1
|
Singh I, Kumar S, Singh S, Wani MY. Overcoming resistance: Chitosan-modified liposomes as targeted drug carriers in the fight against multidrug resistant bacteria-a review. Int J Biol Macromol 2024; 278:135022. [PMID: 39182895 DOI: 10.1016/j.ijbiomac.2024.135022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 07/21/2024] [Accepted: 08/22/2024] [Indexed: 08/27/2024]
Abstract
Antimicrobial resistance (AMR) poses a significant global health threat, rendering standard antibiotics ineffective against multi-drug resistant bacteria. To tackle this urgent issue, innovative approaches are essential. Liposomes, small spherical vesicles made of a phospholipid bilayer, present a promising solution. These vesicles can encapsulate various medicines and are both biocompatible and biodegradable. Their ability to be modified for targeted tissue or cell uptake makes them an ideal drug delivery system. By delivering antibiotics directly to infection sites, liposomes minimize side effects and reduce the development of resistance. However, challenges such as poor stability and rapid drug leakage limit their biological application. Chitosan, a biocompatible polymer, enhances liposome interaction with specific tissues or cells, enabling selective drug release at infection sites. Incorporating chitosan into liposome formulations alters and diversifies their surface characteristics through electrostatic interactions, resulting in improved stability and pH-sensitive drug release. These interactions are crucial for enhancing drug retention and targeted delivery, especially in varying pH environments like tumor sites or infection areas, thereby improving therapeutic outcomes and reducing systemic side effects. This review discusses recent advancements, challenges, and the need for further research to optimize liposome formulations and enhance targeted drug delivery for effective AMR treatment. Chitosan-modified liposomes offer a promising strategy to overcome AMR and improve antimicrobial therapies.
Collapse
Affiliation(s)
- Ira Singh
- Functional Polymer Material Lab, Department of Chemistry, Harcourt Butler Technical University, Kanpur 208002, Uttar Pradesh, India
| | - Santosh Kumar
- Functional Polymer Material Lab, Department of Chemistry, Harcourt Butler Technical University, Kanpur 208002, Uttar Pradesh, India.
| | - Shalinee Singh
- Functional Polymer Material Lab, Department of Chemistry, Harcourt Butler Technical University, Kanpur 208002, Uttar Pradesh, India
| | - Mohmmad Younus Wani
- Department of Chemistry, College of Science, University of Jeddah, 21589 Jeddah, Saudi Arabia
| |
Collapse
|
2
|
Tan C. Hydrogel delivery systems of functional substances for precision nutrition. ADVANCES IN FOOD AND NUTRITION RESEARCH 2024; 112:301-345. [PMID: 39218505 DOI: 10.1016/bs.afnr.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Hydrogel delivery systems based on polysaccharides and proteins have the ability to protect functional substances from chemical degradation, control/target release, and increase bioavailability. This chapter summarizes the recent progress in the utilization of hydrogel delivery systems for nutritional interventions. Various hydrogel delivery systems as well as their preparation, structure, and properties are given. The applications for the encapsulation, protection, and controlled delivery of functional substances are described. We also discuss their potential and challenges in managing chronic diseases such as inflammatory bowel disease, obesity, liver disease, and cancer, aiming at providing theoretical references for exploring novel hydrogel delivery systems and their practical prospects in precise nutritional interventions.
Collapse
Affiliation(s)
- Chen Tan
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education. School of Food and Health, Beijing Technology & Business University, Beijing, P.R. China.
| |
Collapse
|
3
|
Nath AG, Dubey P, Kumar A, Vaiphei KK, Rosenholm JM, Bansal KK, Gulbake A. Recent Advances in the Use of Cubosomes as Drug Carriers with Special Emphasis on Topical Applications. J Lipids 2024; 2024:2683466. [PMID: 39022452 PMCID: PMC11254465 DOI: 10.1155/2024/2683466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 04/24/2024] [Accepted: 06/15/2024] [Indexed: 07/20/2024] Open
Abstract
Topical drug delivery employing drug nanocarriers has shown prominent results in treating topical ailments, especially those confined to the skin and eyes. Conventional topical formulations persist with drug and disease-related challenges during treatment. Various nanotechnology-driven approaches have been adopted to mitigate the issues associated with conventional formulations. Among these, cubosomes have shown potential applications owing to their liquid crystalline structure, which aids in bioadhesion, retention, sustained release, and loading hydrophilic and hydrophobic moieties. The phase transition behavior of glyceryl monooleate, the concentration of stabilizers, and critical packing parameters are crucial parameters that affect the formation of cubosomes. Microfluidics-based approaches constitute a recent advance in technologies for generating stable cubosomes. This review covers the recent topical applications of cubosomes for treating skin (psoriasis, skin cancer, cutaneous candidiasis, acne, and alopecia) and eye (fungal keratitis, glaucoma, conjunctivitis, and uveitis) diseases. The article summarizes the manufacturing and biological challenges (skin and ocular barriers) that must be considered and encountered for successful clinical outcomes. The patented products are successful examples of technological advancements within cosmeceuticals that support various topical applications with cubosomes in the pharmaceutical field.
