1
|
Chen J, Shi W, Shen Z, Ma Y, Zhang S. Comparison of the effects of pectin with different esterification degrees on the thermal aggregation of wheat glutenin and gliadin. Int J Biol Macromol 2024; 286:138394. [PMID: 39643181 DOI: 10.1016/j.ijbiomac.2024.138394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 11/16/2024] [Accepted: 12/03/2024] [Indexed: 12/09/2024]
Abstract
Our previous study found that pectin with different degrees of esterification (DE) could affect the thermal aggregation of gluten, but the mechanism was not clear. Analyzing the thermal aggregation of glutenin and gliadin supplemented with pectin can clarify this mechanism. With the increase of temperature, the particle size, disulfide bonds and β-sheet of glutenins increased, the surface hydrophobicity (H0) and fluorescence intensity decreased, and the network gradually aggregated, but the change trend of gliadins was opposite. These results suggested that the thermal aggregation of gluten mainly depended on glutenin. Glutenin and gliadin supplemented with low ester pectin (LEP) were in an aggregated state. At 95 °C, LEP (DE = 37 %) increased the particle size of glutenin and gliadin (141.83 μm and 19.91 μm), promoted the conversion of thiol to disulfide bonds, increased β-sheet (34.01 % and 31.13 %), decreased fluorescence intensity (2186.33 and 5165.33) and H0 (49.65 and 369.26). Scanning electron microscope (SEM) indicated that glutenin and gliadin supplemented with LEP retained a dense network structure, especially glutenin. This study elucidated the specific mechanism of how pectin affected the thermal aggregation of gluten. These results provide a more comprehensive theoretical support and scientific basis for understanding how pectin regulates the final quality of gluten-based products.
Collapse
Affiliation(s)
- Jinfeng Chen
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, Gansu, People's Republic of China; State Key Laboratory of Aridland Crop Science, Lanzhou 730070, Gansu, People's Republic of China.
| | - Wanlu Shi
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, Gansu, People's Republic of China
| | - Zheyu Shen
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, Gansu, People's Republic of China
| | - Yunxiang Ma
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, Gansu, People's Republic of China
| | - Shenggui Zhang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, Gansu, People's Republic of China; State Key Laboratory of Aridland Crop Science, Lanzhou 730070, Gansu, People's Republic of China.
| |
Collapse
|
2
|
Huang J, Liao J, Li X, Zhao H, Li H, Kuang J, Li J, Guo J, Huang T, Li J. Tea saponin-Zein binary complex as a quercetin delivery vehicle: preparation, characterization, and functional evaluation. Int J Biol Macromol 2024; 279:135485. [PMID: 39255893 DOI: 10.1016/j.ijbiomac.2024.135485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/05/2024] [Accepted: 09/07/2024] [Indexed: 09/12/2024]
Abstract
In this study, in order to solve the application problems of poor water solubility and low bioavailability of quercetin, we prepared a nano-delivery system with core-shell structure by anti-solvent method, including a hydrophilic shell composed of tea saponin and a hydrophobic core composed of Zein, which was used to improve the delivery efficiency and biological activity of quercetin. Through the optimal experiments, the loading rate and encapsulation rate of nanoparticles reached 89.41 % and 7.94 % respectively. And the water solubility of quercetin is improved by 30.16 times. At the same time, the quercetin acted with Zein through non-covalent interaction and destroyed its spatial network through structural characterization, while tea saponin covered the surface of Zein through electrostatic interaction, making it change into amorphous state. In addition, the addition of tea saponin makes the nanoparticles remain stable under the changes of external environment. During simulating gastrointestinal digestion procedure, ZQTNPs has higher release rate and bioavailability than free quercetin. Importantly, ZQTNPs can overcome the limitations of a single substance through synergy. These results will promote the innovative development of quercetin precision nutrition delivery system.
Collapse
Affiliation(s)
- Jianyu Huang
- College of Food Science and Engineering, Ningbo University, Ningbo, China; State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Jiahao Liao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xiaoqiong Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Hui Zhao
- Changzhi Traditional Chinese Medicine Research Institute Affiliated Hospital, Changzhi, China
| | - Hongxia Li
- Changzhi Traditional Chinese Medicine Research Institute Affiliated Hospital, Changzhi, China
| | - Jian Kuang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Jianqiang Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Jinbin Guo
- Changzhi Traditional Chinese Medicine Research Institute Affiliated Hospital, Changzhi, China
| | - Tao Huang
- College of Food Science and Engineering, Ningbo University, Ningbo, China.
