1
|
Wang S, Chen T, Yang J, Song Y, Yan Y. OSMAC Investigation Directed by Genome Information Led to the Discovery of Additional Five Types of Secondary Metabolites From Deep-Sea Derived Penicillium Sp. SCSIO sof101. Chem Biodivers 2024:e202402685. [PMID: 39673484 DOI: 10.1002/cbdv.202402685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 11/27/2024] [Accepted: 12/05/2024] [Indexed: 12/16/2024]
Abstract
Marine fungi are considered important resources for new lead compounds in One Strain Many Compounds (OSMAC) strategy. In particular, deep-sea derived fungi have been deemed potent for novel bioactive structures due to their extreme living environment and evolution of special biosynthetic gene clusters (BGCs) for secondary metabolites. Chemical investigations of the deep-sea derived Penicillium sp. SCSIO sof101 led to the discovery of 5 types of 21 bioactive compounds, including the significant anti-Gram-negative bacterial compound sulfoxanthicillin. Bioinformatics analysis of the strain revealed 56 BGCs for the secondary metabolites. This information guided the further culture optimization, which led to the discovery of another five types of secondary metabolites (1-11), including one non-ribosomal peptide and polyketide (NRP-PK) type compounds (1-3), which included a new compound (1), one NRP type compounds (4-5), and three PK types compounds (6-11). The structure of compound 1 was elucidated by spectral analyses including HR-ESI-MS, 1D and 2D NMR, and chemical derivatization approaches. Compound 1 was inactive in the evaluation of antibacterial activity and cytotoxicity. Its biosynthetic pathway was proposed. This finding paves the way for further mining of OSMAC potent from the deep-sea derived strain.
Collapse
Affiliation(s)
- Songtao Wang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- College of Marine Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Ting Chen
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- College of Marine Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jiafan Yang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- College of Marine Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yongxiang Song
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- College of Marine Sciences, University of Chinese Academy of Sciences, Beijing, China
- Sanya Institute of Ocean Eco-Environmental Engineering, Sanya, China
| | - Yan Yan
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- College of Marine Sciences, University of Chinese Academy of Sciences, Beijing, China
- Sanya Institute of Ocean Eco-Environmental Engineering, Sanya, China
| |
Collapse
|
2
|
Duan C, Wang S, Yao Y, Pan Y, Liu G. MFS Transporter as the Molecular Switch Unlocking the Production of Cage-Like Acresorbicillinol C. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:19061-19070. [PMID: 39148224 DOI: 10.1021/acs.jafc.4c05177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Sorbicillinoids are a class of fungal polyketides with diverse structures and distinguished bioactivities. Although remarkable progress has been achieved in their chemistry and biosynthesis, the efflux of sorbicillinoids is poorly understood. Here, we found MFS transporter AcsorT was responsible for the biosynthesis of sorbicillinoids in Acremonium chrysogenum. Combinatorial knockout and subcellular location demonstrated that the plasma membrane-associated AcsorT was responsible for the transportation of sorbicillinol and subsequent formation of oxosorbicillinol and acresorbicillinol C via the berberine bridge enzyme-like oxidase AcsorD in the periplasm. Homology modeling and site-directed mutation revealed that Tyr303 and Arg436 were the key residues of AcsorT, which was further explained by molecular dynamics simulation. Based on our study, it was suggested that AcsorT modulates sorbicillinoid production by coordinating its biosynthesis and export, and a transport model of sorbicillinoids was proposed in A. chrysogenum.
Collapse
Affiliation(s)
- Chengbao Duan
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shiyuan Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongpeng Yao
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yuanyuan Pan
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Gang Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
3
|
Zhang K, Liu J, Jiang Y, Sun S, Wang R, Sun J, Ma C, Chen Y, Wang W, Hou X, Zhu T, Zhang G, Che Q, Keyzers RA, Liu M, Li D. Sorbremnoids A and B: NLRP3 Inflammasome Inhibitors Discovered from Spatially Restricted Crosstalk of Biosynthetic Pathways. J Am Chem Soc 2024; 146:18172-18183. [PMID: 38888159 DOI: 10.1021/jacs.4c06538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Crosstalk-oriented chemical evolution of natural products (NPs) is an efficacious strategy for generating novel skeletons through coupling reactions between NP fragments. In this study, two NOD-like receptor protein 3 (NLRP3) inflammasome inhibitors, sorbremnoids A and B (1 and 2), with unprecedented chemical architectures were identified from a fungus Penicillium citrinum. Compounds 1 and 2 exemplify rare instances of hybrid NPs formed via a major facilitator superfamily (MFS)-like enzyme by coupling reactive intermediates from two separate biosynthetic gene clusters (BGCs), pcisor and pci56. Both sorbremnoids A and B are NLRP3 inflammasome inhibitors. Sorbremnoid A demonstrated strong inhibition of IL-1β by directly binding to the NLRP3 protein, inhibiting the assembly and activation of the NLRP3 inflammasome in vitro, with potential application in diabetic refractory wound healing through the suppression of excessive inflammatory responses. This research will inspire the development of anti-NLRP3 inflammasome agents as lead treatments and enhance knowledge pertaining to NPs derived from biosynthetic crosstalk.
