1
|
Li J, Li L, Zhang L, Zhang X, Li X, Zhai S, Gao H, Li Y, Wu G, Wu Y. Development of a certified genomic DNA reference material for detection and quantification of genetically modified rice KMD. Anal Bioanal Chem 2020; 412:7007-7016. [PMID: 32740822 DOI: 10.1007/s00216-020-02834-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/09/2020] [Accepted: 07/20/2020] [Indexed: 10/23/2022]
Abstract
Qualitative and quantitative detection of genetically modified products is inseparable from the application of reference materials (RMs). In this study, a batch of genomic DNA (gDNA) certified reference materials (CRMs) was developed using genetically modified rice Kemingdao (KMD) homozygotes as the raw material. The gDNA CRMs in this batch showed good homogeneity; the minimum sample intake was determined to be 2 μL. The stability study showed that transportation by cold chain is preferable, no significant degradation trend was observed during a 12-month period when storing the gDNA CRMs at 4 °C and - 20 °C, and the number of freeze-thaw cycles cannot exceed 10. The property values of the copy number ratio of transgene and endogenous gene and the copy number concentration for gDNA CRMs were determined by a collaborative characterization of eight laboratories using the duplex KMD/PLD droplet digital PCR (ddPCR) assays. The uncertainty components of characterization, potential between-unit heterogeneity, and potential degradation during long-term storage were combined to estimate the expanded uncertainty of the certified value with a coverage factor k of 2.0. The certified value of copy number ratio for KMD gDNA CRM is 0.99 ± 0.05, and that of copy number concentration is (1.76 ± 0.10) × 105 copies/μL. Compared to the gDNA CRMs in availability, this batch of KMD gDNA CRMs is assigned accurate property values and can be directly used for qualitative and quantitative detection of GMOs as well as evaluation of the parameters of analytical methods with no need of further DNA concentration measurement. Graphical abstract.
Collapse
Affiliation(s)
- Jun Li
- Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, Hubei, China
| | - Liang Li
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Li Zhang
- School of Life Science, South-Central University for Nationalities, Wuhan, 430074, Hubei, China
| | - Xiujie Zhang
- Development Center of Science and Technology, Ministry of Agriculture and Rural Affairs P. R. China, Beijing, 100025, China.
| | - Xiaying Li
- Development Center of Science and Technology, Ministry of Agriculture and Rural Affairs P. R. China, Beijing, 100025, China
| | - Shanshan Zhai
- Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, Hubei, China
| | - Hongfei Gao
- Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, Hubei, China
| | - Yunjing Li
- Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, Hubei, China
| | - Gang Wu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, Hubei, China.
| | - Yuhua Wu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, Hubei, China.
| |
Collapse
|
2
|
Gao H, Wen L, Hua W, Tian J, Lin Y. Highly sensitive immunosensing platform for one-step detection of genetically modified crops. Sci Rep 2019; 9:16117. [PMID: 31695115 PMCID: PMC6834675 DOI: 10.1038/s41598-019-52651-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 10/10/2019] [Indexed: 12/18/2022] Open
Abstract
The wide cultivation of genetically modified (GM) insect-resistant crops has raised concerns on the risks to the eco-environment resulting from a release of Cry proteins. Therefore, it is vital to develop a method for the quantification of GM crops. Herein, A highly sensitive immunosensing platform has been developed for both colorimetric and chemiluminescent (CL) detection of Cry 1Ab using dual-functionalized gold nanoparticles (AuNPs) as signal amplification nanoprobes for the first time. In this work, anti-Cry 1Ab monoclonal antibody and horseradish peroxidase (HRP) are simultaneously functionalized on the surface of AuNPs with an exceptionally simple synthesis method. Combined with immunomagnetic separation, this immunosensing platform based on colorimetric method could detect Cry 1Ab in one step in a linear range from 1.0 to 40 ng mL−1 within 1.5 h, with a limit of detection of 0.50 ng mL−1. The sensitivity of fabricated nanoprobes was 15.3 times higher than that using commercial HRP-conjugated antibody. Meanwhile, the fabricated nanoprobes coupled with CL detection was successfully applied for Cry 1Ab detection with a minimum detection concentration of 0.050 ng mL−1 within a linear range of 0.10–20 ng mL−1. The proposed approach was validated with genuine GM crops, and the results showed a good correlation coefficient of 0.9906 compared to those of a commercial ELISA kit. Compared with ELISA, the developed immunosensing platform significantly simplified the assay procedure and shortened the analytical time, thus providing a new platform for the detection of genetically modified crops with high sensitivity, rapidity and simplicity.
