1
|
Zhang T, Li XY, Kuang DD, Pan LH, Li QM, Luo JP, Zha XQ. Bone-brain communication mediates the amelioration of Polgonatum cyrtonema Hua polysaccharide on fatigue in chronic sleep-deprived mice. Int J Biol Macromol 2025; 296:139706. [PMID: 39793823 DOI: 10.1016/j.ijbiomac.2025.139706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 12/29/2024] [Accepted: 01/07/2025] [Indexed: 01/13/2025]
Abstract
This study aimed to investigate the anti-fatigue efficacy and underlying mechanisms of Polygonatum cyrtonema Hua polysaccharide (PCP) in chronic sleep-deprived mice. Following three weeks of oral administration, PCP demonstrated significant efficacy in alleviating fatigue symptoms. This was evidenced by the prolonged swimming and rotarod time in the high-dose group of PCP, which increased by 73 % and 64 %, respectively. Additionally, serum activities of CAT, GSH-Px, and SOD enzymes rose by 53.56 %, 37.69 % and 53.67 %, respectively, while MDA, lactic acid and BUN levels decreased by 22.90 %, 17.48 % and 24.61 %. The crosstalk between bone and brain is crucial for maintaining energy homeostasis. Molecular docking studies indicated a spontaneous and strong mutual binding between PCP and the bone-promoting target protein BMPR1A. Furthermore, it was observed that PCP enhanced osteogenic differentiation via the BMP-2/Smad1 pathway, leading to an upregulation of osteocalcin expression, which in turn regulated neurotransmitter balance and improved central arousal capacity. Moreover, PCP treatment stimulated neurogenesis by activating the CREB/BDNF/Akt signaling cascade, exhibiting neurotrophic effects. Additionally, PCP increased AMPK phosphorylation and destabilized TXNIP, facilitating astrocyte glucose uptake, glycolysis, and lactate conversion to support neuronal activity. These findings suggested that PCP could effectively respond to energy demands through bone-brain crosstalk, ultimately exerting anti-fatigue properties.
Collapse
Affiliation(s)
- Ting Zhang
- Engineering Research Centre of Bioprocess of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China
| | - Xue-Ying Li
- Engineering Research Centre of Bioprocess of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China
| | - Dan-Dan Kuang
- Engineering Research Centre of Bioprocess of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China
| | - Li-Hua Pan
- Engineering Research Centre of Bioprocess of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China
| | - Qiang-Ming Li
- Engineering Research Centre of Bioprocess of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China
| | - Jian-Ping Luo
- Engineering Research Centre of Bioprocess of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China
| | - Xue-Qiang Zha
- Engineering Research Centre of Bioprocess of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China.
| |
Collapse
|
2
|
Sun CY, Li YT, Liu D, Chen CW, Liao ML. Gastroprotective potential of the aqueous extract of nine-steaming and nine-sun-drying processed Polygonatum cyrtonema Hua against alcoholic gastric injury in mice. JOURNAL OF ETHNOPHARMACOLOGY 2025; 338:119103. [PMID: 39542190 DOI: 10.1016/j.jep.2024.119103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 11/06/2024] [Accepted: 11/11/2024] [Indexed: 11/17/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Polygonatum (Huangjing) genus has been used as both food and medicine in China for 2000 years, which was regarded as a "Top-grade" herb in the Shennong Bencao Jing. The most commonly used species is the rhizome of Polygonatum cyrtonema Hua (PC) that is traditionally utilized to invigorate Qi, nourish Yin, moisten lung, and tonify spleen and kidney. AIM OF THE STUDY Excessive alcohol consumption causes severe upper-gastrointestinal diseases, notably gastric mucosal damage characterized by hemorrhagic gastritis, which lacks safe and effective intervention. This study aims to investigate the gastroprotective effects of nine-steaming and nine-drying processed Polygonatum cyrtonema Hua (PPC) on alcohol-induced gastric mucosal damage in mice. MATERIALS AND METHODS PPC extract was chemically characterized by UPLC-QE-MS analysis. ICR mice were subjected to an ethanol-induced gastric lesion model and were orally administered PPC aqueous extract for 5 consecutive days. After treatment, gastric tissues were stained with hematoxylin and eosin (H&E), and the pro-inflammatory and oxidative stress factors were determined using ELISA and Multiplex assay, while the gene expressions of gastric tissues were detected by RNA-seq and Western blotting. RESULTS PPC reduced the alcohol concentration of liquor in vitro and protected against alcohol-induced gastric mucosal lesion in mice. Notably, PPC aqueous extract relieved alcohol-induced pro-inflammatory and oxidative stress factors, including interleukin 6 (IL-6), IL-8, keratinocyte-derived chemokine (KC), monocyte chemotactic protein-1 (MCP-1), superoxide dismutase (SOD), glutathione (GSH), and malondialdehyde (MDA). RNA-sequencing analysis revealed that ethanol exposure activated mitogen-activated protein kinases (MAPKs), tumor necrosis factor (TNF), and IL-17 signaling pathways in gastric tissue, and these activated signaling pathways were inhibited by the PPC treatment. Consistently, Western blot data showed that PPC treatment suppressed the activation of extracellular signal-regulated kinases (ERK), p38, c-Jun N-terminal kinases (JNK), TNF-α and IL-17A pathways in gastric tissue. CONCLUSION In conclusion, the aqueous extract of PPC exerted a gastroprotective effect against alcohol-induced gastric injury by alleviating inflammation and oxidative stress, potentially through the inhibition of the MAPKs, IL-17 and TNF-α pathways. These findings supported the future development of PPC as an effective intervention for alcohol-induced gastric damage.
