1
|
Dual detection of native and deamidated gluten residues using the novel monoclonal antibody, 2D4. J Cereal Sci 2022. [DOI: 10.1016/j.jcs.2022.103585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
2
|
Immunological Analytical Techniques for Cosmetics Quality Control and Process Monitoring. Processes (Basel) 2021. [DOI: 10.3390/pr9111982] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Cosmetics analysis represents a rapidly expanding field of analytical chemistry as new cosmetic formulations are increasingly in demand on the market and the ingredients required for their production are constantly evolving. Each country applies strict legislation regarding substances in the final product that must be prohibited or regulated. To verify the compliance of cosmetics with current regulations, official analytical methods are available to reveal and quantitatively determine the analytes of interest. However, since ingredients, and the lists of regulated/prohibited substances, rapidly change, dedicated analytical methods must be developed ad hoc to fulfill the new requirements. Research focuses on finding innovative techniques that allow a rapid, inexpensive, and sensitive detection of the target analytes in cosmetics. Among the different methods proposed, immunological techniques are gaining interest, as they make it possible to carry out low-cost analyses on raw materials and finished products in a relatively short time. Indeed, immunoassays are based on the specific and selective antibody/antigen reaction, and they have been extensively applied for clinical diagnostic, alimentary quality control and environmental security purposes, and even for routine analysis. Since the complexity and variability of the matrices, as well as the great variety of compounds present in cosmetics, are analogous with those from food sources, immunological methods could also be applied successfully in this field. Indeed, this would provide a valid approach for the monitoring of industrial production chains even in developing countries, which are currently the greatest producers of cosmetics and the major exporters of raw materials. This review aims to highlight the immunological techniques proposed for cosmetics analysis, focusing on the detection of prohibited/regulated compounds, bacteria and toxins, and allergenic substances, and the identification of counterfeits.
Collapse
|
3
|
Ballegaard ASR, Castan L, Larsen JM, Piras C, Villemin C, Andersen D, Madsen CB, Roncada P, Brix S, Denery-Papini S, Mazzucchelli G, Bouchaud G, Bøgh KL. Acid Hydrolysis of Gluten Enhances the Skin Sensitizing Potential and Drives Diversification of IgE Reactivity to Unmodified Gluten Proteins. Mol Nutr Food Res 2021; 65:e2100416. [PMID: 34636481 DOI: 10.1002/mnfr.202100416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 09/23/2021] [Indexed: 11/11/2022]
Abstract
SCOPE Personal care products containing hydrolyzed gluten have been linked to spontaneous sensitization through the skin, however the impact of the hydrolysate characteristics on the sensitizing capacity is generally unknown. METHODS AND RESULTS The physicochemical properties of five different wheat-derived gluten products (one unmodified, one enzyme hydrolyzed, and three acid hydrolyzed) are investigated, and the skin sensitizing capacity is determined in allergy-prone Brown Norway rats. Acid hydrolyzed gluten products exhibited the strongest intrinsic sensitizing capacity via the skin. All hydrolyzed gluten products induced cross-reactivity to unmodified gluten in the absence of oral tolerance to wheat, but were unable to break tolerance in animals on a wheat-containing diet. Still, the degree of deamidation in acid hydrolyzed products is associated with product-specific sensitization in wheat tolerant rats. Sensitization to acid hydrolyzed gluten products is associated with a more diverse IgE reactivity profile to unmodified gluten proteins compared to sensitization induced by unmodified gluten or enzyme hydrolyzed gluten. CONCLUSION Acid hydrolysis enhances the skin sensitizing capacity of gluten and drives IgE reactivity to more gluten proteins. This property of acid hydrolyzed gluten may be related to the degree of product deamidation, and could be a strong trigger of wheat allergy in susceptible individuals.