Collapse
Affiliation(s)
- A. Gowri Nath
- Department of PharmaceuticsNational Institute of Pharmaceutical Education and Research, Guwahati, Assam 781101, India
| | - Prashant Dubey
- Department of PharmaceuticsNational Institute of Pharmaceutical Education and Research, Guwahati, Assam 781101, India
| | - Ankaj Kumar
- Department of PharmaceuticsNational Institute of Pharmaceutical Education and Research, Guwahati, Assam 781101, India
| | - Klaudi K. Vaiphei
- Department of PharmaceuticsNational Institute of Pharmaceutical Education and Research, Guwahati, Assam 781101, India
| | - Jessica M. Rosenholm
- Pharmaceutical Sciences LaboratoryFaculty of Science and EngineeringÅbo Akademi University, Turku 20520, Finland
| | - Kuldeep K. Bansal
- Pharmaceutical Sciences LaboratoryFaculty of Science and EngineeringÅbo Akademi University, Turku 20520, Finland
| | - Arvind Gulbake
- Department of PharmaceuticsNational Institute of Pharmaceutical Education and Research, Guwahati, Assam 781101, India
| |
Collapse
|
4
|
Pu C, Luo Y, Sun Y, Zhang J, Cui H, Li M, Sun Q, Tang W. Water in water emulsion stabilized by liposomes developed from whey protein isolate and xanthan gum: Environmental stability and photoprotection effect for riboflavin. Int J Biol Macromol 2024; 262:130036. [PMID: 38354924 DOI: 10.1016/j.ijbiomac.2024.130036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 02/01/2024] [Accepted: 02/05/2024] [Indexed: 02/16/2024]
Abstract
The purpose of this work is to explore the feasibility of water in water (W/W) emulsion stabilized with liposomes as a water-soluble nutraceutical carrier. A W/W emulsion system composed of xanthan gum (XG) and whey protein isolate (WPI) with different amount (0.2 %, 0.4 %, and 0.6 %) of liposomes as stabilizer was constructed. Fast green staining observation showed that XG was the internal phase and WPI was the continuous phase respectively. Confocal laser scanning microscopy revealed that with the increase of liposomes concentration from 0.4 % to 0.6 %, the interface thickness of the W/W emulsions was approximately twice that of the 0.2 % liposome-stabilized emulsion.The emulsions remained stable under neutral and weakly alkaline conditions. The droplet sizes of the emulsions were little affected by ionic strength. The binding constant (Ka) for XG to riboflavin (12.22) was approximately 5 times that for WPI to riboflavin (2.46), suggesting that riboflavin had a stronger binding affinity for the XG molecule compared to WPI. The fluorescence spectra of riboflavin showed that 0.4 % and 0.6 % liposome stabilized emulsions could effectively retard the photodegradation of riboflavin under ultraviolet irradiation. The successful construction of liposomes stabilized W/W emulsion provides a novel strategy for delivering water-soluble bioactive substances.
Collapse
Affiliation(s)
- Chuanfen Pu
- School of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China.
| | - Yongxue Luo
- School of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Yue Sun
- School of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Jie Zhang
- School of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Hanwen Cui
- School of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Man Li
- School of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Qingjie Sun
- School of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Wenting Tang
- School of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
5
|
Guo SJ, Wang XD, Ma YX, Hu YY, Yang RN, Ma CG. Guar gum series affect nanostructured lipid carriers via electrostatic assembly or steric hindrance: Improving their oral delivery for phytosterols. Int J Biol Macromol 2023; 253:126667. [PMID: 37660846 DOI: 10.1016/j.ijbiomac.2023.126667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/11/2023] [Accepted: 08/31/2023] [Indexed: 09/05/2023]
Abstract
Surface modification of nanostructured lipid carriers (NLCs) can be an effective way to improve their oral delivery for active ingredients. In this study, four type of guar gum series modified NLCs for the delivery of phytosterols (PS) were constructed and the effects of the polysaccharides on their structure and physicochemical properties were studied. DLS and AFM results revealed that positively charged polysaccharides could bind to PS-NLCs through electrostatic attraction and made the complexes finally take positive charges, while negatively charged polysaccharides were more likely to fill in the gaps of NLC systems to achieve a balance between electrostatic repulsion and intermolecular forces. Although all four polysaccharides exhibited good storage stability and controlled release of PS in simulated intestinal digestion, PS-NLCs modified with partially hydrolyzed cationic guar gum (PHCG) at medium or high concentrations exhibited better gastric stability, mucoadhesion, and cellular uptake, which had considerable significance for improving the oral bioavailability of PS. This might be related to the coating structure of PHCG-PS-NLCs confirmed by AFM, FTIR, and Raman characterization. This study provide a reference value for designing suitable PS-NLC complexes without synthetic surfactants.
