1
|
Shen M, Yuan L, Zhang J, Wang X, Zhang M, Li H, Jing Y, Zeng F, Xie J. Phytosterols: Physiological Functions and Potential Application. Foods 2024; 13:1754. [PMID: 38890982 PMCID: PMC11171835 DOI: 10.3390/foods13111754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/13/2024] [Accepted: 05/28/2024] [Indexed: 06/20/2024] Open
Abstract
Dietary intake of natural substances to regulate physiological functions is currently regarded as a potential way of promoting health. As one of the recommended dietary ingredients, phytosterols that are natural bioactive compounds distributed in plants have received increasing attention for their health effects. Phytosterols have attracted great attention from scientists because of many physiological functions, for example, cholesterol-lowering, anticancer, anti-inflammatory, and immunomodulatory effects. In addition, the physiological functions of phytosterols, the purification, structure analysis, synthesis, and food application of phytosterols have been widely studied. Nowadays, many bioactivities of phytosterols have been assessed in vivo and in vitro. However, the mechanisms of their pharmacological activities are not yet fully understood, and in-depth investigation of the relationship between structure and function is crucial. Therefore, a contemporaneous overview of the extraction, beneficial properties, and the mechanisms, as well as the current states of phytosterol application, in the food field of phytosterols is provided in this review.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Jianhua Xie
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China; (M.S.); (L.Y.); (J.Z.); (X.W.); (M.Z.); (H.L.); (Y.J.); (F.Z.)
| |
Collapse
|
2
|
Chen Y, Zhang N, Chen X. Structurally Modified Polysaccharides: Physicochemical Properties, Biological Activities, Structure-Activity Relationship, and Applications. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:3259-3276. [PMID: 38308635 DOI: 10.1021/acs.jafc.3c06433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2024]
Abstract
Polysaccharides are an important class of biomolecules derived from several sources. However, the inherent structure of polysaccharides prevents them from exhibiting favorable physicochemical properties, which restricts their development in agriculture, industry, food, and biomedicine. This paper systematically summarizes the changes in the primary and advanced structures of modified polysaccharides, and focuses on the effects of various modification methods on the hydrophobicity, rheological properties, emulsifying properties, antioxidant activity, hypoglycemic, and hypolipidemic activities of polysaccharides. Then there is a list the applications of modified polysaccharides in treating heavy metal pollutants, purifying water resources, improving beverage stability and bread quality, and precisely delivering the drug. When summarized and reviewed, the information above can shed further light on the relationship between polysaccharide structure and function. Determining the structure-activity relationship provides a scientific basis for the direction of molecular modifications of polysaccharides.
Collapse
Affiliation(s)
- Yue Chen
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, China
| | - Na Zhang
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, China
| | - Xiaoqiang Chen
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, China
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| |
Collapse
|
3
|
Maldonado-Pereira L, Barnaba C, Medina-Meza IG. Oxidative Status of Ultra-Processed Foods in the Western Diet. Nutrients 2023; 15:4873. [PMID: 38068731 PMCID: PMC10708126 DOI: 10.3390/nu15234873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/16/2023] [Accepted: 11/17/2023] [Indexed: 12/18/2023] Open
Abstract
Ultra-processed foods (UPFs) have gained substantial attention in the scientific community due to their surging consumption and potential health repercussions. In addition to their well-established poor nutritional profile, UPFs have been implicated in containing various dietary oxidized sterols (DOxSs). These DOxSs are associated with a spectrum of chronic diseases, including cardiometabolic conditions, cancer, diabetes, Parkinson's, and Alzheimer's disease. In this study, we present a comprehensive database documenting the presence of DOxSs and other dietary metabolites in >60 UPFs commonly consumed as part of the Western diet. Significant differences were found in DOxS and phytosterol content between ready-to-eat (RTE) and fast foods (FFs). Biomarker analysis revealed that DOxS accumulation, particularly 25-OH and triol, can potentially discriminate between RTEs and FFs. This work underscores the potential utility of dietary biomarkers in early disease detection and prevention. However, an essential next step is conducting exposure assessments to better comprehend the levels of DOxS exposure and their association with chronic diseases.