Collapse
Affiliation(s)
| | - Laure Castan
- INRAE BIA UR1268, Nantes, 44316, France.,Institut du thorax, INSERM CNRS, UNIV Nantes, Nantes, 44000, France
| | - Jeppe Madura Larsen
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, 2800, Denmark
| | - Cristian Piras
- Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro, 88100, Italy
| | | | - Daniel Andersen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, 2800, Denmark
| | | | - Paola Roncada
- Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro, 88100, Italy
| | - Susanne Brix
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, 2800, Denmark
| | | | - Gabriel Mazzucchelli
- Laboratory of Mass Spectrometry - MolSys, Department of Chemistry, University of Liege, Liege, 4000, Belgium.,GIGA Proteomics Facility, University of Liege, Liege, 4000, Belgium
| | | | - Katrine Lindholm Bøgh
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, 2800, Denmark
| |
Collapse
|
4
|
Ribeiro M, de Sousa T, Sabença C, Poeta P, Bagulho AS, Igrejas G. Advances in quantification and analysis of the celiac-related immunogenic potential of gluten. Compr Rev Food Sci Food Saf 2021; 20:4278-4298. [PMID: 34402581 DOI: 10.1111/1541-4337.12828] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 05/18/2021] [Accepted: 07/21/2021] [Indexed: 12/21/2022]
Abstract
Gluten-free products have emerged in response to the increasing prevalence of gluten-related disorders, namely celiac disease. Therefore, the quantification of gluten in products intended for consumption by individuals who may suffer from these pathologies must be accurate and reproducible, in a way that allows their proper labeling and protects the health of consumers. Immunochemical methods have been the methods of choice for quantifying gluten, and several kits are commercially available. Nevertheless, they still face problems such as the initial extraction of gluten in complex matrices or the use of a standardized reference material to validate the results. Lately, other methodologies relying mostly on mass spectrometry-based techniques have been explored, and that may allow, in addition to quantitative analysis, the characterizationof gluten proteins. On the other hand, although the level of 20 mg/kg of gluten detected by these methods is sufficient for a product to be considered gluten-free, its immunogenic potential for celiac patients has not been clinically validated. In this sense, in vitro and in vivo models, such as the organoid technology applied in gut-on-chip devices and the transgenic humanized mouse models, respectively, are being developed for investigating both the gluten-induced pathogenesis and the treatment of celiac disease. Due to the ubiquitous nature of gluten in the food industry, as well as the increased prevalence of gluten-related disorders, here we intend to summarize the available methods for gluten quantification in food matrices and for the evaluation of its immunogenic potential concerning the development of novel therapies for celiac disease to highlight active research and discuss knowledge gaps and current challenges in this field.
Collapse
Affiliation(s)
- Miguel Ribeiro
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal.,Functional Genomics and Proteomics Unity, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal.,LAQV-REQUIMTE, Faculty of Science and Technology, University Nova of Lisbon, Caparica, Lisbon, Portugal
| | - Telma de Sousa
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal.,Functional Genomics and Proteomics Unity, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal.,LAQV-REQUIMTE, Faculty of Science and Technology, University Nova of Lisbon, Caparica, Lisbon, Portugal
| | - Carolina Sabença
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal.,Functional Genomics and Proteomics Unity, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal.,LAQV-REQUIMTE, Faculty of Science and Technology, University Nova of Lisbon, Caparica, Lisbon, Portugal
| | - Patrícia Poeta
- LAQV-REQUIMTE, Faculty of Science and Technology, University Nova of Lisbon, Caparica, Lisbon, Portugal.,Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
| | - Ana Sofia Bagulho
- National Institute for Agrarian and Veterinarian Research, Elvas, Portugal
| | - Gilberto Igrejas
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal.,Functional Genomics and Proteomics Unity, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal.,LAQV-REQUIMTE, Faculty of Science and Technology, University Nova of Lisbon, Caparica, Lisbon, Portugal
| |
Collapse
|
5
|
