1
|
Li R, Yang W, Yan X, Zhou X, Song X, Liu C, Zhang Y, Li J. Folic acid mitigates the developmental and neurotoxic effects of bisphenol A in zebrafish by inhibiting the oxidative stress/JNK signaling pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 288:117363. [PMID: 39566264 DOI: 10.1016/j.ecoenv.2024.117363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 11/08/2024] [Accepted: 11/15/2024] [Indexed: 11/22/2024]
Abstract
Bisphenol A (BPA) is a widespread environmental endocrine disruptor (EED) that can cause various environmental and health issues by inducing oxidative stress. The c-Jun N-terminal kinase (JNK) signaling pathway plays a crucial role in oxidative stress-mediated cellular damage. Although folic acid (FA) has demonstrated antioxidant properties, its potential protective effects against BPA-induced developmental and neurotoxicity, as well as the mechanisms involved in the JNK signaling pathway, are still not completely understood. Zebrafish embryos were exposed to different concentrations of BPA ranging from 20 to 40 µM, with or without treatment of 50 µM FA, starting at 6 hours post-fertilization (hpf). Various parameters such as hatchability, survival rate, body length, and heart rate were measured and analyzed. Transcriptome sequencing was conducted to study the changes in gene expression. Oxidative stress markers, including reactive oxygen species (ROS), lipid peroxidation (LPO), hydrogen peroxide (H2O2), and catalase (CAT) activity, were assessed. The expression of proteins related to the mitogen-activated protein kinase (MAPK)/JNK pathway was analyzed using western blot. Neurodevelopmental and apoptotic outcomes were evaluated through behavioral tests, immunofluorescence and RT-qPCR examinations. The study found that exposure to BPA led to a decrease in hatchability, survival, body length, heart rate, total antioxidant capacity and promoted apoptosis in zebrafish larvae. However, supplementation with FA was able to alleviate these negative effects. BPA exposure increased levels of ROS, LPO, and H2O2, while decreasing CAT activity in zebrafish larvae. Treatment with FA effectively reduced BPA-induced oxidative stress and restored antioxidant defense systems. Moreover, KEGG pathway enrichment analysis revealed that the MAPK signaling pathway was the most enriched signaling pathway. Further studies revealed that BPA activated the JNK signaling pathway, while FA suppressed this activation. Additionally, FA significantly improved BPA-induced neurobehavioral deficits and protected against neurocytological alterations. Our findings demonstrate that FA effectively protects against BPA-induced developmental and neurotoxic effects in zebrafish by suppressing oxidative stress and inhibiting the JNK signaling pathway. This study provides new strategies and insights for preventing BPA-induced developmental and neurotoxicity in aquatic organisms.
Collapse
Affiliation(s)
- Ruijing Li
- Children's Hospital Affiliated to Zhengzhou University, Henan Engineering Research Center of Zebrafish Models for Human Disease and Drug Screening, Henan Neurodevelopment Engineering Research Center for Children, Zhengzhou 450018, China
| | - Weili Yang
- Children's Hospital Affiliated to Zhengzhou University, Henan Engineering Research Center of Zebrafish Models for Human Disease and Drug Screening, Henan Neurodevelopment Engineering Research Center for Children, Zhengzhou 450018, China
| | - Xingxue Yan
- Children's Hospital Affiliated to Zhengzhou University, Henan Engineering Research Center of Zebrafish Models for Human Disease and Drug Screening, Henan Neurodevelopment Engineering Research Center for Children, Zhengzhou 450018, China
| | - Xinkui Zhou
- Children's Hospital Affiliated to Zhengzhou University, Henan Engineering Research Center of Zebrafish Models for Human Disease and Drug Screening, Henan Neurodevelopment Engineering Research Center for Children, Zhengzhou 450018, China
| | - Xiaorui Song
- Children's Hospital Affiliated to Zhengzhou University, Henan Engineering Research Center of Zebrafish Models for Human Disease and Drug Screening, Henan Neurodevelopment Engineering Research Center for Children, Zhengzhou 450018, China
| | - Cuihua Liu
- Department of Nephrology and Rheumatology, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou 450018, China
| | - Yaodong Zhang
- Children's Hospital Affiliated to Zhengzhou University, Henan Engineering Research Center of Zebrafish Models for Human Disease and Drug Screening, Henan Neurodevelopment Engineering Research Center for Children, Zhengzhou 450018, China.