Collapse
Affiliation(s)
- Hongfei Gao
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.,Key Laboratory of Oil Crop Biology of the Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Luke Wen
- Key Laboratory of Oil Crop Biology of the Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Wei Hua
- Key Laboratory of Oil Crop Biology of the Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Jing Tian
- MOE Key Laboratory of Environment Correlative Dietology, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Yongjun Lin
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
3
|
MacDonald C, Colombo S, Arts MT. Genetically Engineered Oil Seed Crops and Novel Terrestrial Nutrients: Ethical Considerations. SCIENCE AND ENGINEERING ETHICS 2019; 25:1485-1497. [PMID: 30465298 DOI: 10.1007/s11948-018-0074-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 10/21/2018] [Indexed: 06/09/2023]
Abstract
Genetically engineered (GE) organisms have been at the center of ethical debates among the public and regulators over their potential risks and benefits to the environment and society. Unlike the currently commercial GE crops that express resistance or tolerance to pesticides or herbicides, a new GE crop produces two bioactive nutrients (eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA)) that heretofore have largely been produced only in aquatic environments. This represents a novel category of risk to ecosystem functioning. The present paper describes why growing oilseed crops engineered to produce EPA and DHA means introducing into a terrestrial ecosystem a pair of highly bioactive nutrients that are novel to terrestrial ecosystems and why that may have ecological and physiological consequences. More importantly perhaps, this paper argues that discussion of this novel risk represents an opportunity to examine the way the debate over genetically modified crops is being conducted.
Collapse
Affiliation(s)
- Chris MacDonald
- Ted Rogers School of Management, Ryerson University, 575 Bay St., Toronto, ON, M5G 2C5, Canada.
| | - Stefanie Colombo
- Department Animal Science and Aquaculture, Faculty of Agriculture, Dalhousie University, 58 Sipu Road, Truro, NS, B2N5E3, Canada
| | - Michael T Arts
- Department of Chemistry and Biology, Ryerson University, 350 Victoria St., Toronto, ON, M5B 2K3, Canada
| |
Collapse
|
4
|
Wu Y, Li J, Li X, Zhai S, Gao H, Li Y, Zhang X, Wu G. Development and strategy of reference materials for the DNA-based detection of genetically modified organisms. Anal Bioanal Chem 2019; 411:1729-1744. [DOI: 10.1007/s00216-019-01576-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 12/21/2018] [Accepted: 01/03/2019] [Indexed: 12/11/2022]
|
5
|
Jacchia S, Kagkli DM, Lievens A, Angers-Loustau A, Savini C, Emons H, Mazzara M. Identification of single target taxon-specific reference assays for the most commonly genetically transformed crops using digital droplet PCR. Food Control 2018; 93:191-200. [PMID: 30393444 PMCID: PMC6058085 DOI: 10.1016/j.foodcont.2018.06.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 06/01/2018] [Accepted: 06/07/2018] [Indexed: 11/24/2022]
Abstract
Knowledge of the number of DNA sequences targeted by the taxon-specific reference assays is essential for correct GM quantification and is key to the harmonisation of measurement results. In the present study droplet digital PCR (ddPCR) was used to determine the number of DNA target copies of taxon-specific assays validated for real-time PCR for the four main genetically modified (GM) crops. The transferability of experimental conditions from real-time PCR to ddPCR was also explored, as well as the effect of DNA digestion. The results of this study indicate that for each crop at least one taxon-specific assay can be identified as having a single DNA target. A short list of taxon-specific reference assays is proposed as best candidates for the relative quantification of GM events for soybean, maize, cotton and oilseed rape. The investigated assays could be in most cases transferred to ddPCR without further optimisation. The use of DNA digestion did not improve ddPCR characteristics such as rain and resolution at the conditions tested.
Collapse
Affiliation(s)
- Sara Jacchia
- European Commission, Joint Research Centre (JRC), via E. Fermi 2749, 21027 Ispra, Italy
| | - Dafni-Maria Kagkli
- European Commission, Joint Research Centre (JRC), via E. Fermi 2749, 21027 Ispra, Italy
| | - Antoon Lievens
- European Commission, Joint Research Centre (JRC), Retieseweg 111, 2440 Geel, Belgium
| | | | - Christian Savini
- European Commission, Joint Research Centre (JRC), via E. Fermi 2749, 21027 Ispra, Italy
| | - Hendrik Emons
- European Commission, Joint Research Centre (JRC), Retieseweg 111, 2440 Geel, Belgium
| | - Marco Mazzara
- European Commission, Joint Research Centre (JRC), via E. Fermi 2749, 21027 Ispra, Italy
| |
Collapse
|
6
|
Yang L, Yang Y, Jin W, Zhang X, Li X, Wu Y, Li J, Li L. Development and Interlaboratories Validation of Event-Specific Quantitative Real-Time PCR Method for Genetically Modified Rice G6H1 Event. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:8179-8186. [PMID: 29985602 DOI: 10.1021/acs.jafc.8b01519] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The transgenic rice G6H1 was a new event with the traits of herbicide-tolerance and insect-resistant. Herein, we developed one event-specific real-time PCR method with high specificity and sensitivity for G6H1 event quantitative analysis, and validated its performance on practical samples quantification through a collaborative ring trial. A total of eight laboratories participated in this validation and quantified three blind G6H1 powder samples including DNA extraction and real-time PCR analysis. The statistically analyzed results from returned data confirmed its high PCR efficiency and good linearity, trueness, and precision, indicating that the developed G6H1 real-time PCR assay was accurate, reliable, and comparable for G6H1 identification and quantification.
