1
|
Wang Y, Han Y, Liu C, Cao L, Ye Q, Ding C, Wang Y, Huang Q, Mao J, Zhang CY, Yu A. Engineering Yarrowia lipolytica to Produce l-Malic Acid from Glycerol. ACS Synth Biol 2024; 13:3635-3645. [PMID: 39444231 DOI: 10.1021/acssynbio.4c00445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
The declining availability of cheap fossil-based resources has sparked growing interest in the sustainable biosynthesis of organic acids. l-Malic acid, a crucial four-carbon dicarboxylic acid, finds extensive applications in the food, chemical, and pharmaceutical industries. Synthetic biology and metabolic engineering have enabled the efficient microbial production of l-malic acid, albeit not in Yarrowia lipolytica, an important industrial microorganism. The present study aimed to explore the potential of this fungal species for the production of l-malic acid. First, endogenous biosynthetic genes and heterologous transporter genes were overexpressed in Y. lipolytica to identify bottlenecks in the l-malic acid biosynthesis pathway grown on glycerol. Second, overexpression of isocitrate lyase, malate synthase, and malate dehydrogenase in the glyoxylate cycle pathway and introduction of a malate transporter from Schizosaccharomyces pombe significantly boosted l-malic acid production, which reached 27.0 g/L. A subsequent increase to 37.0 g/L was attained through shake flask medium optimization. Third, adaptive laboratory evolution allowed the engineered strain Po1g-CEE2+Sp to tolerate a lower pH and to accumulate a higher amount of l-malic acid (56.0 g/L). Finally, when scaling up to a 5 L bioreactor, a titer of 112.5 g/L was attained. In conclusion, this study demonstrates for the first time the successful production of l-malic acid in Y. lipolytica by combining metabolic engineering and laboratory evolution, paving the way for large-scale sustainable biosynthesis of this and other organic acids.
Collapse
Affiliation(s)
- Yaping Wang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, No. 29 the 13th Street TEDA, Tianjin 300457, PR China
| | - Yuqing Han
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, No. 29 the 13th Street TEDA, Tianjin 300457, PR China
| | - Chang Liu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, No. 29 the 13th Street TEDA, Tianjin 300457, PR China
| | - Liyan Cao
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, No. 29 the 13th Street TEDA, Tianjin 300457, PR China
| | - Qingqing Ye
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, No. 29 the 13th Street TEDA, Tianjin 300457, PR China
| | - Chen Ding
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, No. 29 the 13th Street TEDA, Tianjin 300457, PR China
| | - Yuyang Wang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, No. 29 the 13th Street TEDA, Tianjin 300457, PR China
| | - Qingeng Huang
- Qingyuan One Alive Institute of Biological Research Co., Ltd, Qingyuan 500112, PR China
| | - Jiwei Mao
- Department of Life Sciences, Chalmers University of Technology, SE412 96 Gothenburg, Sweden
| | - Cui-Ying Zhang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, No. 29 the 13th Street TEDA, Tianjin 300457, PR China
| | - Aiqun Yu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, No. 29 the 13th Street TEDA, Tianjin 300457, PR China
| |
Collapse
|
2
|
Wang W, Guo S, Hou Q, Zhang C, Gao Z, Zhou J, Fei Q. Bioupcycling Methane and CO 2 for Succinate Production by an Engineered Type I Methanotrophic Bacterium. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:24237-24245. [PMID: 39269285 DOI: 10.1021/acs.jafc.4c05097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Methane, a byproduct of agricultural activities, has shown potential as a nonedible substrate for biomanufacturing. The production of succinate by a methanotrophic bacterium utilizing methane presents an innovative route for the sustainable synthesis of chemicals. In this study, Methylotuvimicrobium buryatense 5GB1S was genetically modified through the reconstruction of an artificial serine cycle to enable the bioconversion of both methane and CO2 into succinate. The 13C labeling analysis confirmed the CO2 fixing in M. buryatense 5GB1S, leading to a 46% improvement in carbon conversion efficiency and a 107% increase in succinate production compared to the wild-type strain. The transcriptome data on carbon metabolisms was assessed to guide future optimizations for strengthening the overall carbon flux from methane to succinate. Finally, the maximum succinate titer of 299.36 mg/L was achieved under oxygen-limited conditions in 3 L bioreactors, which resulted in the volumetric productivity of 199.60 mg/L/day, representing a 23-fold enhancement compared to the wild-type strain. This study offers a new strategy for upcycling greenhouse gases into succinate in a sustainable manner through methanotrophic-based biomanufacturing.