| | - Jitong Li
- Children's Hospital Affiliated to Zhengzhou University, Henan Engineering Research Center of Zebrafish Models for Human Disease and Drug Screening, Henan Neurodevelopment Engineering Research Center for Children, Zhengzhou 450018, China; Department of Nephrology and Rheumatology, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou 450018, China.
| |
Collapse
|
2
|
Chen S, Wang Y, Chen K, Xing X, Jiang Q, Xu T. Unraveling the mechanism of quercetin alleviating BHPF-induced apoptosis in epithelioma papulosum cyprini cells: SIRT3-mediated mitophagy. FISH & SHELLFISH IMMUNOLOGY 2024; 154:109907. [PMID: 39278380 DOI: 10.1016/j.fsi.2024.109907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/19/2024] [Accepted: 09/12/2024] [Indexed: 09/18/2024]
Abstract
Fluorene-9-bisphenol (BHPF), as an alternative to bisphenol A, is now increasingly used in plastic products. The accumulation of BHPF in the water environment has posed potential safety risks to aquatic organisms. Unfortunately, the toxicity of BHPF on the physiological metabolism of aquatic animals remains unclear, especially on the molecular mechanisms of BHPF kidney toxicity and antagonizing BHPF toxicity. Quercetin (QCT), a naturally occurring flavonoid, has been reported to mitigate the toxic effects on aquatic organisms induced by a variety of environmental contaminants. It is unclear whether QCT can be a candidate for mitigating BHPF toxicity. In this study, we investigated the protective effect of QCT on BHPF-induced apoptosis and elucidated the possible mechanism of the protective effect mediated by QCT. We treated epithelioma papulosum cyprini cells (EPCs) with 20 μM of BHPF and/or 20 μM of QCT, and the results showed that BHPF significantly increased the release of reactive oxygen species (ROS) from EPCs, decreased the expression of SIRT3, and initiated endogenous apoptosis. Molecular docking provides evidence for the interaction of QCT and SIRT3. Our intervention with Honokiol (HKL) showed that QCT or HKL treatment significantly attenuated BHPF-induced mitochondrial dysfunction and mitochondrial apoptosis (mtApoptosis) in EPCs, and activated mitophagy, restoring autophagy flux. To further investigate the specific mechanism of the protective effect of QCT, we intervened with Cyclosporin A (CsA), and our results suggest that QCT activation of SIRT3-promoted regulation of mitophagy may be a therapeutic strategy to attenuate the toxic effects of BHPF on EPCs. In conclusion, our findings suggest that BHPF induces oxidative damage and mtApoptosis in EPCs and that QCT activates mitophagy and improves autophagic flux through activation of SIRT3, thereby alleviating apoptosis mediated by mitochondrial dysfunction in EPCs. Our study provides a theoretical basis for reassessing the safety of BHPF for aquatic organisms and reveals a novel detoxification mechanism against the toxic effects of BHPF.
Collapse
Affiliation(s)
- Shasha Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Yidan Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Kai Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Xinyue Xing
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Qihang Jiang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Tong Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|
3
|
Yang Z, Wei Y, Fu Y, Wang X, Shen W, Shi A, Zhang H, Li H, Song X, Wang J, Jin M, Zheng H, Tao J, Wang Y. Folic acids promote in vitro maturation of bovine oocytes by inhibition of ferroptosis via upregulated glutathione and downregulated Fe 2+ accumulation. Anim Reprod Sci 2024; 270:107605. [PMID: 39362062 DOI: 10.1016/j.anireprosci.2024.107605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 09/19/2024] [Accepted: 09/23/2024] [Indexed: 10/05/2024]
Abstract
Bovine embryos by in vitro fertilization have become the primary source of commercial embryo transfers globally. However, the developmental capacity of in vitro maturation (IVM) oocytes is considerably lower than that of in vivo maturation (IVO) oocytes, owing to the production of reactive oxygen species (ROS) via mitochondrial metabolism, which was higher in IVM oocytes than in IVO oocytes. To avoid the negative effects of ROS on embryo quality, folic acid (FA) was supplemented directly into the IVM medium to antagonize ROS production, however, the mechanisms remain unknown. In the present study, five levels of FA (0, 25, 50, 100, and 200 µM) were supplemented into the bovine oocyte culture medium. The maturation, cleavage, and blastocyst formation rates increased by 8.95 %, 6.94 %, and 4.36 %, respectively, in the 50 µM group compared to the 0 µM group. Moreover, 7904 differential genes were identified between 0 µM and 50 µM groups by transcriptome sequencing, and they were mainly enriched in 8 pathways. The glutathione, ROS, and Fe2+ levels in oocytes were found to be associated with ferroptosis. Our results revealed that 50 µM FA promoted the IVM of bovine oocytes and affected the expression of genes involved in the ferroptosis pathway. The downregulation of TFR1 and STEAP3 led to a decrease in intracellular Fe2+ accumulation, and the upregulation of GCL increased oocyte GSH levels, thereby reducing the production of ROS in the ferroptosis pathway. Our study provides a new insight into the molecular mechanisms by which FA promotes bovine oocyte development in vitro.