Collapse
Affiliation(s)
- Litao Yang
- National Center for the Molecular Characterization of Genetically Modified Organisms, School of Life Sciences and Biotechnology , Shanghai Jiao Tong University , Shanghai 200240 , China
| | - Yu Yang
- National Center for the Molecular Characterization of Genetically Modified Organisms, School of Life Sciences and Biotechnology , Shanghai Jiao Tong University , Shanghai 200240 , China
| | - Wujun Jin
- Biotechnology Research Institute , Chinese Academy of Agricultural Sciences , Beijing 100081 , China
| | - Xiujie Zhang
- Development Center of Science and Technology , Ministry of Agriculture of People's Republic of China , Beijing 100025 , China
| | - Xiaying Li
- Development Center of Science and Technology , Ministry of Agriculture of People's Republic of China , Beijing 100025 , China
| | - Yuhua Wu
- Key Laboratory of Oil Crop Biology of the Ministry of Agriculture, Oil Crops Research Institute , Chinese Academy of Agricultural Sciences , No. 2 Xudong Second Road , Wuhan 430062 , People's Republic of China
| | - Jun Li
- Key Laboratory of Oil Crop Biology of the Ministry of Agriculture, Oil Crops Research Institute , Chinese Academy of Agricultural Sciences , No. 2 Xudong Second Road , Wuhan 430062 , People's Republic of China
| | - Liang Li
- Biotechnology Research Institute , Chinese Academy of Agricultural Sciences , Beijing 100081 , China
| |
Collapse
|
7
|
Gao H, Wen L, Wu Y, Yan X, Li J, Li X, Fu Z, Wu G. Sensitive and Facile Electrochemiluminescent Immunoassay for Detecting Genetically Modified Rapeseed Based on Novel Carbon Nanoparticles. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:5247-5253. [PMID: 29719152 DOI: 10.1021/acs.jafc.8b01080] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
A highly sensitive electrochemiluminescent (ECL) immunoassay targeting PAT/ bar protein was facilely developed for genetically modified (GM) rapeseed detection using carbon nanoparticles (CNPs) originally prepared from printer toner. In this work, CNPs linked with antibody for PAT/ bar protein were used to modify a working electrode. After an immunoreaction between the PAT/ bar protein and its antibody, the immunocomplex formed on the electrode receptor region resulted in an inhibition of electron transfer between the electrode surface and the ECL substance, thus led to a decrease of ECL response. Under the optimal conditions, the ECL responses linearly decreased as the increase of the PAT/ bar protein concentration and the GM rapeseed RF3 content in the ranges of 0.10-10 ng/mL and 0.050-1.0%, with the limits of detection of 0.050 ng/mL and 0.020% (S/N = 3). These results open a facile, sensitive, and rapid approach for the safety control of agricultural GM rape.
Collapse
Affiliation(s)
- Hongfei Gao
- Key Laboratory of Oil Crop Biology of the Ministry of Agriculture , Oil Crops Research Institute, Chinese Academy of Agricultural Sciences , Wuhan 430062 , China
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan) , Huazhong Agricultural University , Wuhan 430070 , China
| | - Luke Wen
- Key Laboratory of Oil Crop Biology of the Ministry of Agriculture , Oil Crops Research Institute, Chinese Academy of Agricultural Sciences , Wuhan 430062 , China
| | - Yuhua Wu
- Key Laboratory of Oil Crop Biology of the Ministry of Agriculture , Oil Crops Research Institute, Chinese Academy of Agricultural Sciences , Wuhan 430062 , China
| | - Xiaohong Yan
- Key Laboratory of Oil Crop Biology of the Ministry of Agriculture , Oil Crops Research Institute, Chinese Academy of Agricultural Sciences , Wuhan 430062 , China
| | - Jun Li
- Key Laboratory of Oil Crop Biology of the Ministry of Agriculture , Oil Crops Research Institute, Chinese Academy of Agricultural Sciences , Wuhan 430062 , China
| | - Xiaofei Li
- Key Laboratory of Oil Crop Biology of the Ministry of Agriculture , Oil Crops Research Institute, Chinese Academy of Agricultural Sciences , Wuhan 430062 , China
| | - Zhifeng Fu
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry of the Ministry of Education, College of Pharmaceutical Sciences , Southwest University , Chongqing 400716 , China
| | - Gang Wu
- Key Laboratory of Oil Crop Biology of the Ministry of Agriculture , Oil Crops Research Institute, Chinese Academy of Agricultural Sciences , Wuhan 430062 , China
| |
Collapse
|
8
|
Fraiture MA, Roosens NH, Taverniers I, De Loose M, Deforce D, Herman P. Biotech rice: Current developments and future detection challenges in food and feed chain. Trends Food Sci Technol 2016. [DOI: 10.1016/j.tifs.2016.03.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
9
|
Development of event-specific qualitative and quantitative PCR detection methods for the transgenic maize BVLA430101. Eur Food Res Technol 2016. [DOI: 10.1007/s00217-015-2631-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|