermore, the quantitative structure-activity relationship was established to guide the further design of higher-activity compounds. The preliminary results on the action mechanism revealed that 7n treatment could disrupt the function of the nucleus and mitochondria, leading to reactive oxygen species accumulation and cell membrane damage. Its primary biochemical mechanism may be inhibiting fungal ergosterol biosynthesis. The novel structure, simple synthesis, and excellent activity of cinnamic oxime esters render them promising potential fungicides.
Collapse
Affiliation(s)
- Hanru Liu
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chonglin Cai
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xingjia Zhang
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wenkui Li
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
- Shaanxi Research Center of Biopesticide Engineering & Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhiqing Ma
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
- Shaanxi Research Center of Biopesticide Engineering & Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Juntao Feng
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
- Shaanxi Research Center of Biopesticide Engineering & Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xili Liu
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Peng Lei
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
- Shaanxi Research Center of Biopesticide Engineering & Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
11
|
Yang S, Tang J, Li B, Yao G, Peng H, Pu C, Zhao C, Xu H. Rational Design of Insecticidal Isoxazolines Containing Sulfonamide or Sulfinamide Structure as Antagonists of GABA Receptors with Reduced Toxicities to Honeybee and Zebrafish. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:14211-14220. [PMID: 37737111 DOI: 10.1021/acs.jafc.3c03459] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
To develop highly effective, nontarget organism-friendly insecticides based on the isoxazoline scaffold, we rationally designed and synthesized 25 isoxazoline derivatives containing sulfonamides and sulfinamides. Their insecticidal activities against the diamondback moth (Plutella xylostella), fall armyworm (Spodoptera frugiperda), beet armyworm (Spodoptera exigua), and Spodoptera litura Fabricius (S. litura) were evaluated. The trifluoromethyl sulfinamide-containing compound 7w displayed excellent activities with LC50 values being 0.09, 0.84, 0.87, and 0.68 mg/L against P. xylostella, S. frugiperda, S. exigua, and S. litura, respectively, which were superior to fluxametamide (LC50 = 0.09, 1.24, 1.10, and 0.65 mg/L, respectively) and maintained at the same order of magnitude LC50 values as fluralaner (LC50 = 0.02, 0.17, 0.12, and 0.19 mg/L, respectively). Importantly, compound 7w showed a medium toxicity level of acute toxicity to honeybee (LD50 = 2.22 μg/adult), which is significantly lower than the fluralaner (high toxicity level, LD50 = 0.09 μg/adult). Acute toxicity experiments with zebrafish (Danio rerio) indicated that compound 7w was safe with the LC50 value being 42.4 mg/L (low toxicity level). Furthermore, electrophysiological experiments and molecular docking studies preliminarily verified that compound 7w acts on the insect GABA receptor, and the theoretical calculations explained that the sulfinamide structure may play an important role in exhibiting biological activities. The above results suggest that compound 7w could be employed as a potentially highly effective, environmentally friendly insecticide to control multiple agricultural pests.
Collapse
Affiliation(s)
- Shuai Yang
- National Key Laboratory of Green Pesticide, Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, People's Republic of China
| | - Jiahong Tang
- National Key Laboratory of Green Pesticide, Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, People's Republic of China
| | - Benjie Li
- National Key Laboratory of Green Pesticide, Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, People's Republic of China
| | - Guangkai Yao
- National Key Laboratory of Green Pesticide, Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, People's Republic of China
| | - Hongxiang Peng
- National Key Laboratory of Green Pesticide, Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, People's Republic of China
| | - Chunmei Pu
- National Key Laboratory of Green Pesticide, Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, People's Republic of China
| | - Chen Zhao
- National Key Laboratory of Green Pesticide, Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, People's Republic of China
| | - Hanhong Xu
- National Key Laboratory of Green Pesticide, Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, People's Republic of China
| |
Collapse
|