Collapse
Affiliation(s)
- Zhuo Yang
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Yaochang Wei
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Yu Fu
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Xiaoyan Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Wenjuan Shen
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - An Shi
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Han Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Heqiang Li
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Xuexiao Song
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Jie Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Mengdong Jin
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Hao Zheng
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Jinzhong Tao
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China.
| | - Yongsheng Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
4
|
Niu B, Feng Y, Cheng X, Xiao Y, Zhao J, Lu W, Tian F, Chen W. The alleviative effects of viable and inactive Lactobacillus paracasei CCFM1120 against alcoholic liver disease via modulation of gut microbiota and the Nrf2/HO-1 and TLR4/MyD88/NF-κB pathways. Food Funct 2024; 15:8797-8809. [PMID: 39114922 DOI: 10.1039/d4fo02592j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Probiotics can alleviate alcoholic liver disease. However, whether inactive counterparts can produce similar outcomes requires further investigation. We investigated the effects of viable (V) and dead (D) Lactobacillus paracasei CCFM1120 on alcohol-induced ALD mice. The results showed that CCFM1120V and D ameliorated the disease symptoms and intestinal injury. Specifically, these interventions strengthened the intestinal barrier, as evidenced by the increased expression of ZO-1 (zonula occludens 1), occludin, and claudin-1 in the colon and the restored ileal microstructure, including the villi and crypts. In addition, they enhanced the antioxidant capacity of the liver by reducing the production of malondialdehyde and increasing the levels of glutathione and superoxide dismutase. The activation of Nrf2 and HO-1 may be responsible for recovering the antioxidant capacity. Interventions can decrease mouse TNF-α, IL-6 and IL-1β content in serum, probably through the TLR4/MyD88/NF-κB pathway. Furthermore, they possess the ability to restore the quantities of bacteria responsible for producing butyric acid, such as Lactobacillus, Blautia, Bifidobacterium, Ruminococcaceae, Faecalibaculum and Lachnospiraceae. Taken together, CCFM1120V and D apparently can modify the composition of the gut microbiota, foster the gastrointestinal equilibrium, fortify the intestinal barrier, augment the antioxidant capacity of the liver, and effectively shield it from ethanol-induced injury.
Collapse
Affiliation(s)
- Ben Niu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China.
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Yingxuan Feng
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China.
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Xu Cheng
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China.
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Yue Xiao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China.
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China.
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| | - Wenwei Lu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China.
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| | - Fengwei Tian
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China.
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China.
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| |
Collapse
|
5
|
Yang M, Wang D, Wang X, Mei J, Gong Q. Role of Folate in Liver Diseases. Nutrients 2024; 16:1872. [PMID: 38931227 PMCID: PMC11206401 DOI: 10.3390/nu16121872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/06/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Folate is a water-soluble B vitamin involved in the synthesis of purines and pyrimidines and is one of the essential vitamins for human growth and reproduction. Folate deficiency due to low dietary intake, poor absorption of folate, and alterations in folate metabolism due to genetic defects or drug interactions significantly increases the risk of diseases such as neural tube defects, cardiovascular disease, cancer, and cognitive dysfunction. Recent studies have shown that folate deficiency can cause hyperhomocysteinemia, which increases the risk of hypertension and cardiovascular disease, and that high homocysteine levels are an independent risk factor for liver fibrosis and cirrhosis. In addition, folate deficiency results in increased secretion of pro-inflammatory factors and impaired lipid metabolism in the liver, leading to lipid accumulation in hepatocytes and fibrosis. There is substantial evidence that folate deficiency contributes to the development and progression of a variety of liver diseases, including non-alcoholic fatty liver disease (NAFLD), non-alcoholic steatohepatitis (NASH), alcoholic liver disease (ALD), viral hepatitis, hepatic fibrosis, and liver cancer. Here we review key studies on the role of folate in the pathophysiology of liver diseases, summarize the current status of studies on folate in the treatment of liver diseases, and speculate that folate may be a potential therapeutic target for liver diseases.