Collapse
Affiliation(s)
- Weiting Wang
- Xi'an Key Laboratory of C1 Compound Bioconversion Technology, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| | - Shuqi Guo
- Xi'an Key Laboratory of C1 Compound Bioconversion Technology, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| | - Qianzi Hou
- Xi'an Key Laboratory of C1 Compound Bioconversion Technology, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| | - Chenyue Zhang
- Xi'an Key Laboratory of C1 Compound Bioconversion Technology, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| | - Zixi Gao
- Xi'an Key Laboratory of C1 Compound Bioconversion Technology, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| | - Jingwen Zhou
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Qiang Fei
- Xi'an Key Laboratory of C1 Compound Bioconversion Technology, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| |
Collapse
|
3
|
Yang D, Xu Y, Mo L, Shi M, Wu N, Lu L, Xue F, Xu Q, Zhang C. Enhancing l-Malic Acid Production in Aspergillus niger via Natural Activation of sthA Gene Expression. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:4869-4879. [PMID: 38407053 DOI: 10.1021/acs.jafc.3c09321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
The efficient production of l-malic acid using Aspergillus niger requires overcoming challenges in synthesis efficiency and excessive byproduct buildup. This study addresses these hurdles, improving the activity of NADH-dependent malate dehydrogenase (Mdh) in the early stages of the fermentation process. By employing a constitutive promoter to express the Escherichia coli sthA responsible for the transfer of reducing equivalents between NAD(H) and NADP(H) in A. niger, the l-malic acid production was significantly elevated. However, this resulted in conidiation defects of A. niger, limiting industrial viability. To mitigate this, we discovered and utilized the PmfsA promoter, enabling the specific expression of sthA during the fermentation stage. This conditional expression strain showed similar phenotypes to its parent strain while exhibiting exceptional performance in a 5 L fermenter. Notably, it achieved a 65.5% increase in productivity, reduced fermentation cycle by 1.5 days, and lowered succinic acid by 76.2%. This work marks a promising advancement in industrial l-malic acid synthesis via biological fermentation, showcasing the potential of synthetic biology in A. niger for broader applications.
Collapse
Affiliation(s)
- Dongdong Yang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Yingyan Xu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Li Mo
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Man Shi
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Na Wu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Ling Lu
- College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Feng Xue
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Qing Xu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Chi Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| |
Collapse
|
4
|
Xu B, Zhang W, Zhao E, Hong J, Chen X, Wei Z, Li X. Unveiling malic acid biorefinery: Comprehensive insights into feedstocks, microbial strains, and metabolic pathways. BIORESOURCE TECHNOLOGY 2024; 394:130265. [PMID: 38160850 DOI: 10.1016/j.biortech.2023.130265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/24/2023] [Accepted: 12/25/2023] [Indexed: 01/03/2024]
Abstract
The over-reliance on fossil fuels and resultant environmental issues necessitate sustainable alternatives. Microbial fermentation of biomass for malic acid production offers a viable, eco-friendly solution, enhancing resource efficiency and minimizing ecological damage. This review covers three core aspects of malic acid biorefining: feedstocks, microbial strains, and metabolic pathways. It emphasizes the significance of utilizing biomass sugars, including the co-fermentation of different sugar types to improve feedstock efficiency. The review discusses microbial strains for malic acid fermentation, addressing challenges related to by-products from biomass breakdown and strategies for overcoming them. It delves into the crucial pathways and enzymes for malic acid production, outlining methods to optimize its metabolism, focusing on enzyme regulation, energy balance, and yield enhancement. These insights contribute to advancing the field of consolidated bioprocessing in malic acid biorefining.
Collapse
Affiliation(s)
- Boyang Xu
- Anhui Fermented Food Engineering Research Center, School of Food and Biological Engineering, Hefei University of Technology, Hefei City 230009, Anhui Province, PR China
| | - Wangwei Zhang
- Anhui Fermented Food Engineering Research Center, School of Food and Biological Engineering, Hefei University of Technology, Hefei City 230009, Anhui Province, PR China
| | - Eryong Zhao
- Anhui Fermented Food Engineering Research Center, School of Food and Biological Engineering, Hefei University of Technology, Hefei City 230009, Anhui Province, PR China
| | - Jiong Hong
- School of Life Sciences, University of Science and Technology of China, Hefei City 230026, Anhui Province, PR China
| | - Xiangsong Chen
- Institute of Plasma Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei City 230031, Anhui Province, PR China
| | - Zhaojun Wei
- School of Biological Sciences and Engineering, North Minzu University, Yinchuan City 750030, Ningxia Hui Autonomous Region, PR China.
| | - Xingjiang Li
- Anhui Fermented Food Engineering Research Center, School of Food and Biological Engineering, Hefei University of Technology, Hefei City 230009, Anhui Province, PR China.
| |
Collapse
|
5
|
Chen Y, Wang J, Wang M, Han A, Zhao X, Wang W, Wei D. Engineering the metabolism and morphology of the filamentous fungus Trichoderma reesei for efficient L-malic acid production. BIORESOURCE TECHNOLOGY 2023; 387:129629. [PMID: 37558099 DOI: 10.1016/j.biortech.2023.129629] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/27/2023] [Accepted: 08/03/2023] [Indexed: 08/11/2023]
Abstract
L-malic acid (MA) is a vital platform chemical with huge market demand because of its broad industrial applications. A cell factory for MA production was engineered by strengthening the intrinsic pathway without inserting foreign genes into Trichoderma reesei. The native MA transporter gene in the T. reesei genome was characterized (trmae1), and its overexpression significantly improved MA production, which increased from 2 to 56.24 g/L. Native pyruvate carboxylase, malate dehydrogenase, malic enzyme, and glucose transporter were overexpressed further to improve the titer and yield of MA production. Fungal morphology was adapted to produce MA in the fermenter by deleting gul1. A titer of 235.8 g/L MA was produced from the final engineered strain in a 5-L fermenter with a yield of 1.48 mol of MA per mol of glucose and productivity of 1.23 g/L/h. This study provides novel insights for understanding and remodeling the MA synthesis pathway.