Collapse
Affiliation(s)
- Shu-Jing Guo
- Lipid Technology and Engineering, College of Food Science and Engineering, Henan University of Technology, Lianhua Road 100, Zhengzhou 450001, Henan Province, PR China
| | - Xue-De Wang
- Lipid Technology and Engineering, College of Food Science and Engineering, Henan University of Technology, Lianhua Road 100, Zhengzhou 450001, Henan Province, PR China.
| | - Yu-Xiang Ma
- Lipid Technology and Engineering, College of Food Science and Engineering, Henan University of Technology, Lianhua Road 100, Zhengzhou 450001, Henan Province, PR China
| | - Yu-Yuan Hu
- Lipid Technology and Engineering, College of Food Science and Engineering, Henan University of Technology, Lianhua Road 100, Zhengzhou 450001, Henan Province, PR China
| | - Rui-Nan Yang
- Lipid Technology and Engineering, College of Food Science and Engineering, Henan University of Technology, Lianhua Road 100, Zhengzhou 450001, Henan Province, PR China
| | - Chuan-Guo Ma
- Lipid Technology and Engineering, College of Food Science and Engineering, Henan University of Technology, Lianhua Road 100, Zhengzhou 450001, Henan Province, PR China
| |
Collapse
|
6
|
Tan C, Dima C, Huang M, Assadpour E, Wang J, Sun B, Kharazmi MS, Jafari SM. Advanced CaCO3-derived delivery systems for bioactive compounds. Adv Colloid Interface Sci 2022; 309:102791. [DOI: 10.1016/j.cis.2022.102791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 09/26/2022] [Accepted: 09/26/2022] [Indexed: 11/16/2022]
|
7
|
Wang Z, Yu Z, He L, Zhu J, Liu L, Song X. Establishment and preliminary study of electrophysiological techniques in a typical red tide species. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 840:156698. [PMID: 35710000 DOI: 10.1016/j.scitotenv.2022.156698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/11/2022] [Accepted: 06/10/2022] [Indexed: 06/15/2023]
Abstract
Electrophysiology studies the electrical properties of cells and tissues including bioelectrical signals and membrane ion channel activities. As an important means to reveal ion channel related physiological functions and the underlying mechanisms, electrophysiological techniques have been widely used in studies of animals, higher plants and algae that are closely related to higher plants. However, few electrophysiological studies have been carried out in red tide organisms, especially in dinoflagellates, which is mainly due to the complex surface structure of dinoflagellate amphiesma. In this study, the surface amphiesma of Alexandrium pacificum, a typical red tide species, was removed by centrifugation, low-temperature treatment and enzymatic treatment. In all three treatments, low-temperature treatment with 4 °C for 2 h had high ecdysis rate and high fixation rate, and the treated cells were easy to puncture, so low-temperature treatment was used as a preprocessing treatment for subsequent current recording. Acquired protoplasts of A. pacificum were identified by calcofluor fluorescence and immobilized by poly-lysine. A modified "puncture" single-electrode voltage-clamp recording was first applied to dinoflagellates, and voltage-gated currents, which had the characteristics of outward K+ current and inward Cl- current, were recorded and confirmed by ion replacement, indicating the voltage-gated currents were mixed. This method can be used as a technical basis for the electrophysiological study of dinoflagellates and provides a new perspective for the study of stress tolerance, red tide succession, and the regulation of physiological function of dinoflagellates.
Collapse
Affiliation(s)
- Zhongshi Wang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Zhiming Yu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China.
| | - Liyan He
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Jianan Zhu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Lidong Liu
- The Djavad Mowafaghian Centre for Brian Health and Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Xiuxian Song
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| |
Collapse
|
8
|
Chiappisi L, Hoffmann I, Gradzielski M. Membrane stiffening in Chitosan mediated multilamellar vesicles of alkyl ether carboxylates. J Colloid Interface Sci 2022; 627:160-167. [PMID: 35842966 DOI: 10.1016/j.jcis.2022.07.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 06/30/2022] [Accepted: 07/01/2022] [Indexed: 10/17/2022]
Abstract
HYPOTHESIS Membrane undulations are known to strongly affect the stability of uni- and multilamellar vesicles formed by surfactants or phospholipids. Herein, based on the same arguments, we hypothesise that the properties of polyelectrolyte mediated surfactant multilamellar vesicles, in particular the multiplicity - i.e. the number of layers forming the vesicle - depend on the dynamics of the membrane. EXPERIMENTS Small-angle neutron scattering (SANS) and neutron spin-echo (NSE) were used to probe the structure and the dynamics of the multilayered vesicles formed in mixtures of the biopolymer chitosan and oppositely charged alkyl ether carboxylates. The neutron scattering data are complemented by static and dynamic light scattering experiments. Experiments were performed in polyelectrolyte excess conditions, and at a pH close to the pKa of the surfactant. FINDINGS The structural investigation shows very clearly that multilayered surfactant/polyelectrolyte vesicles are formed in the investigated mixtures. Only 3 to 5 layers form, on average, one vesicle, as similarly found in mixtures of chitosan and phospholipid vesicles. NSE shows that the surfactant membrane becomes stiffer upon complexation with chitosan, and that the fluctuation of the layers is strongly coupled in time and space. Such strong coupling and the increase in overall stiffness is associated with a high entropic cost. Accordingly, the combined SANS and NSE study points out that the low multiplicity found in multilayered vesicles involving the rigid polysaccharide chitosan arises from the strongly coupled dynamics of the membrane layers.