Collapse
Affiliation(s)
- Chao-Yue Sun
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an, China; Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, China
| | - Yu-Ting Li
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an, China; Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, China
| | - Dong Liu
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an, China; Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, China
| | - Cun-Wu Chen
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an, China; Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, China.
| | - Mao-Liang Liao
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an, China; Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, China.
| |
Collapse
|
3
|
Li S, Liu J, Yang Q, Lyu S, Han Q, Fu M, Du Z, Liu X, Zhang T. Multi-omics analysis reveals the anti-fatigue mechanism of BCAA-enriched egg white peptides: the role of the gut-muscle axis. Food Funct 2025. [PMID: 39871582 DOI: 10.1039/d4fo04220d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2025]
Abstract
Bioactive peptides rich in branched-chain amino acids (BCAAs) are an effective way to alleviate fatigue conditions, but the deep mechanism remains unclear. This study investigated the anti-fatigue effect of branched-chain amino acid-enriched egg white peptides (BEWPs) through the gut-muscle axis by gut bacteria and untargeted metabolomic analyses. The results demonstrated that BEWPs enhanced exercise endurance and strength by also promoting gastrocnemius development in mice. Furthermore, there was a reduction in oxidative stress, inflammatory response, and the accumulation of unexpected metabolites generated under fatigue conditions. The intake of BEWPs increased the abundances of Lactobacillus, Akkermansia, and unclassified_f_Lachnospiraceae, while decreasing the abundance of Bacteroides. BEWPs also regulated the levels of key metabolites in mouse muscles, including L-glutamic acid by arginine biosynthesis and bile secretion pathways. Notably, Spearman's correlation analysis indicated that there was a significant correlation between these altered metabolites, microbial populations, and indicators of fatigue. In summary, our research demonstrated that BEWPs alleviated fatigue through the gut-muscle axis, which provided new insights into fatigue management and prevention.
Collapse
Affiliation(s)
- Shengrao Li
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, Jilin University, Changchun, 130062, People's Republic of China.
- College of Food Science and Engineering, Jilin University, Changchun, 130062, People's Republic of China
| | - Jingbo Liu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, Jilin University, Changchun, 130062, People's Republic of China.
- College of Food Science and Engineering, Jilin University, Changchun, 130062, People's Republic of China
| | - Qi Yang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, Jilin University, Changchun, 130062, People's Republic of China.
- College of Food Science and Engineering, Jilin University, Changchun, 130062, People's Republic of China
| | - Siwen Lyu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, Jilin University, Changchun, 130062, People's Republic of China.
- College of Food Science and Engineering, Jilin University, Changchun, 130062, People's Republic of China
| | - Qingwen Han
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, Jilin University, Changchun, 130062, People's Republic of China.
- College of Food Science and Engineering, Jilin University, Changchun, 130062, People's Republic of China
| | - Menghan Fu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, Jilin University, Changchun, 130062, People's Republic of China.
- College of Food Science and Engineering, Jilin University, Changchun, 130062, People's Republic of China
| | - Zhiyang Du
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, Jilin University, Changchun, 130062, People's Republic of China.
- College of Food Science and Engineering, Jilin University, Changchun, 130062, People's Republic of China
| | - Xuanting Liu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, Jilin University, Changchun, 130062, People's Republic of China.
- College of Food Science and Engineering, Jilin University, Changchun, 130062, People's Republic of China
| | - Ting Zhang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, Jilin University, Changchun, 130062, People's Republic of China.