| | - Jinjun Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| |
Collapse
|
3
|
Tan M, Han J, Zhang Y, Chen S, Chen F, Yu LL, Zhu BW. Focusing on New Discoveries in Food Technology and Creating a New Future of Nutrition and Health: An Introduction to the 4 th International Symposium of Food Science, Nutrition and Health in Dalian, China. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:15128-15132. [PMID: 38920291 DOI: 10.1021/acs.jafc.4c03711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
The 4th International Symposium on Food Science, Nutrition and Health (ISFSNH) was held at the Shangri-La Hotel in Dalian, China, on May 29-31, 2023. The symposium explored the connotations and needs of "The Great Food Perspective" under the theme "Focusing on new discoveries in food technology and creating a new future of nutrition and health" to better address the global emerging diverse food needs. The ISFSNH covered four areas: (1) food processing theory and technology, (2) food safety and quality control, (3) precision nutrition and health, and (4) creation of nutritious and healthy foods. More than 1000 scholars and entrepreneurs from more than 100 colleges and universities globally attended the conference. This special issue of the Journal of Agricultural and Food Chemistry highlights the important topics of the 4th ISFSNH and includes more than 20 papers.
Collapse
Affiliation(s)
- Mingqian Tan
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Jiarun Han
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 314423, Zhejiang, China
| | - Yuhao Zhang
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Shiguo Chen
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agri-Food Processing, Fuli Institute of Food Science, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou 310027, China
| | - Fang Chen
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruit and Vegetable Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing 100083, China
| | - Liangli Lucy Yu
- Department of Nutrition and Food Science, University of Maryland, 0112 Skinner Building, College Park, Maryland 20742, United States
| | - Bei-Wei Zhu
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| |
Collapse
|
4
|
Hu J, Du S, Qiu H, Wu Y, Hong Q, Wang G, Mohamed SR, Lee YW, Xu J. A Hydrolase Produced by Rhodococcus erythropolis HQ Is Responsible for the Detoxification of Zearalenone. Toxins (Basel) 2023; 15:688. [PMID: 38133192 PMCID: PMC10747462 DOI: 10.3390/toxins15120688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 11/30/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023] Open
Abstract
Zearalenone (ZEN), an estrogenic mycotoxin, is one of the prevalent contaminants found in food and feed, posing risks to human and animal health. In this study, we isolated a ZEN-degrading strain from soil and identified it as Rhodococcus erythropolis HQ. Analysis of degradation products clarified the mechanism by which R. erythropolis HQ degrades ZEN. The gene zenR responsible for degrading ZEN was identified from strain HQ, in which zenR is the key gene for R. erythropolis HQ to degrade ZEN, and its expression product is a hydrolase named ZenR. ZenR shared 58% sequence identity with the hydrolase ZenH from Aeromicrobium sp. HA, but their enzymatic properties were significantly different. ZenR exhibited maximal enzymatic activity at pH 8.0-9.0 and 55 °C, with a Michaelis constant of 21.14 μM, and its enzymatic activity is 2.8 times that of ZenH. The catalytic triad was identified as S132-D157-H307 via molecular docking and site-directed mutagenesis. Furthermore, the fermentation broth of recombinant Bacillus containing ZenR can be effectively applied to liquefied corn samples, with the residual amount of ZEN decreased to 0.21 μg/g, resulting in a remarkable ZEN removal rate of 93%. Thus, ZenR may serve as a new template for the modification of ZEN hydrolases and a new resource for the industrial application of biological detoxification. Consequently, ZenR could potentially be regarded as a novel blueprint for modifying ZEN hydrolases and as a fresh resource for the industrial implementation of biological detoxification.
Collapse
Affiliation(s)
- Junqiang Hu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (J.H.); (S.D.); (H.Q.)
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Agro-Product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs/Key Laboratory for Control Technology and Standard for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs/Collaborative Innovation Center for Modern Grain Circulation and Safety/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (G.W.); (Y.-W.L.)
| | - Shilong Du
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (J.H.); (S.D.); (H.Q.)
| | - Han Qiu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (J.H.); (S.D.); (H.Q.)
| | - Yuzhuo Wu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China;
| | - Qing Hong
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (J.H.); (S.D.); (H.Q.)
| | - Gang Wang
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Agro-Product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs/Key Laboratory for Control Technology and Standard for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs/Collaborative Innovation Center for Modern Grain Circulation and Safety/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (G.W.); (Y.-W.L.)
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China;
| | - Sherif Ramzy Mohamed
- Food Industries and Nutrition Research Institute, Food Toxicology and Contaminants Department, National Research Centre, Tahreer St., Dokki, Giza 12411, Egypt;
| | - Yin-Won Lee
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Agro-Product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs/Key Laboratory for Control Technology and Standard for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs/Collaborative Innovation Center for Modern Grain Circulation and Safety/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (G.W.); (Y.-W.L.)
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea
| | - Jianhong Xu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (J.H.); (S.D.); (H.Q.)
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Agro-Product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs/Key Laboratory for Control Technology and Standard for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs/Collaborative Innovation Center for Modern Grain Circulation and Safety/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (G.W.); (Y.-W.L.)
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China;
| |
Collapse
|