Collapse
Affiliation(s)
- Leonardo Chiappisi
- Stranski Laboratorium für Physikalische Chemie und Theoretische Chemie, Institut für Chemie, Strasse des 17. Juni 124, Sekr. TC7, Technische Universität Berlin, D-10623 Berlin, Germany; Institut Max von Laue - Paul Langevin, 71 avenue des Martyrs 38042 Grenoble Cedex 9, France.
| | - Ingo Hoffmann
- Institut Max von Laue - Paul Langevin, 71 avenue des Martyrs 38042 Grenoble Cedex 9, France.
| | - Michael Gradzielski
- Stranski Laboratorium für Physikalische Chemie und Theoretische Chemie, Institut für Chemie, Strasse des 17. Juni 124, Sekr. TC7, Technische Universität Berlin, D-10623 Berlin, Germany.
| |
Collapse
|
9
|
Cordelier S, Crouzet J, Gilliard G, Dorey S, Deleu M, Dhondt-Cordelier S. Deciphering the role of plant plasma membrane lipids in response to invasion patterns: how could biology and biophysics help? JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:2765-2784. [PMID: 35560208 DOI: 10.1093/jxb/erab517] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 11/25/2021] [Indexed: 06/15/2023]
Abstract
Plants have to constantly face pathogen attacks. To cope with diseases, they have to detect the invading pathogen as early as possible via the sensing of conserved motifs called invasion patterns. The first step of perception occurs at the plasma membrane. While many invasion patterns are perceived by specific proteinaceous immune receptors, several studies have highlighted the influence of the lipid composition and dynamics of the plasma membrane in the sensing of invasion patterns. In this review, we summarize current knowledge on how some microbial invasion patterns could interact with the lipids of the plasma membrane, leading to a plant immune response. Depending on the invasion pattern, different mechanisms are involved. This review outlines the potential of combining biological with biophysical approaches to decipher how plasma membrane lipids are involved in the perception of microbial invasion patterns.
Collapse
Affiliation(s)
- Sylvain Cordelier
- Université de Reims Champagne Ardenne, RIBP EA 4707, USC INRAE 1488, SFR Condorcet FR CNRS 3417, 51100 Reims, France
| | - Jérôme Crouzet
- Université de Reims Champagne Ardenne, RIBP EA 4707, USC INRAE 1488, SFR Condorcet FR CNRS 3417, 51100 Reims, France
| | - Guillaume Gilliard
- Laboratoire de Biophysique Moléculaire aux Interfaces, SFR Condorcet FR CNRS 3417, TERRA Research Center, Gembloux Agro-Bio Tech, Université de Liège, 2 Passage des Déportés, B-5030 Gembloux, Belgium
| | - Stéphan Dorey
- Université de Reims Champagne Ardenne, RIBP EA 4707, USC INRAE 1488, SFR Condorcet FR CNRS 3417, 51100 Reims, France
| | - Magali Deleu
- Laboratoire de Biophysique Moléculaire aux Interfaces, SFR Condorcet FR CNRS 3417, TERRA Research Center, Gembloux Agro-Bio Tech, Université de Liège, 2 Passage des Déportés, B-5030 Gembloux, Belgium
| | - Sandrine Dhondt-Cordelier
- Université de Reims Champagne Ardenne, RIBP EA 4707, USC INRAE 1488, SFR Condorcet FR CNRS 3417, 51100 Reims, France
| |
Collapse
|
10
|
Huang M, Wang J, Tan C, Ying R, Wu X, Chen W, Liu J, Ahmad M. Liposomal co‐delivery strategy to improve stability and antioxidant activity of trans‐resveratrol and naringenin. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15486] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Meigui Huang
- International Faculty of Applied Technology Yibin University Yibin Sichuan 644000 China
- Department of Food Science and Engineering College of Light Industry and Food Engineering Nanjing Forestry University Nanjing Jiangsu 210037 China
| | - Jin Wang
- Department of Food Science and Engineering College of Light Industry and Food Engineering Nanjing Forestry University Nanjing Jiangsu 210037 China
| | - Chen Tan
- Beijing Advanced Innovation Center for Food Nutrition and Human Health Beijing Engineering and Technology Research Center of Food Additives Beijing Technology & Business University (BTBU) Beijing 100048 China
| | - Ruifeng Ying
- Department of Food Science and Engineering College of Light Industry and Food Engineering Nanjing Forestry University Nanjing Jiangsu 210037 China
| | - Xian Wu
- Department of Kinesiology, Nutrition, and Health Miami University Oxford OH 45056 USA
| | - Wei Chen
- Department of Information Systems and Analytics Miami University Oxford OH 45056 USA
| | - Jianhua Liu
- International Faculty of Applied Technology Yibin University Yibin Sichuan 644000 China
| | - Mehraj Ahmad
- Department of Food Science and Engineering College of Light Industry and Food Engineering Nanjing Forestry University Nanjing Jiangsu 210037 China
| |
Collapse
|
11
|
Shin J, Cole BD, Shan T, Jang Y. Heterogeneous Synthetic Vesicles toward Artificial Cells: Engineering Structure and Composition of Membranes for Multimodal Functionalities. Biomacromolecules 2022; 23:1505-1518. [PMID: 35266692 DOI: 10.1021/acs.biomac.1c01504] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The desire to develop artificial cells to imitate living cells in synthetic vesicle platforms has continuously increased over the past few decades. In particular, heterogeneous synthetic vesicles made from two or more building blocks have attracted attention for artificial cell applications based on their multifunctional modules with asymmetric structures. In addition to the traditional liposomes or polymersomes, polypeptides and proteins have recently been highlighted as potential building blocks to construct artificial cells owing to their specific biological functionalities. Incorporating one or more functionally folded, globular protein into synthetic vesicles enables more cell-like functions mediated by proteins. This Review highlights the recent research about synthetic vesicles toward artificial cell models, from traditional synthetic vesicles to protein-assembled vesicles with asymmetric structures. We aim to provide fundamental and practical insights into applying knowledge on molecular self-assembly to the bottom-up construction of artificial cell platforms with heterogeneous building blocks.