- College of Food Science and Engineering, Jilin University, Changchun, 130062, People's Republic of China
| |
Collapse
|
4
|
Wu W, Wang Y, Yi P, Su X, Mi Y, Wu L, Tan Q. Various steaming durations alter digestion, absorption, and fermentation by human gut microbiota outcomes of Polygonatum cyrtonema Hua polysaccharides. Front Nutr 2024; 11:1466781. [PMID: 39364149 PMCID: PMC11446882 DOI: 10.3389/fnut.2024.1466781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 09/05/2024] [Indexed: 10/05/2024] Open
Abstract
Introduction Different steaming durations dramatically alter the structure of Polygonatum cyrtonema polysaccharides (PCPs). This study aimed to compare characteristics of digestion, absorption, and fermentation by gut microbiota across four representative PCPs from different steaming durations (0, 4, 8, and 12 h), each with unique molecular weights and monosaccharide profiles. Methods Chemical composition of the four PCPs was analyzed. Digestibility was evaluated using an in vitro saliva-gastrointestinal digestion model. Absorption characteristics were assessed with a Caco-2 monolayer model, and impacts on gut microbiota composition and short chain fatty acid (SCFA) levels were analyzed using in vitro fermentation with human gut microbiota. Results Longer steaming durations altered the chemical profiles of PCPs, reducing carbohydrate content (84.87-49.58%) and increasing levels of uronic acid (13.99-19.61%), protein (1.07-5.43%), and polyphenols (0.05-2.75%). Four PCPs were unaffected by saliva digestion but showed enhanced gastrointestinal digestibility, with reducing sugar content rising from 4.06% (P0) to 38.5% (P12). The four PCPs showed varying absorption characteristics, with P0 having the highest permeability coefficient value of 9.59 × 10-8 cm/s. However, all PCPs exhibited poor permeability, favoring gut microbiota fermentation. The four PCPs altered gut microbiota composition and elevated SCFA production, but levels declined progressively with longer steaming durations. All PCPs significantly increased the abundance of Bacteroidota, Firmicutes, and Actinobacteriota, making them the dominant bacterial phyla. Additionally, all PCPs significantly increased the abundance of Bifidobacterium, Prevotella, and Faecalibacterium compared to the control group, which, along with Bacteroides, became the dominant microbiota. Increasing the steaming duration led to a reduction in Prevotella levels, with PCPs from raw rhizomes showing the highest relative abundance at 24.90%. PCPs from moderately steamed rhizomes (4 h) led to a significant rise in Faecalibacterium (7.73%) among four PCPs. P8 and P12, derived from extensively steamed rhizomes (≥8 h), exhibited similar gut microbiota compositions, with significantly higher relative abundances of Bacteroides (20.23-20.30%) and Bifidobacterium (21.05-21.51%) compared to P0 and P4. Discussion This research highlights the importance of adjusting steaming durations to maximize the probiotic potential of P. cyrtonema polysaccharides, enhancing their effectiveness in modulating gut microbiota and SCFA levels.
Collapse
Affiliation(s)
- Weijing Wu
- Xiamen Medical College, Xiamen, China
- Engineering Research Center of Natural Cosmeceuticals College of Fujian Province, Xiamen Medical College, Xiamen, China
- Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen, China
| | | | - Ping Yi
- Xiamen Medical College, Xiamen, China
| | - Xufeng Su
- Xiamen Medical College, Xiamen, China
| | - Yan Mi
- Xiamen Medical College, Xiamen, China
| | - Lanlan Wu
- Xiamen Medical College, Xiamen, China
| | | |
Collapse
|
5
|
Lei Z, Shi Y, Zou J, Zhang X, Xin B, Guo D, Sun J, Luan F. A review of the polysaccharides against fatigue and the underlying mechanism. Int J Biol Macromol 2024; 275:133601. [PMID: 38969031 DOI: 10.1016/j.ijbiomac.2024.133601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/22/2024] [Accepted: 06/30/2024] [Indexed: 07/07/2024]
Abstract
Fatigue is a common physiological state that affects normal human activities. Prolonged fatigue induces a variety of diseases and seriously affects human health, so it is imperative to discover nutritional dietary supplements and treatments without side effects, among which natural anti-fatigue polysaccharides have shown great potential. Polysaccharides, a class of biomolecules produced by a variety of organisms such as plants, animals, bacteria and algae, have attracted much attention in recent years due to their anti-fatigue activity and fewer side effects. This review summarizes the classification, dosage and experimental models of polysaccharides with anti-fatigue activity obtained from different natural sources. We also review the fatigue-relieving effects of these polysaccharides through mechanisms such as modulating oxidative damage, regulating energy metabolism and influencing intestinal flora, as well as the effects of molecular weights, monosaccharide compositions, structural features and chemical modifications of the polysaccharides on their anti-fatigue activities to support their potential application value in functional foods and pharmaceuticals. New valuable insights for future research on natural polysaccharides are also presented in the field of natural production of bio-based functional materials, functional foods and therapeutic agents.
Collapse
Affiliation(s)
- Ziwen Lei
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - Yajun Shi
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - Junbo Zou
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - Xiaofei Zhang
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - Bao Xin
- School of Public Health, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - Dongyan Guo
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - Jing Sun
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - Fei Luan
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China.
| |
Collapse
|
6
|
Pan M, Wu Y, Sun C, Ma H, Ye X, Li X. Polygonati Rhizoma: A review on the extraction, purification, structural characterization, biosynthesis of the main secondary metabolites and anti-aging effects. JOURNAL OF ETHNOPHARMACOLOGY 2024; 327:118002. [PMID: 38437890 DOI: 10.1016/j.jep.2024.118002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/13/2024] [Accepted: 02/29/2024] [Indexed: 03/06/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Polygonati Rhizome (PR) is a plant that is extensively widespread in the temperate zones of the Northern Hemisphere. It is a member of the Polygonatum family of Asparagaceae. PR exhibits diverse pharmacological effects and finds applications in ethnopharmacology, serving as a potent tonic for more than two millennia. PR's compounds endow it with various pharmacological properties, including anti-aging, antioxidant, anti-fatigue, anti-inflammatory, and sleep-enhancing effects, as well as therapeutic potential for osteoporosis and age-related diseases. AIM OF THE STUDY This review seeks to offer a thorough overview of the processing, purification, extraction, structural characterization, and biosynthesis pathways of PR. Furthermore, it delves into the anti-aging mechanism of PR, using organ protection as an entry point. MATERIALS AND METHODS Information on PR was obtained from scientific databases (Google Scholar, Web of Science, ScienceDirect, SciFinder, PubMed, CNKI) and books, doctoral theses, and master's dissertations. RESULTS In this investigation, 49 polysaccharides were extracted from PR, and the impact of various processing, extraction, and purification techniques on the structure and activity of these polysaccharides was evaluated. Additionally, 163 saponins and 46 flavonoids were identified, and three key biosynthesis pathways of secondary metabolites were outlined. Notably, PR and Polygonat Rhizomai polysaccharides (PRP) exhibit remarkable protective effects against age-induced injuries to the brain, liver, kidney, intestine, heart, and vessels, thereby promoting longevity and ameliorating the aging process. CONCLUSIONS PR, a culinary and therapeutic herb, is rich in active components and pharmacological activities. Based on this review, PR plays a meaningful role in lifespan extension and anti-aging, which can be attributed to PRP. Future research should delve deeper into the structural aspects of PRP that underlie its anti-aging effects and explore potential synergistic interactions with other compounds. Moreover, exploring the potential applications of PR in functional foods and pharmaceutical formulations is recommended to advance the development of industries and resources focused on healthy aging.