Collapse
Affiliation(s)
- Lisaura Maldonado-Pereira
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI 48824, USA;
- Department of Biosystems and Agricultural Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Carlo Barnaba
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS 66047, USA
| | - Ilce Gabriela Medina-Meza
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI 48824, USA;
- Department of Biosystems and Agricultural Engineering, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
4
|
Wang M, Yu M, Amrouche AT, Jie F, Ji S, Lu B. Human intestinal Caco-2 cell model to evaluate the absorption of 7-ketophytosterols and their effects on cholesterol transport. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2023.02.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
5
|
Chemical conversions of free phytosterols during the bleaching of corn oil. Food Chem 2023; 412:135512. [PMID: 36731234 DOI: 10.1016/j.foodchem.2023.135512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 01/07/2023] [Accepted: 01/16/2023] [Indexed: 01/19/2023]
Abstract
Phytosterols have health benefits; however, they are partially removed during the bleaching of corn oil. We evaluated the chemical conversion of free phytosterols (FPs) during bleaching. FP degradation accelerated with increased time and temperature, following a first-order kinetic model. In the n-heptane system, air and activated clay promoted the chemical conversion of the FPs. Sterenes formation was analysed under different conditions using a zero-order kinetic model. The apparent activation energies revealed sterene formation decreasing in the following order: campesta-3,5-diene ≈ stigmasta-3,5,22-triene > stigmasta-3,5-diene. Isomers of the above were not detected, indicating that these sterenes were the only primary products of FPs. The desorption test indicated that the FP loss from corn oil was not only due to FPs being adsorbed the activated clay, but also FPs adsorbed at acidic activated sites being degraded. This study presents a vital scientific foundation for retaining FPs to develop healthier and more nutritious oils.
Collapse
|
6
|
Song F, Chen J, Zheng A, Tian S. Effect of sterols on liposomes: Membrane characteristics and physicochemical changes during storage. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
7
|
Poudel A, Gachumi G, Purves R, Badea I, El-Aneed A. Determination of phytosterol oxidation products in pharmaceutical liposomal formulations and plant vegetable oil extracts using novel fast liquid chromatography - Tandem mass spectrometric methods. Anal Chim Acta 2022; 1194:339404. [PMID: 35063161 DOI: 10.1016/j.aca.2021.339404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 12/10/2021] [Accepted: 12/23/2021] [Indexed: 11/26/2022]
Abstract
Phytosterol oxidation products (POPs) formed by the auto-oxidation of phytosterols can lead to negative health consequences. New liquid chromatography-tandem mass spectrometry (LC-MS/MS) quantitative and qualitative approaches were developed. For quantification, sixteen phytosterol oxidation products (POPs) in liposomal formulations; namely 7-keto, 7-hydroxy, 5,6-epoxy, and 5,6-dihydroxy derivatives of brassicasterol, campesterol, stigmasterol, and β-sitosterol were quantified. The method has a short run time of 5 min, achieved on a poroshell C18 column, using isocratic elution. To the best of our knowledge, this is the shortest run time among reported methods for the quantitative analysis of POPs. Atmospheric pressure chemical ionization (APCI) was used, and the mobile phase was composed of acetonitrile/methanol (99:1 v/v). The quantitative method was validated as per the FDA guidelines for linearity, accuracy, precision, selectivity, sensitivity, matrix effect, dilution integrity, and stability. The method was applied for the quantification of POPs in liposomal phytosterol formulations prepared with and without tocopherols, as antioxidants. The formulation process had little impact on the formation of POPs as only 7-ketobrassicasterol was quantified in tested samples. The quantified value of POPs in liposomal samples was insignificant to impart any toxicological effects. Other degradation products such as 7-hydroxy, 5,6-epoxy and 5,6-dihydroxy derivatives of brassicasterol, campesterol and β-sitosterol were below the lower limit of quantification. Phytosterol-containing formulations were then assessed for their oxidative stability after microwave exposure for 5 min. The incorporation of tocopherols significantly increased the stability of phytosterols in the liposomal formulations. Finally, LC-MS/MS qualitative identification of phytosterols obtained from extra virgin olive oil was performed. New POPs, namely 7-ketoavenasterol, and 7-ketomethylenecycloartenol were putatively identified, illustrating the applicability of the method to identify POPs with varying structures present in various phytosterol sources. In fact, it is the first time that 7-ketomethylenecycloartenol is reported as a POP.