Collapse
Affiliation(s)
- Jooyong Shin
- Department of Chemical Engineering, University of Florida, Gainesville, Florida 32611, United States
| | - Blair D Cole
- Department of Chemical Engineering, University of Florida, Gainesville, Florida 32611, United States
| | - Ting Shan
- Department of Biomedical Engineering, University of Florida, Gainesville, Florida 32611, United States
| | - Yeongseon Jang
- Department of Chemical Engineering, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
12
|
Tan C, Hosseini SF, Jafari SM. Cubosomes and Hexosomes as Novel Nanocarriers for Bioactive Compounds. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:1423-1437. [PMID: 35089018 DOI: 10.1021/acs.jafc.1c06747] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Cubosomes and hexosomes are nanostructured liquid crystalline particles, known as biocompatible nanocarriers for drug delivery. In recent years, there has been good interest in using cubosomes and hexosomes for the delivery of bioactive compounds in functional foods. These systems feature thermodynamic stability, encapsulate both hydrophobic and hydrophilic substances, and have a high tolerance to environmental stresses and potential for controlled release. This review outlines the recent advances in cubosomes and hexosomes in the food industry, focusing on their structure, composition, formation mechanisms, and factors influencing phase transformation between cubosomes and hexosomes. The potential applications especially for the bioactive delivery are presented. The integration of cubosomes and hexosomes with other emerging encapsulation technologies such as surface coating, gelation, and incorporation of polymers are also discussed.
Collapse
Affiliation(s)
- Chen Tan
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), School of Food and Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Seyed Fakhreddin Hosseini
- Department of Seafood Processing, Faculty of Marine Sciences, Tarbiat Modares University, P.O. Box 46414-356, Noor 193954697, Iran
| | - Seid Mahdi Jafari
- Faculty of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan 4913815739, Iran
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, E-32004 Ourense, Spain
| |
Collapse
|
13
|
Kuai L, Liu F, Chiou BS, Avena-Bustillos RJ, McHugh TH, Zhong F. Controlled release of antioxidants from active food packaging: A review. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106992] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
14
|
Wang F, Pu C, Liu M, Li R, Sun Y, Tang W, Sun Q, Tian Q. Fabrication and characterization of walnut peptides-loaded proliposomes with three lyoprotectants: Environmental stabilities and antioxidant/antibacterial activities. Food Chem 2021; 366:130643. [PMID: 34330031 DOI: 10.1016/j.foodchem.2021.130643] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 07/06/2021] [Accepted: 07/17/2021] [Indexed: 12/26/2022]
Abstract
To protect walnut peptides from harsh external environments during their storage and digestion, proliposomes loaded with walnut peptides were fabricated using sucrose, trehalose, and mannitol as carriers and lyoprotectants. The physicochemical properties, environmental stability, antioxidant/antibacterial activities, and digestion in vitro of the proliposomes were evaluated. The freshly prepared liposomes were uniform in size, but the hydrated proliposomes showed a more uneven size distribution. The lyoprotectants helped maintain favorable liposome shape during lyophilization. Alongside the lyoprotectants, the walnut peptides further stabilized the lipid bilayer. Proliposomes encapsulation didn't impact the peptides' antioxidant activity. Furthermore, walnut peptides-loaded proliposomes exhibited antibacterial activity against Escherichia coli and Staphylococcus aureus. The proliposomes were stable during gastric-phase digestion. The lyoprotectants changed the free fatty acid release behaviors of the proliposomes. These characteristics suggest potential applications for proliposomes as effective delivery systems for biopeptides in food stuffs, thereby protecting bioactivities during storage and passage through the gastrointestinal tract.
Collapse
Affiliation(s)
- Fuli Wang
- School of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Chuanfen Pu
- School of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Mengyao Liu
- School of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Risheng Li
- School of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Yue Sun
- School of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Wenting Tang
- School of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China.
| | - Qingjie Sun
- School of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Qin Tian
- National Research Center for Geoanalysis, Beijing 100037, China
| |
Collapse
|
15
|
Tan C, Wang J, Sun B. Polysaccharide dual coating of yeast capsules for stabilization of anthocyanins. Food Chem 2021; 357:129652. [PMID: 33865001 DOI: 10.1016/j.foodchem.2021.129652] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/05/2021] [Accepted: 03/16/2021] [Indexed: 02/07/2023]
Abstract
The dual coated yeast capsules for anthocyanin encapsulation and stabilization were fabricated. Anthocyanins were preloaded in hollow yeast capsules, and then the dual coating was performed by deposition of opposite charged polysaccharides using layer-by-layer technique. The combination of positively charged chitosan and negatively charged chondroitin sulfate was found to confer the yeast capsules with the highest encapsulation efficiency and retention rate of anthocyanins. Additionally, the coated yeast capsules featured high tolerance to environmental stresses (i.e., oxygen, ascorbic acid, and heat) and therefore effectively inhibited the degradation of anthocyanins. These stabilizing effects were related to the formation of high penetration barrier provided by the double layers of polysaccharides, as well as the enhanced hydrophobic microenvironment in the capsules. Further development of the polysaccharide-coated yeast capsules may hold promise for the controlled delivery of other water-soluble bioactive components.