Collapse
Affiliation(s)
- Yumeng Chen
- State Key Lab of Bioreactor Engineering, 130 Meilong Road, Shanghai, China; Luhua Suo, East China University of Science and Technology, Shanghai 200237, China
| | - Jiajia Wang
- State Key Lab of Bioreactor Engineering, 130 Meilong Road, Shanghai, China; Luhua Suo, East China University of Science and Technology, Shanghai 200237, China
| | - Meng Wang
- State Key Lab of Bioreactor Engineering, 130 Meilong Road, Shanghai, China
| | - Ao Han
- State Key Lab of Bioreactor Engineering, 130 Meilong Road, Shanghai, China
| | | | - Wei Wang
- State Key Lab of Bioreactor Engineering, 130 Meilong Road, Shanghai, China; Luhua Suo, East China University of Science and Technology, Shanghai 200237, China.
| | - Dongzhi Wei
- State Key Lab of Bioreactor Engineering, 130 Meilong Road, Shanghai, China; Luhua Suo, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
6
|
Wu T, Li J, Tian C. Fungal carboxylate transporters: recent manipulations and applications. Appl Microbiol Biotechnol 2023; 107:5909-5922. [PMID: 37561180 DOI: 10.1007/s00253-023-12720-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/24/2023] [Accepted: 07/31/2023] [Indexed: 08/11/2023]
Abstract
Carboxylic acids containing acidic groups with additional keto/hydroxyl-groups or unsaturated bond have displayed great applicability in the food, agricultural, cosmetic, textile, and pharmaceutical industries. The traditional approach for carboxylate production through chemical synthesis is based on petroleum derivatives, resulting in concerns for the environmental complication and energy crisis, and increasing attention has been attracted to the eco-friendly and renewable bio-based synthesis for carboxylate production. The efficient and specific export of target carboxylic acids through the microbial membrane is essential for high productivity, yield, and titer of bio-based carboxylates. Therefore, understanding the characteristics, regulations, and efflux mechanisms of carboxylate transporters will efficiently increase industrial biotechnological production of carboxylic acids. Several transporters from fungi have been reported and used for improved synthesis of target products. The transport activity and substrate specificity are two key issues that need further improvement in the application of carboxylate transporters. This review presents developments in the structural and functional diversity of carboxylate transporters, focusing on the modification and regulation of carboxylate transporters to alter the transport activity and substrate specificity, providing new strategy for transporter engineering in constructing microbial cell factory for carboxylate production. KEY POINTS: • Structures of multiple carboxylate transporters have been predicted. • Carboxylate transporters can efficiently improve production. • Modification engineering of carboxylate transporters will be more popular in the future.
Collapse
Affiliation(s)
- Taju Wu
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, 300308, China
- School of Life Science, Bengbu Medical College, Bengbu, 233030, China
| | - Jingen Li
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.
- National Technology Innovation Center of Synthetic Biology, Tianjin, 300308, China.
| | - Chaoguang Tian
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.
- National Technology Innovation Center of Synthetic Biology, Tianjin, 300308, China.
| |
Collapse
|
7
|
Li J, Chen Y, Gao A, Wei L, Wei D, Wang W. Simultaneous Production of Cellulase and β-Carotene in the Filamentous Fungus Trichoderma reesei. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:6358-6365. [PMID: 37042195 DOI: 10.1021/acs.jafc.3c00690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
β-Carotene is an indispensable additive in beverage, cosmetic, feed, and pharmaceutical production. The fermentation industry annually generates abundant waste mycelia from Trichoderma reesei (T. reesei), a pivotal industrial strain for cellulase and heterologous protein production. In this study, we constructed a T. reesei cell factory for β-carotene production for the first time. Four key enzymes, CarRP, CarB, GGS1/CrtE, and HMG1, were overexpressed in T. reesei. The concentrations of medium components, including tryptone and glucose, were optimized. The modified strain accumulated β-carotene at a titer of 218.8 mg/L in flask culture. We achieved cellulase production (FPase, 22.33 IU/mL) with the concomitant production of β-carotene (286.63 mg/L) from T. reesei in a jar. Overall, this study offers a novel and unique approach to address the costly waste mycelium management process using T. reesei industrial strains that simultaneously produce proteins and carotenoids.
Collapse
Affiliation(s)
- Jing Li
- State Key Lab of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yumeng Chen
- State Key Lab of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Ao Gao
- State Key Lab of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Liujing Wei
- State Key Lab of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Dongzhi Wei
- State Key Lab of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Wei Wang
- State Key Lab of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|