Collapse
Affiliation(s)
- Asmita Poudel
- Drug Discovery and Development Research Group, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| | - George Gachumi
- Drug Discovery and Development Research Group, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| | - Randy Purves
- Drug Discovery and Development Research Group, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada; Canadian Food Inspection Agency, Saskatoon, SK, Canada
| | - Ildiko Badea
- Drug Discovery and Development Research Group, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| | - Anas El-Aneed
- Drug Discovery and Development Research Group, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada.
| |
Collapse
|
8
|
Yu X, Nie C, Zhao P, Zhang H, Qin X, Deng Q, Huang F, Zhu Y, Geng F. Influences of microwave exposure to flaxseed on the physicochemical stability of oil bodies: Implication of interface remodeling. Food Chem 2022; 368:130802. [PMID: 34411866 DOI: 10.1016/j.foodchem.2021.130802] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/04/2021] [Accepted: 08/04/2021] [Indexed: 01/04/2023]
Abstract
This study aimed to investigate the influences of microwave (MV) exposure to flaxseed on the physicochemical stability of oil bodies (OBs) focused on the interface remodeling. The results showed that the intracellular OBs subjected to absolute rupture and then partial dispersion by protein bodies visualized by TEM following MV exposure (1-5 min; 700 W). After aqueous extraction, native flax OBs manifested excellent spherical particles with completely intact surface and wide particle size distribution (0.5-3.0 μm) examined by cryo-SEM. Upon 1-5 min of MV exposure, the defective interface integrity and beaded morphology were successively observed for flax OBs, accompanied by the impaired physical stability and rheological behavior due to the newly assembled phospholipid/protein interface. Notably, the profitable migration of phenolic compounds effectively suppressed the lipid peroxidation and protein carbonylation in flax OBs. Thus, MV exposure (1-5 min; 700 W) was unfavorable for improving the physical stability of flax OBs.
Collapse
Affiliation(s)
- Xiao Yu
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Collaborative Innovation Center for Food Production and Safety, Zhengzhou, Henan Province 450002, China
| | - Chengzhen Nie
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Collaborative Innovation Center for Food Production and Safety, Zhengzhou, Henan Province 450002, China
| | - Peng Zhao
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Collaborative Innovation Center for Food Production and Safety, Zhengzhou, Henan Province 450002, China
| | - Haicheng Zhang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Collaborative Innovation Center for Food Production and Safety, Zhengzhou, Henan Province 450002, China
| | - Xiaopeng Qin
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Collaborative Innovation Center for Food Production and Safety, Zhengzhou, Henan Province 450002, China
| | - Qianchun Deng
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Hubei Key Laboratory of Lipid Chemistry and Nutrition, and Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Wuhan 430062, China.
| | - Fenghong Huang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Hubei Key Laboratory of Lipid Chemistry and Nutrition, and Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Wuhan 430062, China
| | - Yingying Zhu
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Collaborative Innovation Center for Food Production and Safety, Zhengzhou, Henan Province 450002, China
| | - Fang Geng
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| |
Collapse
|
9
|
Kodahl N. Sacha inchi (Plukenetia volubilis L.)-from lost crop of the Incas to part of the solution to global challenges? PLANTA 2020; 251:80. [PMID: 32185506 DOI: 10.1007/s00425-020-03377-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 03/11/2020] [Indexed: 05/19/2023]
Abstract
The underutilized, oleaginous crop Plukenetia volubilis L. has a remarkable lipid composition and a large potential for further domestication, alleviation of malnutrition, and integration into sustainable food production systems. Current global challenges include climate change, increasing population size, lack of food security, malnutrition, and degradation of arable lands. In this context, a reformation of our food production systems is imperative. Underutilized crops, or orphan crops, can provide valuable traits for this purpose, e.g., climate change resilience, nutritional benefits, cultivability on marginal lands, and improvement of income opportunities for smallholders. Plukenetia volubilis L. (Euphorbiaceae)-sacha inchi-is a 'lost crop' of the Incas native to the Amazon basin. Its oleaginous seeds are large, with a high content of ω-3, and -6 fatty acids (ca. 50.5, and 34.1%, of the lipid fraction, respectively), protein, and antioxidants. Culinarily, the seeds are nut-like and the crop has been associated with humans since Incan times. Research has particularly been undertaken in seed biochemistry, and to some extent in phylogeny, genetics, and cultivation ecology, but attention has been unevenly distributed, causing knowledge gaps in areas such as ethnobotany, allergenicity, and sustainable cultivation practices. Recently, seed size evolution and molecular drivers of the fatty acid synthesis and composition have been studied, however, further research into the lipid biosynthesis is desirable. Targeted breeding has not been undertaken but might be especially relevant for yield, sensory qualities, and cultivation with low environmental impact. Similarly, studies of integration into sustainable management systems are of highest importance. Here, present knowledge on P. volubilis is reviewed and a general framework for conducting research on underutilized crops with the aim of integration into sustainable food production systems is presented.