Collapse
Affiliation(s)
- Chen Tan
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology and Business University (BTBU), Beijing 100048, China; School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Jing Wang
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology and Business University (BTBU), Beijing 100048, China; School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China.
| | - Baoguo Sun
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing 100048, China
| |
Collapse
|
16
|
Tan C, Wang J, Sun B. Biopolymer-liposome hybrid systems for controlled delivery of bioactive compounds: Recent advances. Biotechnol Adv 2021; 48:107727. [PMID: 33677025 DOI: 10.1016/j.biotechadv.2021.107727] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/04/2021] [Accepted: 02/27/2021] [Indexed: 12/16/2022]
Abstract
Conventional liposomes still face many challenges associated with the poor physical and chemical stability, considerable loss of encapsulated cargo, lack of stimulus responsiveness, and rapid elimination from blood circulation. Integration of versatile functional biopolymers has emerged as an attractive strategy to overcome the limitation of usage of liposomes. This review comprehensively summarizes the most recent studies (2015-2020) and their challenges aiming at the exploration of biopolymer-liposome hybrid systems, including surface-modified liposomes, biopolymer-incorporated liposomes, guest-in-cyclodextrin-in-liposome, liposome-in-hydrogel, liposome-in-film, and liposome-in-nanofiber. The physicochemical principles and key technical information underlying the combined strategies for the fabrication of polymeric liposomes, the advantages and limitations of each of the systems, and the stabilization mechanisms are discussed through various case studies. Special emphasis is directed toward the synergistic efficiencies of biopolymers and phospholipid bilayers on encapsulation, protection, and controlled delivery of bioactives (e.g., vitamins, carotenoids, phenolics, peptides, and other health-related compounds) for the biomedical, pharmaceutical, cosmetic, and functional food applications. The major challenges, opportunities, and possible further developments for future studies are also highlighted.
Collapse
Affiliation(s)
- Chen Tan
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology and Business University (BTBU), Beijing 100048, China; School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Jing Wang
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology and Business University (BTBU), Beijing 100048, China; School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China.
| | - Baoguo Sun
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing 100048, China
| |
Collapse
|
17
|
Regulating structural and mechanical properties of pectin reinforced liposomes at fluid/solid interface. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106225] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
18
|
Chitosan decoration improves the rapid and long-term antibacterial activities of cinnamaldehyde-loaded liposomes. Int J Biol Macromol 2020; 168:59-66. [PMID: 33279567 DOI: 10.1016/j.ijbiomac.2020.12.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/21/2020] [Accepted: 12/01/2020] [Indexed: 12/16/2022]
Abstract
In this work, cinnamaldehyde-loaded liposomes decorated with different concentrations of chitosan (0, 0.25, 0.5, 1, 2, 3, and 4 mg/mL) were prepared and their physical and antibacterial properties were evaluated. The results showed that the physical decoration of chitosan improved the encapsulation efficiency and storage stability of the liposomes. Liposomes decorated with chitosan at the concentration of 0.25 to 4 mg/mL were able to achieve an obvious antibacterial efficiency against Staphylococcus aureus after only 10 min of incubation. The antibacterial efficiency of chitosan-decorated liposomes was still higher than 90% after being stored for 28 d when the chitosan concentration was greater than 1 mg/mL. Besides, increasing the chitosan concentration significantly decreased the minimum inhibitory concentration of the liposomes. The comparison of the antibacterial activities and mechanisms of cinnamaldehyde-loaded liposomes decorated with chitosan at a concentration of 4 mg/mL (CH-CL), cinnamaldehyde-loaded liposomes (CL), cinnamaldehyde, and chitosan revealed that chitosan and cinnamaldehyde exerted a cumulative and synergistic bacteriostatic effect in the liposomes. This led to damage to the cell membrane integrity, causing cell death by inducing leakage of intracellular components. These results can potentially provide guidance for the preparation and application of natural preservatives with rapid and long-term bacteriostatic effects.