Collapse
Affiliation(s)
- Kaijin Zhang
- Key Laboratory of Marine Drugs, Ministry of Education, Sanya Oceanographic Institute, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Junyu Liu
- Key Laboratory of Marine Drugs, Ministry of Education, Sanya Oceanographic Institute, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Yuqi Jiang
- Key Laboratory of Marine Drugs, Ministry of Education, Sanya Oceanographic Institute, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Simin Sun
- Key Laboratory of Marine Drugs, Ministry of Education, Sanya Oceanographic Institute, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Rongrong Wang
- Key Laboratory of Marine Drugs, Ministry of Education, Sanya Oceanographic Institute, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Jingxian Sun
- Key Laboratory of Marine Drugs, Ministry of Education, Sanya Oceanographic Institute, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Chuanteng Ma
- Key Laboratory of Marine Drugs, Ministry of Education, Sanya Oceanographic Institute, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Yinghan Chen
- Key Laboratory of Marine Drugs, Ministry of Education, Sanya Oceanographic Institute, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Wenxue Wang
- Key Laboratory of Marine Drugs, Ministry of Education, Sanya Oceanographic Institute, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Xuewen Hou
- Key Laboratory of Marine Drugs, Ministry of Education, Sanya Oceanographic Institute, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Tianjiao Zhu
- Key Laboratory of Marine Drugs, Ministry of Education, Sanya Oceanographic Institute, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Guojian Zhang
- Key Laboratory of Marine Drugs, Ministry of Education, Sanya Oceanographic Institute, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Qian Che
- Key Laboratory of Marine Drugs, Ministry of Education, Sanya Oceanographic Institute, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Robert A Keyzers
- School of Chemical and Physical Sciences and Centre for Biodiscovery, Victoria University of Wellington, Wellington 6012, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland 1142, New Zealand
| | - Ming Liu
- Key Laboratory of Marine Drugs, Ministry of Education, Sanya Oceanographic Institute, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Dehai Li
- Key Laboratory of Marine Drugs, Ministry of Education, Sanya Oceanographic Institute, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| |
Collapse
|
4
|
Wu J, Meng Q, Liu D, Fan A, Huang J, Lin W. Targeted isolation of sorbicilinoids from a deep-sea derived fungus with anti-neuroinflammatory activities. PHYTOCHEMISTRY 2024; 219:113976. [PMID: 38237844 DOI: 10.1016/j.phytochem.2024.113976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/01/2024] [Accepted: 01/07/2024] [Indexed: 01/25/2024]
Abstract
A chemical fingerprinting approach utilizing LC-MS/MS coupled with 2D NMR data was established to characterize the profile of sorbicilinoid-type metabolites from a deep-sea derived fungus Penicillium rubens F54. Targeted isolation of the cultured fungus resulted in the discovery of 11 undescribed sorbicilinoids namely sorbicillinolides A-K (1-11). Their structures were identified by extensive analyses of the spectroscopic data, including the calculation of electronic circular dichroism and optical rotation for configurational assignments. The cyclopentenone core of sorbicillinolides A-D is likely derived from sorbicillin/dihydrosorbicillin through a newly oxidative rearrangement. The stereoisomers of sorbicillinolides E-G incorporate a nitrogen unit, forming a unique hydroquinoline nucleus. Sorbicillinolides A and C exhibited significant anti-neuroinflammation in LPS-stimulated BV-2 macrophages, achieved by potent inhibition of NO and PGE2 production through the interruption of RNA transcription of iNOS, COX-2 and IL6 in the NF-κB signaling pathway. Further investigation identified COX-2 as a potential target of sorbicillinolide A. These findings suggest sorbicillinolide A as a potential lead for the development of a non-steroidal anti-neuroinflammatory agent.
Collapse
Affiliation(s)
- Jingshuai Wu
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, PR China
| | - Qinyu Meng
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, PR China
| | - Dong Liu
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, PR China
| | - Aili Fan
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, PR China
| | - Jian Huang
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, PR China
| | - Wenhan Lin
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, PR China; Ningbo Institute of Marine Medicine, Peking University, Beijing, 100191, PR China.
| |
Collapse
|
5
|
Liu Y, Chen T, Sun B, Tan Q, Ouyang H, Wang B, Yu H, She Z. Mono- and Dimeric Sorbicillinoid Inhibitors Targeting IL-6 and IL-1β from the Mangrove-Derived Fungus Trichoderma reesei BGRg-3. Int J Mol Sci 2023; 24:16096. [PMID: 38003285 PMCID: PMC10670970 DOI: 10.3390/ijms242216096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/03/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Four new sorbicillinoids, named trichodermolide E (1), trichosorbicillin J (2), bisorbicillinolide B (3), and demethylsorbiquinol (5), together with eight known compounds (4, 6-12), were isolated from the cultures of the mangrove-derived fungus Trichoderma reesei BGRg-3. The structures of the new compounds were determined by analyzing their detailed spectroscopic data, while the absolute configurations were further determined through electronic circular dichroism calculations. Snatzke's method was additionally used to determine the absolute configurations of the diol moiety in 1. In a bioassay, compounds 7 and 10 performed greater inhibitory activities on interleukin-6 and interleukin-1β than the positive control (dexamethasone) at the concentration of 25 μM. Meanwhile, compounds 5 and 6 showed potent effects with stronger inhibition than dexamethasone on IL-1β at the same concentration.
Collapse
Affiliation(s)
- Yufeng Liu
- School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China; (Y.L.); (T.C.); (B.S.); (Q.T.); (B.W.)
| | - Tao Chen
- School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China; (Y.L.); (T.C.); (B.S.); (Q.T.); (B.W.)
| | - Bing Sun
- School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China; (Y.L.); (T.C.); (B.S.); (Q.T.); (B.W.)
| | - Qi Tan
- School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China; (Y.L.); (T.C.); (B.S.); (Q.T.); (B.W.)
| | - Hui Ouyang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China;
| | - Bo Wang
- School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China; (Y.L.); (T.C.); (B.S.); (Q.T.); (B.W.)
| | - Huijuan Yu
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China;
| | - Zhigang She
- School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China; (Y.L.); (T.C.); (B.S.); (Q.T.); (B.W.)
| |
Collapse
|