Xiao X, Hu S, Lai X, Peng J, Lai W. Developmental trend of immunoassays for monitoring hazards in food samples: A review. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.02.045] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
6
|
Garcia-Calvo E, García-García A, Madrid R, Martin R, García T. From Polyclonal Sera to Recombinant Antibodies: A Review of Immunological Detection of Gluten in Foodstuff. Foods 2020; 10:foods10010066. [PMID: 33396828 PMCID: PMC7824297 DOI: 10.3390/foods10010066] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/23/2020] [Accepted: 12/24/2020] [Indexed: 12/31/2022] Open
Abstract
Gluten is the ethanol-soluble protein fraction of cereal endosperms like wheat, rye, and barley. It is widely used in the food industry because of the physical-chemical properties it gives to dough. Nevertheless, there are some gluten-related diseases that are presenting increasing prevalences, e.g., celiac disease, for which a strict gluten-free diet is the best treatment. Due to this situation, gluten labeling legislation has been developed in several countries around the world. This article reviews the gluten immune detection systems that have been applied to comply with such regulations. These systems have followed the development of antibody biotechnology, which comprise three major methodologies: polyclonal antibodies, monoclonal antibodies (mAbs) derived from hybridoma cells (some examples are 401.21, R5, G12, and α-20 antibodies), and the most recent methodology of recombinant antibodies. Initially, the main objective was the consecution of new high-affinity antibodies, resulting in low detection and quantification limits that are mainly achieved with the R5 mAb (the gold standard for gluten detection). Increasing knowledge about the causes of gluten-related diseases has increased the complexity of research in this field, with current efforts not only focusing on the development of more specific and sensitive systems for gluten but also the detection of protein motifs related to pathogenicity. New tools based on recombinant antibodies will provide adequate safety and traceability methodologies to meet the increasing market demand for gluten-free products.
Collapse
|
7
|
Sena-Torralba A, Pallás-Tamarit Y, Morais S, Maquieira Á. Recent advances and challenges in food-borne allergen detection. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.116050] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
8
|
Villemin C, Tranquet O, Solé-Jamault V, Smit JJ, Pieters RHH, Denery-Papini S, Bouchaud G. Deamidation and Enzymatic Hydrolysis of Gliadins Alter Their Processing by Dendritic Cells in Vitro. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:1447-1456. [PMID: 31815474 DOI: 10.1021/acs.jafc.9b06075] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Gliadins are major wheat allergens. Their treatment by acid or enzymatic hydrolysis has been shown to modify their allergenic potential. As the interaction of food proteins with dendritic cells (DCs) is a key event in allergic sensitization, we wished to investigate whether deamidation and enzymatic hydrolysis influence gliadin processing by DC and to examine the capacity of gliadins to activate DCs. We compared the uptake and degradation of native and modified gliadins by DCs using mouse bone marrow-derived DCs. We also analyzed the effects of these interactions on the phenotypes of DCs and T helper (Th) lymphocytes. Modifying gliadins induced a change in physicochemical properties (molecular weight, hydrophobicity, and sequence) and also in the peptide size. These alterations in turn led to increased uptake and intracellular degradation of the proteins by DCs. Native gliadins (NGs) (100 μg/mL), but not modified gliadins, increased the frequency of DC expressing CD80 (15.41 ± 2.36% vs 6.81 ± 1.10%, p < 0.001), CCR7 (28.53 ± 8.17% vs 17.88 ± 2.53%, p < 0.001), CXCR4 (70.14 ± 4.63% vs 42.82 ± 1.96%, p < 0.001), and CCR7-dependent migration (2.46 ± 1.45 vs 1.00 ± 0.22, p < 0.01) compared with NGs. This was accompanied by Th lymphocyte activation (30.37 ± 3.87% vs 21.53 ± 3.14%, p < 0.1) and proliferation (16.39 ± 3.97% vs 9.31 ± 2.80%, p > 0.1). Moreover, hydrolysis decreases the peptide size and induces an increase in gliadin uptake and degradation. Deamidation and extensive enzymatic hydrolysis of gliadins modify their interaction with DCs, leading to alteration of their immunostimulatory capacity. These findings demonstrate the strong relationship between the biochemical characteristics of proteins and immune cell interactions.