Collapse
|
19
|
James HP, Jadhav S. Mechanical and transport properties of chitosan-zwitterionic phospholipid vesicles. Colloids Surf B Biointerfaces 2020; 188:110782. [DOI: 10.1016/j.colsurfb.2020.110782] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 12/19/2019] [Accepted: 01/07/2020] [Indexed: 10/25/2022]
|
20
|
Effect of Membrane Surface Modification Using Chitosan Hydrochloride and Lactoferrin on the Properties of Astaxanthin-Loaded Liposomes. Molecules 2020; 25:molecules25030610. [PMID: 32019205 PMCID: PMC7036813 DOI: 10.3390/molecules25030610] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 01/22/2020] [Accepted: 01/28/2020] [Indexed: 11/16/2022] Open
Abstract
Astaxanthin-loaded liposomes were prepared by a thin-film ultrasonic method, and the effects of the different membrane surface modifiers chitosan hydrochloride (CH) and lactoferrin (LF) on the physicochemical stability of the liposomes and bioaccessibility of astaxanthin were studied. Based on the negative charge characteristics of egg yolk lecithin, LF and CH with positive charge were assembled on the surface of liposomes by an electrostatic deposition method. The optimal concentrations of modifiers were determined by particle size, zeta potential and encapsulation efficiency. The interaction between the liposomes and the coatings was characterized by Fourier Transform infrared spectroscopy. The stability of astaxanthin in different systems (suspension and liposomes) was investigated, and its antioxidant capacity and bioaccessibility were determined. The results showed that both membrane surface modifications could interact with liposomes and protect astaxanthin from oxidation or heat degradation and enhance the antioxidant activity of the liposome, therefore membrane surface modification played an important role in stabilizing the lipid bilayer. At the same time, the encapsulated astaxanthin exhibited higher in vitro bioaccessibility than the free astaxanthin. CH and LF modified liposomes can be developed as formulations for encapsulation and delivery of functional ingredients, providing a theoretical basis for the development of new astaxanthin series products.
Collapse
|
21
|
Bali AP, Sahu ID, Craig AF, Clark EE, Burridge KM, Dolan MT, Dabney-Smith C, Konkolewicz D, Lorigan GA. Structural characterization of styrene-maleic acid copolymer-lipid nanoparticles (SMALPs) using EPR spectroscopy. Chem Phys Lipids 2019; 220:6-13. [PMID: 30796886 DOI: 10.1016/j.chemphyslip.2019.02.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 01/29/2019] [Accepted: 02/18/2019] [Indexed: 12/31/2022]
Abstract
Spectroscopic studies of membrane proteins (MPs) are challenging due to difficulties in preparing homogenous and functional lipid membrane mimetic systems into which membrane proteins can properly fold and function. It has recently been shown that styrene-maleic acid (SMA) copolymers act as a macromolecular surfactant and therefore facilitate the formation of disk-shaped lipid bilayer nanoparticles (styrene-maleic acid copolymer-lipid nanoparticles (SMALPs)) that retain structural characteristics of native lipid membranes. We have previously reported controlled synthesis of SMA block copolymers using reversible addition-fragmentation chain transfer (RAFT) polymerization, and that alteration of the weight ratio of styrene to maleic acid affects nanoparticle size. RAFT-synthesis offers superior control over SMA polymer architecture compared to conventional radical polymerization techniques used for commercially available SMA. However, the interactions between the lipid bilayer and the solubilized RAFT-synthesized SMA polymer are currently not fully understood. In this study, EPR spectroscopy was used to detect the perturbation on the acyl chain upon introduction of the RAFT-synthesized SMA polymer by attaching PC-based nitroxide spin labels to the 5th, 12th, and 16th positions along the acyl chain of the lipid bilayer. EPR spectra showed high rigidity at the 12th position compared to the other two regions, displaying similar qualities to commercially available polymers synthesized via conventional methods. In addition, central EPR linewidths and correlation time data were obtained that are consistent with previous findings.
Collapse
Affiliation(s)
- Avnika P Bali
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH, 45056, USA
| | - Indra D Sahu
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH, 45056, USA
| | - Andrew F Craig
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH, 45056, USA
| | - Emily E Clark
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH, 45056, USA
| | - Kevin M Burridge
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH, 45056, USA
| | - Madison T Dolan
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH, 45056, USA
| | - Carole Dabney-Smith
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH, 45056, USA
| | - Dominik Konkolewicz
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH, 45056, USA.
| | - Gary A Lorigan
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH, 45056, USA.
| |
Collapse
|
22
|
Pu C, Tang W, Li X, Li M, Sun Q. Stability enhancement efficiency of surface decoration on curcumin-loaded liposomes: Comparison of guar gum and its cationic counterpart. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2018.07.039] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
23
|
Advances and challenges in liposome digestion: Surface interaction, biological fate, and GIT modeling. Adv Colloid Interface Sci 2019; 263:52-67. [PMID: 30508694 DOI: 10.1016/j.cis.2018.11.007] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 11/09/2018] [Accepted: 11/25/2018] [Indexed: 11/22/2022]
Abstract
During the past 50 years, there has been increased interest in liposomes as carriers of pharmaceutical, cosmetic, and agricultural products. More recently, much progress has been made in the use of surface-modified formulas in experimental food matrices. However, before the viability and the applications of nutrients in liposomal form in the edible field can be determined, the digestion behavior along the human gastrointestinal tract (GIT) must be clarified. In vitro digestion models, from static models to dynamic mono-/bi-/multi-compartmental models, are increasingly being developed and applied as alternatives to in vivo assays. This review describes the surface interactions of liposomes with their encapsulated ingredients and with external food components and updates the biological fate of liposomes after ingestion. It summarizes current models for the human stomach and intestine that are available and their relevance in nutritional studies. It highlights limitations and challenges in the use of these models for liposomal colloid system digestion and discusses crucial factors, such as enzymes and bile salts, that affect liposomal bilayer degradation.