Collapse
Affiliation(s)
- Nete Kodahl
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark.
| |
Collapse
|
10
|
Current status of emerging food processing technologies in Latin America: Novel thermal processing. INNOV FOOD SCI EMERG 2018. [DOI: 10.1016/j.ifset.2018.06.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
11
|
Structure–activity relationships between sterols and their thermal stability in oil matrix. Food Chem 2018; 258:387-392. [DOI: 10.1016/j.foodchem.2018.03.086] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 03/17/2018] [Accepted: 03/20/2018] [Indexed: 02/02/2023]
|
12
|
Rękas A, Wroniak M. Oxidation kinetics of rapeseed oil pressed from microwave pre-treated seeds during long-term storage. J FOOD PROCESS PRES 2018. [DOI: 10.1111/jfpp.13630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Agnieszka Rękas
- Department of Food Technology, Faculty of Food Sciences; Warsaw University of Life Sciences, Nowoursynowska St. 159c; 02-787 Warsaw Poland
| | - Małgorzata Wroniak
- Department of Food Technology, Faculty of Food Sciences; Warsaw University of Life Sciences, Nowoursynowska St. 159c; 02-787 Warsaw Poland
| |
Collapse
|
13
|
Jiang H, Liu Z, Wang S. Microwave processing: Effects and impacts on food components. Crit Rev Food Sci Nutr 2017; 58:2476-2489. [PMID: 28613917 DOI: 10.1080/10408398.2017.1319322] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
As an efficient heating method, microwave processing has attracted attention both in academic research and industry. However, the mechanism of dielectric heating is quite distinct from that of the traditional conduction heating, and is widely applied as polar molecules and charged ions interaction with the alternative electromagnetic fields, resulting in fast and volumetric heating through their friction losses. Such a heating pattern would cause a certain change in microwave treatment, which is an unarguable reality. In this review, we made a retrospect of the essential knowledge about dielectric properties and summarized the concept of microwave heating, and the impact of microwave application on the main components of foods and agricultural products, which are classified as carbohydrates, lipids, proteins, chromatic/flavor substances, and vitamins. Finally, we offered a way to resolve the drawbacks of relevant microwave treatment and outlined the directions for future research.
Collapse
Affiliation(s)
- Hao Jiang
- a College of Food Science and Engineering , Northwest A&F University , Yangling , Shaanxi , China
| | - Zhigang Liu
- a College of Food Science and Engineering , Northwest A&F University , Yangling , Shaanxi , China
| | - Shaojin Wang
- b College of Mechanical and Electronic Engineering , Northwest A&F University , Yangling , Shaanxi , China.,c Department of Biological Systems Engineering , Washington State University , Pullman , WA , USA
| |
Collapse
|
14
|
Souza HAL, Mariutti LRB, Bragagnolo N. Microwave assisted direct saponification for the simultaneous determination of cholesterol and cholesterol oxides in shrimp. J Steroid Biochem Mol Biol 2017; 169:88-95. [PMID: 27013019 DOI: 10.1016/j.jsbmb.2016.03.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 03/18/2016] [Accepted: 03/20/2016] [Indexed: 11/21/2022]
Abstract
A novel microwave-assisted direct saponification method for the simultaneous determination of cholesterol and cholesterol oxides in shrimp was developed and validated. Optimal saponification conditions, determined by means of an experimental design, were achieved using 500mg of sample and 20mL of 1mol/L KOH ethanol solution for 16min at 45°C at maximum power at 200W and magnetic stirring at 120rpm. Higher extraction of cholesterol oxides in a reduced saponification time (∼75 times) was achieved in comparison with the direct cold saponification method. The new method showed low detection (≤0.57μg/mL) and quantification (≤1.73μg/mL) limits, good repeatability (≤10.50% intraday and ≤8.56% interday) and low artifact formation (evaluated by using a deuterated cholesterol-D6 standard). Raw, salted and dried-salted shrimps were successfully analyzed by the validated method. The content of cholesterol oxides increased after salting and decreased after drying.