Collapse
Affiliation(s)
- Miao Pan
- Engineering Research Center of Coptis Development and Utilization (Ministry of Education), College of Pharmaceutical Sciences, Southwest University, Chongqing, China.
| | - Yajing Wu
- Engineering Research Center of Coptis Development and Utilization (Ministry of Education), College of Pharmaceutical Sciences, Southwest University, Chongqing, China.
| | - Chunyong Sun
- Engineering Research Center of Coptis Development and Utilization (Ministry of Education), College of Pharmaceutical Sciences, Southwest University, Chongqing, China.
| | - Hang Ma
- Engineering Research Center of Coptis Development and Utilization (Ministry of Education), College of Pharmaceutical Sciences, Southwest University, Chongqing, China.
| | - Xiaoli Ye
- School of Life Sciences, Southwest University, Chongqing, 400715, China.
| | - Xuegang Li
- Engineering Research Center of Coptis Development and Utilization (Ministry of Education), College of Pharmaceutical Sciences, Southwest University, Chongqing, China.
| |
Collapse
|
7
|
Liu D, Hou T, Geng C, Song L, Hou X, Chen Y, Wang F, Wang W, Han B, Gao L. Liposomes Enhance the Immunological Activity of Polygonatum Cyrtonema Hua Polysaccharides. J Pharm Sci 2024; 113:1572-1579. [PMID: 38237668 DOI: 10.1016/j.xphs.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024]
Abstract
Poor stability and difficult uptake of natural polysaccharides have been the main problems in their application. The purpose of this study was to optimize the preparation conditions of Polygonatum cyrtonema Hua polysaccharides liposomes (PCPL) and to investigate the immune enhancement activity of PCPL in vitro and in vivo, with a view to discovering new ways of natural polysaccharide application. The optimal preparation conditions of PCPL were as follows: the adding amount of Tween 80 of 0.5 %, the ultrasound time of 2 min and the ultrasound times of once. Under these conditions, the entrapment efficiency, drug loading rate and particle size of PCPL were 38.033 %±0.050, 2.172 %±0.003 and 146 nm, which indicated that PCPL with small particle size could be prepared by the reverse-phase evaporation method. Furthermore, PCPL promoted proliferation, phagocytosis, and secretion of nitric oxide and related cytokines in RAW264.7 cells. Moreover, PCPL improved spleen and thymus indices, increased the number or proportion of red blood cells, platelets, and lymphocytes in the blood, and ameliorated spleen and thymus atrophy in immunosuppressed mice. This study provides a new idea for applying Polygonatum cyrtonema Hua polysaccharides (PCP) and references for studying other polysaccharides.
