1
|
Hop NQ, Son NT. The quassinoids bruceines A-M: pharmacology, mechanism of action, synthetic advance, and pharmacokinetics-a review. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03281-7. [PMID: 38985315 DOI: 10.1007/s00210-024-03281-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 07/02/2024] [Indexed: 07/11/2024]
Abstract
Bruceines A-L are among the quassinoid representatives found in the medicinal plant Brucea javanica (L.). An overview of their pharmacological activities is still unknown. The given research deals with highlights in their pharmacological result, molecular mechanism of action, synthetic progress, and pharmacokinetics. From previous evidence, bruceine derivatives are potential agents for anticancer treatments, as well as they are appropriate to treat inflammation, diabetes, and parasitic infections, and protect the neurons, kidneys, and lungs. Cytokine inhibitions, oxidative stress responses, and various signaling pathways, such as MAPK (mitogen-activated protein kinase) and NF-κB (nuclear factor-kappa B), have been proposed as the underlying mechanisms of action. Synthetic approaches to synthesize new derivatives with enhancement activities are based on free hydroxyl group modifications. Bruceines seem to be promptly absorbed by both oral and intravenous administrations, but their bioavailability is not high (less than 6%). Pre-clinical and clinical studies to prove their anticancer potential and other activities are urgent. Structural modifications, nano-combinations, and synergistic effects are necessary.
Collapse
Affiliation(s)
- Nguyen Quang Hop
- Faculty of Chemistry, Hanoi Pedagogical University 2 (HPU2), 32 Nguyen Van Linh, Xuanhoa, Phucyen, Vinhphuc, Vietnam
| | - Ninh The Son
- Graduate University of Science and Technology, VAST, 18 Hoang Quoc Viet, Caugiay, Hanoi, Vietnam.
- Institute of Chemistry, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Caugiay, Hanoi, Vietnam.
| |
Collapse
|
2
|
Mao G, Lu W, Xu Y, Liu H, Xu H, Zeng J. Bruceine D inhibits the growth of Spodoptera litura by inducing cell apoptosis in the midgut via an oxidative burst. PEST MANAGEMENT SCIENCE 2024; 80:3126-3139. [PMID: 38344938 DOI: 10.1002/ps.8017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 02/02/2024] [Accepted: 02/07/2024] [Indexed: 03/01/2024]
Abstract
BACKGROUND Spodoptera litura is one of the most harmful lepidoptera pests in China, and is difficult to control due to its strong resistance to the current frequently used insecticide species. The requirement to develop pesticides with novel toxicology mechanisms to control S. litura is urgent. The quassinoid of bruceine D display outstanding systemic properties and strong insecticidal activity against S. litura, which possess notable application potential for integrative management of S. litura, but the mechanism of toxicity remains unclear. RESULTS In this study, we found that bruceine D exerts potent growth inhibitory activity against S. litura, disrupting the ecdysone and juvenile hormone titers, and causing long-term adverse effects. Association analysis between transcriptomics and metabolomics suggested that bruceine D affected the digestion and absorption capacity of S. litura larvae by inducing a strong oxidative stress response and cell apoptosis in the intestine. Further analysis demonstrated that bruceine D can inhibit the activities of digestive and antioxidant enzymes and induce malondialdehyde (MDA) and reactive oxygen species (ROS) overaccumulation in the midgut. Moreover, the protein level of Bax, cleavage caspase 3, and cytochrome c expressed in cytoplasm (cyto) were up-regulated by bruceine D, while Bcl-2 and cytochrome c expressed in mitochondria (mito) were down-regulated. In addition, there was a noticeable increase in caspase-3 protease activity. Histopathological observations revealed that bruceine D damages the structure of midgut epithelial cells and activates lysosomes, which subsequently disrupts the midgut tissue. CONCLUSION Overall, our findings suggested that bruceine D induced excessive ROS accumulation in midgut epithelial cells. The resulting cell apoptosis disrupted midgut tissue, leading ultimately to reduced nutrient digestion and absorption in the midgut and the inhibition of larval growth. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Genlin Mao
- Institute of Fruit Tree Research,Guangdong Academy of Agricultural Sciences, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Province Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou, China
| | - Wei Lu
- College of Agronomy, Xinjiang Agricultural University, Urumqi, China
| | - Yuhui Xu
- Institute of Fruit Tree Research,Guangdong Academy of Agricultural Sciences, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Province Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou, China
- College of Agronomy, Xinjiang Agricultural University, Urumqi, China
| | - Huan Liu
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, China
| | - Hanhong Xu
- National Key Laboratory of Green Pesticide and the State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
| | - Jiwu Zeng
- Institute of Fruit Tree Research,Guangdong Academy of Agricultural Sciences, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Province Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou, China
| |
Collapse
|
3
|
Wu J, Yang R, Zheng Q, Wei L, Wang B, Yan W, Meng S, Cheng D, Huang S, Zhang Z, Zhang P. Effect of Brucea javanica Oil on the Toxicity of β-Cypermethrin Emulsifiable Concentrate Formulation. ACS APPLIED MATERIALS & INTERFACES 2024; 16:9713-9724. [PMID: 38373060 DOI: 10.1021/acsami.3c16384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Enhancing the performance of traditional pesticide formulations by improving their leaf surface wetting capabilities is a crucial approach for maximizing the pesticide efficiency. This study develops an emulsifiable concentrate (EC) of 4.5% β-cypermethrin containing Brucea javanica oil (BJO). The incorporation of BJO aims to improve the leaf-wetting properties of the EC formulation and enhance its insecticidal effectiveness. The droplet size and emulsion characteristics of β-CYP EC emulsion with varying concentrations of the emulsifier were evaluated, and changes after incorporating BJO were assessed to develop the optimal formulation. A comprehensive comparison was conducted among commercial 4.5% β-cypermethrin EC (β-CYP EC-1), 4.5% β-cypermethrin EC with BJO (β-CYP EC-2), and 4.5% β-cypermethrin EC without BJO (β-CYP EC-3). This comparison encompassed various factors including storage stability, insecticidal activity, cytotoxicity, and wetting performance on cabbage leaves. The results indicated that the ideal emulsifier concentration was 15% emulsifier 0201B. β-CYP EC-2 demonstrated superior wetting properties on cabbage leaves (the wetting performance of β-CYP EC-2 emulsion on cabbage leaves is 2.60 times that of the β-CYP EC-1 emulsion), heightened insecticidal activity against the third larvae of Plutella xylostella [diamondback moth (DBM)] [the insecticidal activity of the β-CYP EC-2 emulsion against the third larvae of DBM is 1.93 times that of the β-CYP EC-1 emulsion (12 h)], and more obvious inhibitory effects on the proliferation of DBM embryo cells than the other tested formulations. These findings have significant implications for advancing pest control strategies and promoting sustainable and effective agricultural practices.