Collapse
Affiliation(s)
- Minlan Yang
- School of Medicine, Yangtze University, Jingzhou 434020, China
| | | | | | | | - Quan Gong
- School of Medicine, Yangtze University, Jingzhou 434020, China
| |
Collapse
|
6
|
Lei X, Wen H, Xu Z. Higher oxidative balance score is associated with lower kidney stone disease in US adults: a population-based cross-sectional study. World J Urol 2024; 42:222. [PMID: 38587667 DOI: 10.1007/s00345-024-04919-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 02/21/2024] [Indexed: 04/09/2024] Open
Abstract
PURPOSE Oxidative balance stress (OBS) was an important indicator for assessing exposure to oxidative stress related to diet and lifestyle. The purpose of this study was to explore the relationship between OBS and kidney stone disease (KSD). METHODS Secondary dataset analysis was performed by the study from six survey cycles (2007-2018) in the National Health and Nutrition Examination Survey (NHANES). OBS was the exposure factor and ever had kidney stone (yes or no) was the outcome. Weighted univariate or multivariate logistic regression models were used to estimate the associations. RESULTS The prevalence of KSD among participants was 8.6%. OBS showed a significant negative correlation with KSD (OR: 0.98, 95% CI 0.96-0.999), 35% reduction in KSD in the highest OBS quartile compared to the lowest OBS quartile. Dietary OBS was significantly negatively correlated with KSD (OR: 0.98, 95% CI 0.96-0.9998), but not with lifestyle OBS. In addition, OBS had a negative correlation with KSD in females (OR: 0.97, 95% CI 0.94-0.996), non-diabetic participants (OR: 0.98, 95% CI 0.96-0.99), and hypertensive participants (OR: 0.96, 95% CI 0.93-0.99), but OBS was not observed to be associated with KSD in gout participants. Interestingly, this relationship existed in participants aged 30-60 years and a ratio of family income to poverty (PIR) of 1.3-3.5 (all P value < 0.05). CONCLUSION Our study revealed that OBS was negative associated with KSD, and high OBS might be a protective factor in KSD. Targeting one of the components of OBS might be beneficial.
Collapse
Affiliation(s)
- Xiong Lei
- Zhejiang Key Laboratory of Interventional Pulmonology, Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Hezhi Wen
- Zhejiang Key Laboratory of Interventional Pulmonology, Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhixiao Xu
- Zhejiang Key Laboratory of Interventional Pulmonology, Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
7
|
Heindel JJ, Lustig RH, Howard S, Corkey BE. Obesogens: a unifying theory for the global rise in obesity. Int J Obes (Lond) 2024; 48:449-460. [PMID: 38212644 PMCID: PMC10978495 DOI: 10.1038/s41366-024-01460-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/14/2023] [Accepted: 01/02/2024] [Indexed: 01/13/2024]
Abstract
Despite varied treatment, mitigation, and prevention efforts, the global prevalence and severity of obesity continue to worsen. Here we propose a combined model of obesity, a unifying paradigm that links four general models: the energy balance model (EBM), based on calories as the driver of weight gain; the carbohydrate-insulin model (CIM), based on insulin as a driver of energy storage; the oxidation-reduction model (REDOX), based on reactive oxygen species (ROS) as a driver of altered metabolic signaling; and the obesogens model (OBS), which proposes that environmental chemicals interfere with hormonal signaling leading to adiposity. We propose a combined OBS/REDOX model in which environmental chemicals (in air, food, food packaging, and household products) generate false autocrine and endocrine metabolic signals, including ROS, that subvert standard regulatory energy mechanisms, increase basal and stimulated insulin secretion, disrupt energy efficiency, and influence appetite and energy expenditure leading to weight gain. This combined model incorporates the data supporting the EBM and CIM models, thus creating one integrated model that covers significant aspects of all the mechanisms potentially contributing to the obesity pandemic. Importantly, the OBS/REDOX model provides a rationale and approach for future preventative efforts based on environmental chemical exposure reduction.
Collapse
Affiliation(s)
- Jerrold J Heindel
- Healthy Environment and Endocrine Disruptor Strategies (HEEDS), Bozeman, MT, 59715, USA.
| | - Robert H Lustig
- Department of Pediatrics and Institute for Health Policy Studies, University of California, San Francisco, CA, 94143, USA
| | - Sarah Howard
- Healthy Environment and Endocrine Disruptor Strategies (HEEDS), Bozeman, MT, 59715, USA
| | - Barbara E Corkey
- Department of Medicine, Boston University, Chobanian and Avedisian School of Medicine, Boston, MA, 02118, USA
| |
Collapse
|