Collapse
Affiliation(s)
- Clélia Villemin
- INRA , UR1268 BIA, rue de la Géraudière , F-44316 Nantes , France
| | - Olivier Tranquet
- INRA , UR1268 BIA, rue de la Géraudière , F-44316 Nantes , France
| | | | - Joost J Smit
- IRAS, Immunotoxicology Group , Utrecht University , 3584 CM Utrecht , The Netherlands
| | - Raymond H H Pieters
- IRAS, Immunotoxicology Group , Utrecht University , 3584 CM Utrecht , The Netherlands
| | | | - Grégory Bouchaud
- INRA , UR1268 BIA, rue de la Géraudière , F-44316 Nantes , France
| |
Collapse
|
9
|
Tranquet O, Larré C, Denery-Papini S. Allergic reactions to hydrolysed wheat proteins: clinical aspects and molecular structures of the allergens involved. Crit Rev Food Sci Nutr 2018; 60:147-156. [PMID: 30463417 DOI: 10.1080/10408398.2018.1516622] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Wheat gluten can be chemically or enzymatically hydrolysed to produce functional ingredients useful in food and cosmetics. However severe allergies to hydrolysed wheat proteins (HWP) have been described in Europe and Japan since the early 2000's. Triggering proteins and IgE epitopes were described both for French and Japanese cohorts and appeared remarkably similar leading to define a new wheat allergic entity. Deamidation induced by functionalisation generate neo-allergens responsible for this particular allergy. This article aims to review the processes leading to deamidation and the clinical features of the patients suffering from this allergy. Then the molecular determinants involved in HWP-allergy were exhaustively described and hypothesis regarding the sensitizing mechanism of HWP-allergy are discussed. Finally, current regulation and tools aiming at managing this risk associated with HWP are presented.
Collapse
Affiliation(s)
- Olivier Tranquet
- UR1268 BIA - INRA (Institut National De La Recherche Agronomique), Nantes, France
| | - Colette Larré
- UR1268 BIA - INRA (Institut National De La Recherche Agronomique), Nantes, France
| | - Sandra Denery-Papini
- UR1268 BIA - INRA (Institut National De La Recherche Agronomique), Nantes, France
| |
Collapse
|
10
|
Delaunay J, Hacard F, Denery-Papini S, Garnier L, Bérard F, Nicolas JF, Nosbaum A. Occupational immediate contact allergy to hydrolysed wheat protein after cosmetic exposure. Contact Dermatitis 2018. [DOI: 10.1111/cod.12929] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Juliette Delaunay
- Allergy and Clinical Immunology Department; Lyon Sud University Hospital; 69495 Pierre Benite cedex France
- University of Lyon; 69361 Lyon cedex 07 France
| | - Florence Hacard
- Allergy and Clinical Immunology Department; Lyon Sud University Hospital; 69495 Pierre Benite cedex France
- University of Lyon; 69361 Lyon cedex 07 France
- CIRI (International Centre for Infectiology Research), INSERM U1111, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5308; 69007 Lyon France
| | - Sandra Denery-Papini
- UR1268 Biopolymers, Interactions, Assemblies, INRA; 44316 Nantes Cedex 03 France
| | - Lorna Garnier
- Immunology Department; Lyon Sud University Hospital; 69495 Pierre Benite cedex France
| | - Frédéric Bérard
- Allergy and Clinical Immunology Department; Lyon Sud University Hospital; 69495 Pierre Benite cedex France
- University of Lyon; 69361 Lyon cedex 07 France
- CIRI (International Centre for Infectiology Research), INSERM U1111, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5308; 69007 Lyon France
| | - Jean-François Nicolas
- Allergy and Clinical Immunology Department; Lyon Sud University Hospital; 69495 Pierre Benite cedex France
- University of Lyon; 69361 Lyon cedex 07 France
- CIRI (International Centre for Infectiology Research), INSERM U1111, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5308; 69007 Lyon France
| | - Audrey Nosbaum
- Allergy and Clinical Immunology Department; Lyon Sud University Hospital; 69495 Pierre Benite cedex France
- University of Lyon; 69361 Lyon cedex 07 France
- CIRI (International Centre for Infectiology Research), INSERM U1111, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5308; 69007 Lyon France
| |
Collapse
|
11
|
