1
|
Gao J, Ma J, Yu P, Yang D. Identification and mechanism of wheat protein disulfide isomerase-promoted gluten network formation. PNAS NEXUS 2024; 3:pgae356. [PMID: 39238603 PMCID: PMC11376372 DOI: 10.1093/pnasnexus/pgae356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 08/13/2024] [Indexed: 09/07/2024]
Abstract
Formation of the gluten network depends on glutenin crosslinking via disulfide bonds, and wheat protein disulfide isomerase (wPDI) plays an important role in this process. Here, we identify a substrate gluten protein of wPDI and the mechanism underlying wPDI-promoted glutenin crosslinking. Farinographic, rheologic, and alveographic analysis unambiguously proves that wPDI improves gluten network formation, which is directly observed by 3D reconstruction of the gluten network. Protein analysis and LC-MS/MS reveal that glutenin subunit 1Dx5 is primarily recruited by wPDI to participate in gluten network formation, and its cysteine-containing N-terminal domain (1Dx5-NTD), which harbors three cysteine residues for crosslinking, is purified. 1Dx5-NTD interacts with wPDI in both redox states, possibly folded by reduced wPDI and then catalyzed by oxidized wPDI, as further evidenced by wPDI-promoted self-crosslinking. Consistent with macroscopic observations, our results suggest that wPDI folds 1Dx5-NTD into β-strand structure that favors disulfide bond formation.
Collapse
Affiliation(s)
- Jihui Gao
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Jiayin Ma
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Peixuan Yu
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Dong Yang
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| |
Collapse
|
2
|
Wang Q, Wang Z, Wang Z, Duan Y, Guo H, Liang Y, Zhang X, Zhang Y, Wang J. Effect of high-molecular-weight glutenin subunits silencing on dough aggregation characteristics. Food Chem 2024; 441:138371. [PMID: 38218148 DOI: 10.1016/j.foodchem.2024.138371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 12/21/2023] [Accepted: 01/04/2024] [Indexed: 01/15/2024]
Abstract
The qualities of wheat dough are influenced by the high-molecular-weight glutenin subunits (HMW-GS), a critical component of wheat gluten protein. However, it is still unknown how HMW-GS silencing affects the aggregation characteristics of dough. Two groups of near-isogenic wheat were used to study the effects of HMW-GS silencing on dough aggregation characteristics, dough texture characteristics, and dough microstructure. It was observed that the content of gliadin in LH-11 strain significantly increased compared to the wild-type (WT). Additionally, the amount of glutenin macropolymer and the glutenin/gliadin both decreased. The aggregation characteristics and rheological characteristics of the dough in LH-11 strain were significantly reduced, and the content of β-sheet in the dough was significantly reduced. The HMW-GS silencing resulted in a reduction in the aggregation of the gluten network in the dough, which related to the alteration of the secondary and microstructure of the gluten.
Collapse
Affiliation(s)
- Qi Wang
- The National Engineering Laboratory for Wheat & Corn Further Processing, Henan University of Technology, Zhengzhou 450001, China; School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Zhicheng Wang
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Zehao Wang
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Yaqian Duan
- School of International Education, Henan University of Technology, Zhengzhou 450001, China
| | - Haimei Guo
- School of International Education, Henan University of Technology, Zhengzhou 450001, China
| | - Ying Liang
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Xia Zhang
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Yingjun Zhang
- Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences, Laboratory of Crop Genetics and Breeding of Hebei, Shijiazhuang 050035, China.
| | - Jinshui Wang
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China.
| |
Collapse
|
3
|
Li M, Li L, Sun B, Ma S. Interaction of wheat bran dietary fiber-gluten protein affects dough product: A critical review. Int J Biol Macromol 2024; 255:128199. [PMID: 37979754 DOI: 10.1016/j.ijbiomac.2023.128199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/05/2023] [Accepted: 11/15/2023] [Indexed: 11/20/2023]
Abstract
Wheat bran dietary fiber (WBDF) is an emerging food additive used for improving the nutritional value of dough products, albeit its adverse effects cannot be ignored. The dilution effect, mechanical shear effect, competitive water absorption, and steric hindrance of WBDF, as well as the non-covalent binding between WBDF and gluten protein, are considered the key mechanisms underlying the WBDF-gluten protein interaction. However, current studies on the interaction are mostly limited to the impact of the interaction on gluten protein and are rarely focused on the quality of products. Therefore, the effects of the interaction on the structural characteristics and aggregation behavior of gluten protein and multiple involved mechanisms are discussed in this review. On this basis, these changes are systematically related to the gluten network structure, dough properties, and product quality. Mitigation measures corresponding to negative impacts also need to be elaborated to guide and standardize the production and development of dough products containing WBDF.