Collapse
Affiliation(s)
- Jian Wu
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou 510642, China
| | - Rongjie Yang
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou 510642, China
| | - Qun Zheng
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou 510642, China
| | - Liting Wei
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou 510642, China
| | - Botong Wang
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou 510642, China
| | - Wenjuan Yan
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou 510642, China
| | - Shaoke Meng
- Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Dongmei Cheng
- Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Suqing Huang
- Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Zhixiang Zhang
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou 510642, China
| | - Peiwen Zhang
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou 510642, China
- Shaoguan University, Shaoguan 512005, China
| |
Collapse
|
4
|
Li H, Zhu X, Sun Z, Wang Q, Song S, Xu Y, He G, Mao X. Bruceine B Displays Potent Antimyeloma Activity by Inducing the Degradation of the Transcription Factor c-Maf. ACS Pharmacol Transl Sci 2024; 7:176-185. [PMID: 38230274 PMCID: PMC10789117 DOI: 10.1021/acsptsci.3c00222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/26/2023] [Accepted: 11/17/2023] [Indexed: 01/18/2024]
Abstract
The oncogenic transcription factor c-Maf has been proposed as an ideal therapeutic target for multiple myeloma (MM), a not-yet-curable malignancy of plasma cells. In the present study, we establish a c-Maf-based luciferase screen system and apply it to screen a homemade library composed of natural products from which bruceine B (BB) is identified to display potent antimyeloma activity. BB is a key ingredient isolated from the Chinese traditional medicinal plant Brucea javanica (L.) Merr. (Simaroubaceae). BB inhibits MM cell proliferation and induces MM cell apoptosis in a caspase-3-dependent manner. The mechanism studies showed that BB inhibits c-Maf transcriptional activity and downregulates the expression of CCND2 and ITGB7, the downstream genes typically modulated by c-Maf. Moreover, BB induces c-Maf degradation via proteasomes by inducing c-Maf for K48-linked polyubiquitination in association with downregulated Otub1 and USP5, two proven deubiquitinases of c-Maf. We also found that c-Maf activates STAT3 and BB suppresses the STAT3 signaling. In the in vivo study, BB displays potent antimyeloma activity and almost suppresses the growth of myeloma xenografts in 7 days but shows no overt toxicity to mice. In conclusion, this study identifies BB as a novel inhibitor of c-Maf by promoting its degradation via the ubiquitin-proteasomal pathway. Given the safety and the successful clinical application of bruceine products in traditional medicine, BB is ensured for further investigation for the treatment of patients with MM.
Collapse
Affiliation(s)
- Hongyue Li
- Institute
of Clinical Pharmacology, Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
- Guangdong
Provincial Key Laboratory of Protein Modification and Degradation,
School of Basic Medical Sciences, Guangzhou
Medical University, Guangzhou 511436, P. R. China
| | - Xiaoting Zhu
- Institute
of Clinical Pharmacology, Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
- Guangdong
Provincial Key Laboratory of Protein Modification and Degradation,
School of Basic Medical Sciences, Guangzhou
Medical University, Guangzhou 511436, P. R. China
| | - Ziying Sun
- Guangdong
Provincial Key Laboratory of Protein Modification and Degradation,
School of Basic Medical Sciences, Guangzhou
Medical University, Guangzhou 511436, P. R. China
| | - Qi Wang
- Institute
of Clinical Pharmacology, Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Shaojiang Song
- Department
of Natural Medicinal Chemistry, Shenyang
Pharmaceutical University, Shenyang 110016, China
| | - Yujia Xu
- Guangdong
Provincial Key Laboratory of Protein Modification and Degradation,
School of Basic Medical Sciences, Guangzhou
Medical University, Guangzhou 511436, P. R. China
| | - Guisong He
- Department
of Orthopaedics, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, P. R. China
| | - Xinliang Mao
- Institute
of Clinical Pharmacology, Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
- Guangdong
Provincial Key Laboratory of Protein Modification and Degradation,
School of Basic Medical Sciences, Guangzhou
Medical University, Guangzhou 511436, P. R. China
| |
Collapse
|