Tranquet O, Gaudin JC, Patil S, Steinbrecher J, Matsunaga K, Teshima R, Sakai S, Larré C, Denery-Papini S. A chimeric IgE that mimics IgE from patients allergic to acid-hydrolyzed wheat proteins is a novel tool for in vitro allergenicity assessment of functionalized glutens. PLoS One 2017; 12:e0187415. [PMID: 29117222 PMCID: PMC5678878 DOI: 10.1371/journal.pone.0187415] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 10/19/2017] [Indexed: 11/19/2022] Open
Abstract
Background Acid-hydrolyzed wheat proteins (acid-HWPs) have been shown to provoke severe allergic reactions in Europe and Japan that are distinct from classical wheat allergies. Acid-HWPs were shown to contain neo-epitopes induced by the deamidation of gluten proteins. However, products with variable rates of deamidation can be found. Objectives In this work, we studied the effect of the extent of wheat proteins deamidation on its allergenicity. A recombinant chimeric IgE was produced and compared to patients’ IgE for its capacity to assess the IgE-mediated triggering potential of acid-HWPs. Methods Sera from acid-HWP allergic patients were analyzed via ELISA and a functional basophil assay for their IgE reactivity to wheat proteins with different deamidation levels. A chimeric mouse/human IgE (chIgE-DG1) specific for the main neo-epitope, QPEEPFPE, involved in allergy to acid-HWPs was characterized with respect to its functionality and its reactivity compared to that of patients’ IgE. Results Acid-HWPs with medium (30%) and high (50–60%) deamidation levels displayed a markedly stronger IgE binding and capacity to activate basophils than those of samples with weak (15%) deamidation levels. The monoclonal chIgE-DG1 allowed basophil degranulation in the presence of deamidated wheat proteins. ChIgE-DG1 was found to mimic patients’ IgE reactivity and displayed the same ability to rank acid-HWP products in a degranulation assay. Conclusion Increasing the deamidation level of products from 15% to 60% resulted in an approximately 2-fold increase in their antigenicity and a 100-fold increase in their eliciting potential. The chimeric ChIgE-DG1 may be a useful tool to evaluate functionalized glutens for their allergenic potential. By mimicking patient sera reactivity, chIgE-DG1 also provided data on the patients' IgE repertoire and on the functionality of certain repeated epitopes in gluten proteins.
Collapse
Affiliation(s)
- Olivier Tranquet
- UR 1268 Biopolymers Interactions Assemblies, INRA, Nantes, France
- * E-mail:
| | | | - Sarita Patil
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Johanna Steinbrecher
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Kayoko Matsunaga
- Department of Integrative Medical Science for Allergic Disease, Fujita Health University School of Medicine, Toyoake, Japan
| | | | | | - Colette Larré
- UR 1268 Biopolymers Interactions Assemblies, INRA, Nantes, France
| | | |
Collapse
|
12
|
Masiri J, Benoit L, Katepalli M, Meshgi M, Cox D, Nadala C, Sung SL, Samadpour M. Novel Monoclonal Antibody-Based Immunodiagnostic Assay for Rapid Detection of Deamidated Gluten Residues. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:3678-3687. [PMID: 27087556 DOI: 10.1021/acs.jafc.5b06085] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Gluten derived from wheat and related Triticeae can induce gluten sensitivity as well as celiac disease. Consequently, gluten content in foods labeled "gluten-free" is regulated. Determination of potential contamination in such foods is achieved using immunoassays based on monoclonal antibodies (mAbs) that recognize specific epitopes present in gluten. However, food-processing measures can affect epitope recognition. In particular, preparation of wheat protein isolate through deamidation of glutamine residues significantly limits the ability of commercial gluten testing kits in their ability to recognize gluten. Adding to this concern, evidence suggests that deamidated gluten imparts more pathogenic potential in celiac disease than native gluten. To address the heightened need for antibody-based tools that can recognize deamidated gluten, we have generated a novel mAb, 2B9, and subsequently developed it as a rapid lateral flow immunoassay. Herein, we report the ability of the 2B9-based lateral flow device (LFD) to detect gluten from wheat, barley, and rye and deamidated gluten down to 2 ppm in food as well as its performance in food testing.