Collapse
Affiliation(s)
- Hugo A L Souza
- Department of Food Science, Faculty of Food Engineering, University of Campinas, 13083-862 São Paulo, Brazil
| | - Lilian R B Mariutti
- Department of Food Science, Faculty of Food Engineering, University of Campinas, 13083-862 São Paulo, Brazil
| | - Neura Bragagnolo
- Department of Food Science, Faculty of Food Engineering, University of Campinas, 13083-862 São Paulo, Brazil.
| |
Collapse
|
15
|
Leal-Castañeda EJ, Hernández-Becerra JA, Rodríguez-Estrada MT, García HS. Formation of cholesterol oxides in lipid medium during microwave heating. EUR J LIPID SCI TECH 2016. [DOI: 10.1002/ejlt.201500597] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Everth J. Leal-Castañeda
- Unidad de Investigación y Desarrollo de Alimentos; Instituto Tecnológico de Veracruz; Veracruz México
| | | | | | - Hugo S. García
- Unidad de Investigación y Desarrollo de Alimentos; Instituto Tecnológico de Veracruz; Veracruz México
| |
Collapse
|
16
|
Lu B, Hu Y, Huang W, Wang M, Jiang Y, Lou T. Effect of Transition Metal Ions on the B Ring Oxidation of Sterols and their Kinetics in Oil-in-Water Emulsions. Sci Rep 2016; 6:27240. [PMID: 27328709 PMCID: PMC4916447 DOI: 10.1038/srep27240] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 05/16/2016] [Indexed: 01/25/2023] Open
Abstract
This study investigated the effect of metal ions on the oxidation of sterols and their kinetics in oil-in-water emulsions. Sterol substrates were added with different metal ions (Cu(2+), Fe(2+), Mn(2+), Zn(2+), Na(+), and Mg(2+)) of five concentrations and investigated after 2 h of heating at 90 °C. The substrates added with Fe(2+) and Cu(2+) were heated continuously to evaluate the kinetics of four sterols and their corresponding sterol oxidation products (SOPs). Sterol oxidation increased as the metal ion concentration increased and the heating time was prolonged. The capability of the metal ions oxidizing sterols ranked as followed: Fe(2+) > Cu(2+) > Mn(2+) > Zn(2+) > Mg(2+) ≈ Na(+). 7-Ketosterol, 7β/7α-Hydroxysterol, 5β,6β/5α,6α-Epoxysterol, and Triols were the main oxides on the B ring, whereas 6β-Hydroxysterol was not or only slightly influenced. The acceleration of sterol degradation induced by Fe(2+) and Cu(2+), as well as the formation of oxidation products, followed first-order formation/elimination kinetics. The acceleration effect may be partly ascribed to the increase in elimination rate constant and formation rate constant. Transition metal ions can significantly induce sterol oxidation, which reduces food nutritional quality and triggers the formation of undesirable compounds, such as SOPs.
Collapse
Affiliation(s)
- Baiyi Lu
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang R&D Center for Food Technology and Equipment, Key Laboratory for Agro-Food Risk Assessment of Minstry of Agriculture, Zhejiang University, Hangzhou, 310058, China
| | - Yinzhou Hu
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang R&D Center for Food Technology and Equipment, Key Laboratory for Agro-Food Risk Assessment of Minstry of Agriculture, Zhejiang University, Hangzhou, 310058, China
| | - Weisu Huang
- Zhejiang Economic & Trade Polytechnic, Department of Applied Technology, Hangzhou 310018, China
| | - Mengmeng Wang
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang R&D Center for Food Technology and Equipment, Key Laboratory for Agro-Food Risk Assessment of Minstry of Agriculture, Zhejiang University, Hangzhou, 310058, China
| | - Yuan Jiang
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang R&D Center for Food Technology and Equipment, Key Laboratory for Agro-Food Risk Assessment of Minstry of Agriculture, Zhejiang University, Hangzhou, 310058, China
| | - Tiantian Lou
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang R&D Center for Food Technology and Equipment, Key Laboratory for Agro-Food Risk Assessment of Minstry of Agriculture, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
17
|
Scholz B, Menzel N, Lander V, Engel KH. Heating Two Types of Enriched Margarine: Complementary Analysis of Phytosteryl/Phytostanyl Fatty Acid Esters and Phytosterol/Phytostanol Oxidation Products. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:2699-2708. [PMID: 26996218 DOI: 10.1021/acs.jafc.6b00617] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Two phytosteryl and/or phytostanyl fatty acid ester-enriched margarines were subjected to common heating procedures. UHPLC-APCI-MS analysis resulted for the first time in comprehensive quantitative data on the decreases of individual phytosteryl/-stanyl fatty acid esters upon heating of enriched foods. These data were complemented by determining the concurrently formed phytosterol/-stanol oxidation products (POPs) via online LC-GC. Microwave-heating led to the least decreases of esters of approximately 5% in both margarines. Oven-heating of the margarine in a casserole caused the greatest decreases, with 68 and 86% esters remaining, respectively; the impact on individual esters was more pronounced with increasing degree of unsaturation of the esterified fatty acids. In the phytosteryl/-stanyl ester-enriched margarine, approximately 20% of the ester losses could be explained by the formation of POPs; in the phytostanyl ester-enriched margarine, the POPs accounted for <1% of the observed ester decreases.