Collapse
Affiliation(s)
- Dong Liu
- Generic Technology Research center for Anhui Traditional Chinese Medicine Industry, West Anhui University, Lu'an 237012, China; Anhui Dabie Mountain Chinese Academy of Medicine, West Anhui University, Lu'an, 237012, Anhui, China; Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, West Anhui University, Lu'an 237012, China
| | - Tingting Hou
- Generic Technology Research center for Anhui Traditional Chinese Medicine Industry, West Anhui University, Lu'an 237012, China; Anhui Dabie Mountain Chinese Academy of Medicine, West Anhui University, Lu'an, 237012, Anhui, China; Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, West Anhui University, Lu'an 237012, China
| | - Chunye Geng
- Generic Technology Research center for Anhui Traditional Chinese Medicine Industry, West Anhui University, Lu'an 237012, China; Anhui Dabie Mountain Chinese Academy of Medicine, West Anhui University, Lu'an, 237012, Anhui, China; Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, West Anhui University, Lu'an 237012, China
| | - Lu Song
- Generic Technology Research center for Anhui Traditional Chinese Medicine Industry, West Anhui University, Lu'an 237012, China; Anhui Dabie Mountain Chinese Academy of Medicine, West Anhui University, Lu'an, 237012, Anhui, China; Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, West Anhui University, Lu'an 237012, China
| | - Xuefeng Hou
- School of Pharmacy, Wannan Medical College, Wuhu 241002, China
| | - Yanjun Chen
- Generic Technology Research center for Anhui Traditional Chinese Medicine Industry, West Anhui University, Lu'an 237012, China; Anhui Dabie Mountain Chinese Academy of Medicine, West Anhui University, Lu'an, 237012, Anhui, China; Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, West Anhui University, Lu'an 237012, China
| | - Fang Wang
- Generic Technology Research center for Anhui Traditional Chinese Medicine Industry, West Anhui University, Lu'an 237012, China; Anhui Dabie Mountain Chinese Academy of Medicine, West Anhui University, Lu'an, 237012, Anhui, China; Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, West Anhui University, Lu'an 237012, China
| | - Wei Wang
- Generic Technology Research center for Anhui Traditional Chinese Medicine Industry, West Anhui University, Lu'an 237012, China; Anhui Dabie Mountain Chinese Academy of Medicine, West Anhui University, Lu'an, 237012, Anhui, China; Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, West Anhui University, Lu'an 237012, China
| | - Bangxing Han
- Generic Technology Research center for Anhui Traditional Chinese Medicine Industry, West Anhui University, Lu'an 237012, China; Anhui Dabie Mountain Chinese Academy of Medicine, West Anhui University, Lu'an, 237012, Anhui, China; Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, West Anhui University, Lu'an 237012, China
| | - Leilei Gao
- Generic Technology Research center for Anhui Traditional Chinese Medicine Industry, West Anhui University, Lu'an 237012, China; Anhui Dabie Mountain Chinese Academy of Medicine, West Anhui University, Lu'an, 237012, Anhui, China; Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, West Anhui University, Lu'an 237012, China.
| |
Collapse
|
8
|
Wang M, Hu J, Hai X, Cao T, Zhou A, Han R, Xing L, Yu N. Quality Evaluation of Polygonatum cyrtonema Hua Based on UPLC-Q-Exactive Orbitrap MS and Electronic Sensory Techniques with Different Numbers of Steaming Cycles. Foods 2024; 13:1586. [PMID: 38790887 PMCID: PMC11120622 DOI: 10.3390/foods13101586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 05/02/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
In this study, electronic sensory techniques were employed to comprehensively evaluate the organoleptic quality, chemical composition and content change rules for Polygonatum cyrtonema Hua (PCH) during the steaming process. The results were subjected to hierarchical cluster analysis (HCA), principal component analysis (PCA) and orthogonal partial least squares discriminant analysis (OPLS-DA). These analyses revealed, from a sensory product perspective, overall differences in colour, odour and taste among the samples of PCH with different numbers of steaming cycles. Using the UPLC-Q-Exactive Orbitrap MS technique, 64 chemical components, including polysaccharides, organic acids, saponins and amino acids were detected in PCH before and after steaming. The sensory traits were then correlated with the chemical composition. From the perspectives of sensory traits, chemical composition, and multi-component index content, it was preliminarily deduced that carrying out five cycles of steaming and sun-drying was optimal, providing evidence for the quality evaluation of PCH during the steaming process.
Collapse
Affiliation(s)
- Mengjin Wang
- Department of Biopharmaceuticals, College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; (M.W.)
| | - Jiayi Hu
- Department of Biopharmaceuticals, College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; (M.W.)
| | - Xiaoya Hai
- Department of Biopharmaceuticals, College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; (M.W.)
| | - Tianzhuo Cao
- Department of Biopharmaceuticals, College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; (M.W.)
| | - An Zhou
- Anhui Province Key Laboratory of R&D of Chinese Medicine, Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei 230012, China
| | - Rongchun Han
- Department of Biopharmaceuticals, College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; (M.W.)
| | - Lihua Xing
- MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei 230012, China
| | - Nianjun Yu
- Department of Biopharmaceuticals, College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; (M.W.)
- Anhui Province Key Laboratory of R&D of Chinese Medicine, Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei 230012, China
| |
Collapse
|
9
|
Nie R, Wu C, Zhang X, Deng P. Identification Markers Responsible for Differentially Processed Polygonatum cyrtonema Hua by Ultra-Performance Liquid Chromatography with Quadruple-Time-of-Flight Mass Spectrometry. Molecules 2024; 29:1559. [PMID: 38611838 PMCID: PMC11013794 DOI: 10.3390/molecules29071559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 03/20/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
The rhizome of Polygonatum cyrtonema Hua has been used as a traditional Chinese medicine for over 2000 years. The fresh Chinese herb possesses micro toxicity and is thus traditionally alternately steamed and basked nine times to alleviate the toxicity and enhance the pharmaceutical efficacy. Different processing cycles usually result in variable therapeutic effects in the processed Polygonatum cyrtonema Hua (P-PCH). However, it can be hard to tell these various P-PCHs apart at present. To identify the P-PCHs that had undergone repeated steaming one to nine times, the chemical constituents were profiled based on Ultra-Performance Liquid Chromatography with Quadruple-Time-of-Flight Mass Spectrometry, and the Principal Component Analysis and Cluster Analysis methods were adopted to discriminate different cycles of P-PCH. A total of 44 characteristic markers were identified, which allowed the P-PCHs to be discriminated exactly.