Collapse
Affiliation(s)
- Jongkit Masiri
- Molecular Epidemiology, Inc. (MEI) , 15300 Bothell Way N.E., Lake Forest Park, Washington 98155, United States
| | - Lora Benoit
- IEH Laboratories and Consulting Group, Inc. (IEH) , 15300 Bothell Way N.E., Lake Forest Park, Washington 98155, United States
| | - Madhu Katepalli
- Molecular Epidemiology, Inc. (MEI) , 15300 Bothell Way N.E., Lake Forest Park, Washington 98155, United States
| | - Mahzad Meshgi
- Molecular Epidemiology, Inc. (MEI) , 15300 Bothell Way N.E., Lake Forest Park, Washington 98155, United States
| | - David Cox
- Molecular Epidemiology, Inc. (MEI) , 15300 Bothell Way N.E., Lake Forest Park, Washington 98155, United States
| | - Cesar Nadala
- Molecular Epidemiology, Inc. (MEI) , 15300 Bothell Way N.E., Lake Forest Park, Washington 98155, United States
| | - Shao-Lei Sung
- Pi Bioscientific, Inc. (Pi Bio) , 8315 Lake City Way N.E., Seattle, Washington 98115, United States
| | - Mansour Samadpour
- Molecular Epidemiology, Inc. (MEI) , 15300 Bothell Way N.E., Lake Forest Park, Washington 98155, United States
- IEH Laboratories and Consulting Group, Inc. (IEH) , 15300 Bothell Way N.E., Lake Forest Park, Washington 98155, United States
| |
Collapse
|
13
|
Xi J, Yan H. Epitope mapping and identification of amino acids critical for mouse IgG-binding to linear epitopes on Gly m Bd 28K. Biosci Biotechnol Biochem 2016; 80:1973-9. [PMID: 27033966 DOI: 10.1080/09168451.2016.1165604] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Gly m Bd 28K is one of the major allergens in soybeans, but there is limited information on its IgG-binding epitopes. Thirty-four overlapping peptides that covered the entire sequence of Gly m Bd 28K were synthesized, and 3 monoclonal antibodies against Gly m Bd 28K were utilized to identify the IgG-binding regions of Gly m Bd 28K. Three dominant peptides corresponding to (28)GDKKSPKSLFLMSNS(42)(G28-S42), (56)LKSHGGRIFYRHMHI(70)(L56-I70), and (154)ETFQSFYIGGGANSH(168)(E154-H168) were recognized. L56-I70 is the most important epitope, and a competitive ELISA indicated that it could inhibit the binding of monoclonal antibody to Gly m Bd 28K protein. Alanine scanning of L56-I70 documented that F64, Y65, and R66 were the critical amino acids of this epitope. Two bioinformatics tools, ABCpred and BepiPred, were used to predict the epitopes of Gly m Bd 28K, and the predictions were compared with the epitopes that we had located by monoclonal antibodies.
Collapse
Affiliation(s)
- Jun Xi
- a College of Food Science and Technology , Henan University of Technology , Zhengzhou , People's Republic of China
| | - Huili Yan
- a College of Food Science and Technology , Henan University of Technology , Zhengzhou , People's Republic of China
| |
Collapse
|