Collapse
Affiliation(s)
- Birgit Scholz
- Lehrstuhl für Allgemeine Lebensmitteltechnologie, Technische Universität München , Maximus-von-Imhof-Forum 2, D-85354 Freising, Germany
| | - Nicole Menzel
- Lehrstuhl für Allgemeine Lebensmitteltechnologie, Technische Universität München , Maximus-von-Imhof-Forum 2, D-85354 Freising, Germany
| | - Vera Lander
- Bayerisches Landesamt für Gesundheit und Lebensmittelsicherheit , Veterinärstrasse 2, D-85764 Oberschleissheim, Germany
| | - Karl-Heinz Engel
- Lehrstuhl für Allgemeine Lebensmitteltechnologie, Technische Universität München , Maximus-von-Imhof-Forum 2, D-85354 Freising, Germany
| |
Collapse
|
18
|
Lin Y, Knol D, Menéndez-Carreño M, Blom WAM, Matthee J, Janssen HG, Trautwein EA. Formation of Plant Sterol Oxidation Products in Foods during Baking and Cooking Using Margarine without and with Added Plant Sterol Esters. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:653-662. [PMID: 26697919 DOI: 10.1021/acs.jafc.5b04952] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Plant sterols (PS) in foods are subject to thermal oxidation to form PS oxidation products (POP). This study measured POP contents of 19 foods prepared by typical household baking and cooking methods using margarines without (control) and with 7.5% added PS (as 12.5% PS-esters, PS-margarine). Median POP contents per portion size of cooked foods were 0.57 mg (range 0.05-1.11 mg) with control margarine versus 1.42 mg (range 0.08-20.5 mg) with PS-margarine. The oxidation rate of PS (ORP) was 0.50% (median) with the PS-margarine and 3.66% with the control margarine. Using the PS-margarine, microwave-cooked codfish had the lowest POP content, with 0.08 mg per portion, while shallow-fried potatoes had the highest POP content, 20.5 mg per portion. Median POP contents in cookies, muffins, banana bread, and sponge cake baked with the control or PS-margarine were 0.12 mg (range 0.11-0.21 mg) and 0.24 mg (range 0.19-0.60 mg) per portion, with a corresponding ORP of 1.38% and 0.06%, respectively. POP contents in all the cooked and baked foods did not exceed 20.5 mg per typical portion size. A wide variation in the distribution of individual POP among different foods existed, with 7-keto-PS and 5,6-epoxy-PS being the major oxidation products.
Collapse
Affiliation(s)
- Yuguang Lin
- Nutrition and Health, Unilever Research & Development , 3133 AT Vlaardingen, The Netherlands
| | - Diny Knol
- Nutrition and Health, Unilever Research & Development , 3133 AT Vlaardingen, The Netherlands
| | - María Menéndez-Carreño
- Nutrition and Health, Unilever Research & Development , 3133 AT Vlaardingen, The Netherlands
| | - Wendy A M Blom
- Nutrition and Health, Unilever Research & Development , 3133 AT Vlaardingen, The Netherlands
| | - Joep Matthee
- Nutrition and Health, Unilever Research & Development , 3133 AT Vlaardingen, The Netherlands
| | - Hans-Gerd Janssen
- Nutrition and Health, Unilever Research & Development , 3133 AT Vlaardingen, The Netherlands
- Analytical-Chemistry Group, van't Hoff Institute for Molecular Sciences, University of Amsterdam , 1090 GE Amsterdam, The Netherlands
| | - Elke A Trautwein
- Nutrition and Health, Unilever Research & Development , 3133 AT Vlaardingen, The Netherlands
| |
Collapse
|