Collapse
Affiliation(s)
- Ruihua Nie
- QiHuang Chinese Medicine Academy, Jiangxi University of Chinese Medicine, Nanchang 330025, China;
| | - Cuihong Wu
- Hebei Institute for Drug and Medical Device Control, Shijiazhuang 050227, China;
| | - Xuan Zhang
- School of Chemistry & Chemical Engineering, Nanchang University, Nanchang 330031, China;
| | - Pei Deng
- School of Resources & Environment, Nanchang University, Nanchang 330031, China
| |
Collapse
|
10
|
Lu M, Zhang L, Kang S, Ren F, Yang L, Zhang Q, Jia Q. Comprehensive Evaluation of the Nutritional Properties of Different Germplasms of Polygonatum cyrtonema Hua. Foods 2024; 13:815. [PMID: 38540805 PMCID: PMC10968880 DOI: 10.3390/foods13060815] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 03/01/2024] [Accepted: 03/03/2024] [Indexed: 11/11/2024] Open
Abstract
Polygonatum cyrtonema Hua, an edible resource and medical material, is mainly consumed as a food in China. However, few published studies have comprehensively assessed its nutritional components. In this study, the proximate, carbohydrate, and dietary fiber contents as well as the mineral, vitamin, and amino acid compositions of five sources of P. cyrtomena grown in Yuhang district, Hangzhou city, Zhejiang province, were investigated. The nutritional profile of the five germplasms was investigated using analytical chemistry methods. All germplasms had a low starch content and contained greater amounts of carbohydrates (23.25-34.29%), protein (2.96-5.40%), Ca (195.08-282.08 mg/100 g), Fe (29.68-59.37 mg/100 g), and vitamin C (60.49-149.86 mg/100 g) in comparison to ginger, yam, and potatoes. The polysaccharide content ranged from 16.92% to 28.48%, representing the main source of carbohydrates. Fructose, a desirable sweetener, was the most abundant monosaccharide, representing 1.06% to 4.88% of the content. P. cyrtonema was found to be high in dietary fiber, with pectin and resistant starch being the major soluble components and hemicellulose being the dominant insoluble dietary fiber. A correlation analysis (CA) revealed significant correlations for the carbohydrate components and dietary fiber fractions with other nutrients. A principal component analysis (PCA) identified significant differences between the nutritional characteristics of the five germplasms, with Huanggang having the highest comprehensive quality scores. Moreover, ten nutrient components were selected as potential indicators that could be used to further evaluate the nutritional quality of P. cyrtomena. Our results demonstrate the rich nutrient composition and characteristics of P. cyrtonema and provide a valuable reference for the future development and utilization of Polygonatum.
Collapse
Affiliation(s)
- Mei Lu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (M.L.); (L.Z.); (S.K.); (F.R.); (L.Y.); (Q.Z.)
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Luping Zhang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (M.L.); (L.Z.); (S.K.); (F.R.); (L.Y.); (Q.Z.)
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Shixin Kang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (M.L.); (L.Z.); (S.K.); (F.R.); (L.Y.); (Q.Z.)
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Fengxiao Ren
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (M.L.); (L.Z.); (S.K.); (F.R.); (L.Y.); (Q.Z.)
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Luyun Yang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (M.L.); (L.Z.); (S.K.); (F.R.); (L.Y.); (Q.Z.)
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Qingyou Zhang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (M.L.); (L.Z.); (S.K.); (F.R.); (L.Y.); (Q.Z.)
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Qiaojun Jia
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (M.L.); (L.Z.); (S.K.); (F.R.); (L.Y.); (Q.Z.)
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| |
Collapse
|
11
|
Gong H, Gan X, Qin B, Chen J, Zhao Y, Qiu B, Chen W, Yu Y, Shi S, Li T, Liu D, Li B, Wang S, Wang H. Structural characteristics of steamed Polygonatum cyrtonema polysaccharide and its bioactivity on colitis via improving the intestinal barrier and modifying the gut microbiota. Carbohydr Polym 2024; 327:121669. [PMID: 38171660 DOI: 10.1016/j.carbpol.2023.121669] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 11/27/2023] [Accepted: 12/04/2023] [Indexed: 01/05/2024]
Abstract
Steamed Polygonatum cyrtonema has been commonly used clinically for its gaining effect, whose main active ingredient is a polysaccharide. A water-soluble polysaccharide named PSP-W-1 was isolated from steamed Polygonatum cyrtonema. PSP-W-1 was characterized as a galactan having a backbone consisting predominately of 1,4-β-linked Galp branched at the C-6 position by T-β-linked Galp with a molecular weight of 14.4 kDa. PSP-W-1 could inhibit the overproduction of inflammatory factors and inflammatory mediators (iNOS, IL-6, COX-2) in dextran sodium sulfate-induced colitis mice. Oral administration of PSP-W-1 dramatically alleviated colonic pathological damage, repaired the intestinal barrier (occludin and ZO-1) and regulated the intestinal microbiota by increasing the abundance of norank_f_Muribaculaceae, Lactobacillus and norank_f_norank_o_Clostridia UCG-014, while decreasing the abundance of Bacteroides and Escherichia-Shigella to alleviate colitis symptoms. Overall, our findings suggest that PSP-W-1 might be a therapeutic option for both the prevention and treatment of colitis.