Collapse
Affiliation(s)
- Mengyuan Li
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, Henan, China
| | - Li Li
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, Henan, China
| | - Binghua Sun
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, Henan, China
| | - Sen Ma
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, Henan, China.
| |
Collapse
|
4
|
Qu G, Wang K, Mu J, Zhuo J, Wang X, Li S, Ye X, Li Y, Yan Y, Li X. Identifying cis-Acting Elements Associated with the High Activity and Endosperm Specificity of the Promoters of Genes Encoding Low-Molecular-Weight Glutenin Subunits in Common Wheat ( Triticum aestivum). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37919930 DOI: 10.1021/acs.jafc.3c04209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
Low-molecular-weight glutenin subunits (LMW-GSs) associated with bread-baking quality and flour nutrient quality accumulate in endosperms of common wheat and related species. However, the mechanism underlying the expression regulation of genes encoding LMW-GSs has not been fully elucidated. In this study, we identified LMW-D2 and LMW-D7, which are highly and weakly expressed, respectively, via the analysis of RNA-sequencing data of Chinese Spring wheat and wheat transgenic lines transformed with 5' deletion promoter fragments and GUS fusion constructs. The 605-bp fragment upstream of the LMW-D2 start codon could drive high levels of GUS expression in the endosperm. The truncated endosperm box located at the -300 site resulted in the loss of LMW-D2 promoter activity, and a single-nucleotide polymorphism on the GCN4 motif was closely related to the expression of LMW-GSs. TCT and TGACG motifs, as well as the others located on the 5' distal end, might also be involved in the transcription regulation of LMW-GSs. In transgenic lines, fusion proteins of LMW-GS and GUS were deposited into protein bodies. Our findings provide new insights into the mechanism underlying the transcription regulation of LMW-GSs and will contribute to the development of wheat endosperm as a bioreactor for the production of nutraceuticals, antibodies, vaccines, and medicinal proteins.
Collapse
Affiliation(s)
- Ge Qu
- Key Laboratory of Genetics and Biotechnology, College of Life Science, Capital Normal University, Beijing 100048, China
| | - Ke Wang
- National Wheat Improvement Center, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Junyi Mu
- Key Laboratory of Genetics and Biotechnology, College of Life Science, Capital Normal University, Beijing 100048, China
| | - Jiahui Zhuo
- Key Laboratory of Genetics and Biotechnology, College of Life Science, Capital Normal University, Beijing 100048, China
| | - Xinyu Wang
- Key Laboratory of Genetics and Biotechnology, College of Life Science, Capital Normal University, Beijing 100048, China
| | - Shasha Li
- Key Laboratory of Genetics and Biotechnology, College of Life Science, Capital Normal University, Beijing 100048, China
| | - Xingguo Ye
- National Wheat Improvement Center, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yaxuan Li
- Key Laboratory of Genetics and Biotechnology, College of Life Science, Capital Normal University, Beijing 100048, China
| | - Yueming Yan
- Key Laboratory of Genetics and Biotechnology, College of Life Science, Capital Normal University, Beijing 100048, China
| | - Xiaohui Li
- Key Laboratory of Genetics and Biotechnology, College of Life Science, Capital Normal University, Beijing 100048, China
| |
Collapse
|
5
|
Yang H, Li Y, Zhao J, Chen Z, Huang X, Fan G. Regulating the composition and secondary structure of wheat protein through canopy shading to improve dough performance and nutritional index. Food Res Int 2023; 173:113399. [PMID: 37803737 DOI: 10.1016/j.foodres.2023.113399] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 08/17/2023] [Accepted: 08/22/2023] [Indexed: 10/08/2023]
Abstract
Viscoelastic properties of gluten proteins critically determine the biscuit-making quality. However, cultivar genetics and light conditions closely regulate the composition of the gluten proteins. The impact of pre- and post-anthesis shading (60 %) on amino acid profile, gluten protein composition, secondary structure, dough performance, and biscuit-making quality were evaluated using four wheat cultivars that differ in gluten protein composition. Pre- and post-anthesis shading increased the contents of gliadin, by 35.8 and 3.1 %; glutenin, by 27.6 and 7.3 %; and total protein, by 21.7 and 10.6 %, respectively, compared with those of unshaded plants. Conversely, the ratios of glutenin/gliadin, ω-/(α,β + γ)-gliadin, and high-molecular-weight/low-molecular-weight glutenin subunits decreased with shading. Strong-gluten cultivars exhibited smaller declines in these parameters than weak-gluten cultivars. Secondary structure analysis of the wheat protein revealed that shading increased β-sheet content but decreased β-turn content. Changes in protein components and their secondary structures caused an increase in wet gluten content, dough development time, and gluten performance index, thereby decreasing the biscuit spread ratio. Shading stress increased the protein content and nutrition index but decreased the biological value of protein by 2.5 %. Transcriptomic results revealed that shading induced 139 differentially expressed genes that decreased carbohydrate metabolism and increased amino acid metabolism, involved in increased protein content. Thus, canopy shading improves dough performance and nutrition index by regulating the amino acid profiles, protein compositions, and secondary structures. The study provides key insights for achieving superior grain quality under global dimming.
Collapse
Affiliation(s)
- Hongkun Yang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Ministry of Science and Technology, Chengdu 611130, Sichuan, China
| | - Yong Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Ministry of Science and Technology, Chengdu 611130, Sichuan, China
| | - Jiarong Zhao
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Zongkui Chen
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Xiulan Huang
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Gaoqiong Fan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Ministry of Science and Technology, Chengdu 611130, Sichuan, China; Key Laboratory of Crop Ecophysiology & Farming System in Southwest China, Ministry of Agriculture and Rural Affairs, Chengdu 611130, Sichuan, China; Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| |
Collapse
|