Collapse
Affiliation(s)
- Huan Gong
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaona Gan
- Amway (Shanghai) Innovation & Science Co., Ltd., 720 Cailun Road, Shanghai 201203, China
| | - Baoyi Qin
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jie Chen
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yonglin Zhao
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Baoyu Qiu
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Weihao Chen
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yue Yu
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Songshan Shi
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tingzhao Li
- Amway (Shanghai) Innovation & Science Co., Ltd., 720 Cailun Road, Shanghai 201203, China
| | - Dong Liu
- School of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an 237012, China; Generic Technology Research Center for Anhui Traditional Chinese Medicine Industry, West Anhui University, Lu'an 237012, Anhui, China
| | - Bo Li
- Amway (Shanghai) Innovation & Science Co., Ltd., 720 Cailun Road, Shanghai 201203, China.
| | - Shunchun Wang
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Huijun Wang
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
12
|
Zhang Q, Yang Z, Su W. Review of studies on polysaccharides, lignins and small molecular compounds from three Polygonatum Mill. (Asparagaceae) spp. in crude and processed states. Int J Biol Macromol 2024; 260:129511. [PMID: 38242391 DOI: 10.1016/j.ijbiomac.2024.129511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/08/2024] [Accepted: 01/12/2024] [Indexed: 01/21/2024]
Abstract
Since ancient times, Polygonatum Mill. (Asparagaceae) has been utilized as a medicinal and culinary resource in China. Its efficacy in treating various illnesses has been well documented. Traditional processing involves the Nine-Steam-Nine-Bask method, which results in a reduction of toxicity and enhanced effectiveness of Polygonatum. Many substances, such as polysaccharides, lignins, saponins, homoisoflavones, alkaloids, and others, have been successfully isolated from Polygonatum. This review presents the research progress on the chemical composition of three crude and processed Polygonatum, including Polygonatum sibiricum Redouté (P. sibiricum), Polygonatum kingianum Collett & Hemsl (P. kingianum), and Polygonatum cyrtonema Hua (P. cyrtonema). The review also includes the pharmacology of Polygonatum, specifically on the pharmacology of polysaccharides both before and after processing. Its objective is to provide a foundation for uncovering the significance of the processing procedure, and to facilitate the development and utilization of Polygonatum in clinical practice.
Collapse
Affiliation(s)
- Qihong Zhang
- National Engineering Research Center for Process Development of Active Pharmaceutical Ingredients, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Zouyue Yang
- National Engineering Research Center for Process Development of Active Pharmaceutical Ingredients, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Weike Su
- National Engineering Research Center for Process Development of Active Pharmaceutical Ingredients, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, PR China; Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, PR China.
| |
Collapse
|
13
|
Xu Y, Xu J, Fan Z, Zhang S, Wu Y, Han R, Yu N, Tong X. Effective separation of protein from Polygonatum cyrtonema crude polysaccharide utilizing ionic liquid tetrabutylammonium bromide. Front Chem 2024; 11:1287571. [PMID: 38260046 PMCID: PMC10800795 DOI: 10.3389/fchem.2023.1287571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 12/18/2023] [Indexed: 01/24/2024] Open
Abstract
Extraction of plant polysaccharides often results in a large amount of proteins, which is hard to eliminate from the crude extract, and conventional approaches for deproteinization are time-consuming and often involve hazardous organic solvents. In this study, ionic liquid tetrabutylammonium bromide (TBABr) was used to create an ionic liquid aqueous two-phase system (ILATPS) for the separation of the polysaccharide (PcP) and protein extracted from the rhizome of Polygonatum cyrtonema. Bovine serum albumin (BSA) was first applied to assess the feasibility of the ILATPS, and MgSO4 was determined to be the most suitable inorganic salt. By adopting the Taguchi experiment with an L9 (3^4) orthogonal array, it was found that the best condition for the efficient separation of crude PcP was at 25°C, with 1.5 g of TBABr, 15 mg of PcP, and 2.0 g of MgSO4, with the extraction efficiency for the protein and polysaccharide as 98.6% and 93.5%, respectively. The purified PcP was homogeneous, and its weight average molecular weight (Mw) was 7,554 Da. Monosaccharide composition analysis indicated the PcP comprised mannose, galactose, glucose, galacturonic acid, arabinose, and rhamnose at a molar ratio of 33:13:8:3.5:2:1. This approach offers a practical tactic to purify polysaccharides of plant origin.
Collapse
Affiliation(s)
- Yuling Xu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Jing Xu
- School of Life Sciences, Anhui University of Chinese Medicine, Hefei, China
| | - Zheng Fan
- Medical Department, Taihe Hospital of Chinese Medicine, Taihe, China
| | - Siyuan Zhang
- School of Traditional Chinese Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Yuanjie Wu
- School of Traditional Chinese Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Rongchun Han
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Joint Research Center for Chinese Herbal Medicine of Anhui of IHM, Anhui University of Chinese Medicine, Hefei, China
| | - Nianjun Yu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Xiaohui Tong
- School of Life Sciences, Anhui University of Chinese Medicine, Hefei, China
| |
Collapse
|
14
|
Zheng C, Chen S, Deng YY, Qian XP, Chen YY, Hong CZ, Zeng YF, Li QM, Pan LH, Luo JP, Li XY, Zha XQ. Purification, structural characteristics and anti-atherosclerosis activity of a novel green tea polysaccharide. Int J Biol Macromol 2024; 254:127705. [PMID: 37913884 DOI: 10.1016/j.ijbiomac.2023.127705] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 10/01/2023] [Accepted: 10/19/2023] [Indexed: 11/03/2023]
Abstract
A new homogeneous polysaccharide (TPS3A) was isolated and purified from Tianzhu Xianyue fried green tea by DEAE-52 cellulose and Sephacryl S-500 column chromatography. Structural characterization indicated that TPS3A mainly consisted of arabinose, galactose, galacturonic acid and rhamnose in a molar ratio of 5.84: 4.15: 2.06: 1, with an average molecular weight of 1.596 × 104 kDa. The structure of TPS3A was characterized as a repeating unit consisting of 1,3-Galp, 1,4-Galp, 1,3,6-Galp, 1,3-Araf, 1,5-Araf, 1,2,4-Rhap and 1-GalpA, with two branches on the C6 of 1,3,6-Galp and C2 of 1,2,4-Rhap, respectively. To investigate the preventive effects of TPS3A on atherosclerosis, TPS3A was administered orally to ApoE-deficient (ApoE-/-) mice. Results revealed that TPS3A intervention could effectively delay the atherosclerotic plaque progression, modulate dyslipidemia, and reduce the transformation of vascular smooth muscle cells (VSMCs) from contractile phenotype to synthetic phenotype by activating the expression of contractile marker alpha-smooth muscle actin (α-SMA) and inhibiting the expression of synthetic marker osteopontin (OPN) in high-fat diet-induced ApoE-/- mice. Our findings suggested that TPS3A markedly alleviated atherosclerosis by regulating dyslipidemia and phenotypic transition of VSMCs, and might be used as a novel functional ingredient to promote cardiovascular health.
Collapse
Affiliation(s)
- Chao Zheng
- Engineering Research Centre of Bioprocess of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China
| | - Shun Chen
- Engineering Research Centre of Bioprocess of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China
| | - Yuan-Yuan Deng
- Sericultural and Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510610, People's Republic of China
| | - Xin-Ping Qian
- Engineering Research Centre of Bioprocess of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China
| | - Ying-Ying Chen
- Engineering Research Centre of Bioprocess of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China
| | - Cheng-Zhi Hong
- Engineering Research Centre of Bioprocess of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China
| | - Ya-Fan Zeng
- Engineering Research Centre of Bioprocess of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China
| | - Qiang-Ming Li
- Engineering Research Centre of Bioprocess of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China
| | - Li-Hua Pan
- Engineering Research Centre of Bioprocess of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China
| | - Jian-Ping Luo
- Engineering Research Centre of Bioprocess of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China
| | - Xue-Ying Li
- Engineering Research Centre of Bioprocess of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China.
| | - Xue-Qiang Zha
- Engineering Research Centre of Bioprocess of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China.
| |
Collapse
|
15
|
Liu Y, Feng Z, Hu Y, Xu X, Kuang T, Liu Y. Polysaccharides derived from natural edible and medicinal sources as agents targeting exercise-induced fatigue: A review. Int J Biol Macromol 2024; 256:128280. [PMID: 38000591 DOI: 10.1016/j.ijbiomac.2023.128280] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/16/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023]
Abstract
Exercise-induced fatigue (EF) is a common occurrence during prolonged endurance and excessive exercise and is mainly caused by energy depletion, harmful metabolite accumulation, oxidative stress, and inflammation. EF usually leads to a reduction in initiating or maintaining spontaneous activities and muscle performance and ultimately results in a decrease in the quality of life of people who engage in physical work. Therefore, the interest in investigating EF-targeting agents with minimal side effects and good long-term efficacy has substantially increased. Natural edible and medicinal polysaccharides have shown positive anti-EF effects, but the relevant reviews are rare. This review comprehensively summarizes studies on natural polysaccharides from edible and medicinal sources that can relieve EF and improve physical performance from the past decade, focusing on their sources, monosaccharide compositions, anti-EF effects, and possible molecular mechanisms. Most of these anti-EF polysaccharides are heteropolysaccharides and are mainly composed of glucose, arabinose, galactose, rhamnose, xylose, and mannose. In EF animal models, the polysaccharides exert positive EF-alleviating effects through energy supply, metabolic regulation, antioxidation, anti-inflammation, and gut microbiota remodeling. However, further studies are still needed to clarify the anti-EF effects of these polysaccharides on human beings. In summary, the present review expects to provide scientific data for the future research and development of natural polysaccharide-based anti-EF drugs, dietary supplements, and health-care products for specific fatigue groups.
Collapse
Affiliation(s)
- Yuzhou Liu
- Chengdu Sport University, Chengdu 610041, China
| | - Zige Feng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610037, China; School of Pharmacy, Southwest Minzu University, Chengdu 610041, China
| | - Yao Hu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610037, China; School of Physical Education and Health, Chengdu University of Traditional Chinese Medicine, Chengdu 610037, China
| | - Xinmei Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610037, China
| | - Tingting Kuang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610037, China.
| | - Yue Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610037, China.
| |
Collapse
|