Collapse
|
24
|
Mujtaba M, Morsi RE, Kerch G, Elsabee MZ, Kaya M, Labidi J, Khawar KM. Current advancements in chitosan-based film production for food technology; A review. Int J Biol Macromol 2018; 121:889-904. [PMID: 30340012 DOI: 10.1016/j.ijbiomac.2018.10.109] [Citation(s) in RCA: 224] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 09/15/2018] [Accepted: 10/14/2018] [Indexed: 11/17/2022]
Abstract
Chitosan is obtained from chitin, which could be considered to be the most abundant polymer after cellulose. Owing to these properties, chitosan alone or chitosan-based composite film production is attaining huge attention in terms of applications from researchers and industrialists coming from divergent fields. To enhance the biological (mainly antimicrobial and antioxidant) and physiological (mainly mechanical, thermal and barrier) attributes of the chitosan-based films, a vast medley of plant extracts and supporting polymers has been blended into chitosan films. Considering the up to date literature reports based on chitosan film production and applications, it can be stated that still, the research ratio is low in this field. Chitosan blend/composite films with specific properties (superhydrophobicity, excellent mechanical strength, acceptable barrier properties) can be produced only for specific applications in food technology. In the current review, we tried to summarize the advancements made in the last 5-7 years in the field of chitosan film technology for its application in the food industry.
Collapse
Affiliation(s)
- Muhammad Mujtaba
- Institute of Biotechnology, Ankara University, Ankara 06110, Turkey.
| | - Rania E Morsi
- Egyptian Petroleum Research Institute, Nasr City, 11727, Cairo, Egypt; EPRI-Nanotechnology Center, Egyptian Petroleum Research Institute, 11727 Cairo, Egypt
| | - Garry Kerch
- Riga Technical University, Department of Materials Science and Applied Chemistry, Riga, Latvia
| | - Maher Z Elsabee
- Department of Chemistry, Faculty of Science, Cairo University, 12613 Cairo, Egypt
| | - Murat Kaya
- Department of Biotechnology and Molecular Biology, Faculty of Science and Letters, Aksaray University, 68100 Aksaray, Turkey
| | - Jalel Labidi
- Biorefinery Processes Research Group, Department of Chemical and Environmental Engineering, University of the Basque Country (UPV/EHU), Plaza Europa 1, 20018 Donostia-San Sebastian, Spain
| | - Khalid Mahmood Khawar
- Ankara University, Faculty of Agriculture, Department of Field Crops, 06100 Ankara, Turkey
| |
Collapse
|
25
|
Tan C, Celli GB, Selig MJ, Abbaspourrad A. Catechin modulates the copigmentation and encapsulation of anthocyanins in polyelectrolyte complexes (PECs) for natural colorant stabilization. Food Chem 2018; 264:342-349. [DOI: 10.1016/j.foodchem.2018.05.018] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 04/29/2018] [Accepted: 05/01/2018] [Indexed: 12/20/2022]
|
26
|
Dias AM, dos Santos Cabrera MP, Lima AMF, Taboga SR, Vilamaior PSL, Tiera MJ, de Oliveira Tiera VA. Insights on the antifungal activity of amphiphilic derivatives of diethylaminoethyl chitosan against Aspergillus flavus. Carbohydr Polym 2018; 196:433-444. [DOI: 10.1016/j.carbpol.2018.05.032] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 05/09/2018] [Accepted: 05/09/2018] [Indexed: 11/29/2022]
|
27
|
Chen L, Liang R, Wang Y, Yokoyama W, Chen M, Zhong F. Characterizations on the Stability and Release Properties of β-ionone Loaded Thermosensitive Liposomes (TSLs). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:8336-8345. [PMID: 29847116 DOI: 10.1021/acs.jafc.7b06130] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Liposomes with phase transition temperatures, Tm, near pathogenic site temperature are potential chemoprophylactic delivery vehicles. We prepared and characterized the thermal properties of liposomes composed of 1,2-dipalmitoyl- sn-glycero-3-phosphocholine (DPPC) and hydrogenated soy phosphatidylcholine (HSPC) incorporating β-ionone with Tm at 42 °C. Liposomes with β-ionone/lipid ratio (w/w) of 1:20 and 1:8 had the necessary stability and released most of the β-ionone. The molecular architecture surrounding Tm was studied by fluorescent probes, Raman spectroscopy, and differential scanning calorimeter (DSC). β-Ionone was found to be preferentially located in the deep regions of the lipid bilayer (toward the long chain alkyl of the lipid) at moderate loading. The results showed that β-ionone encapsulated liposomes have a superior release at higher loading amount. Increasing β-ionone leads to disorder in the liquid crystalline state and accelerates the release rate. These studies provide information on the membrane structural properties of β-ionone loaded liposomes that guide rational bioactive molecular delivery systems design for health products.
Collapse
Affiliation(s)
- Ling Chen
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education , Jiangnan University , Wuxi 214122 , P.R. China
- School of Food Science and Technology , Jiangnan University , Wuxi 214122 , P.R. China
| | - Rong Liang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering , Jiangnan University , Wuxi 214122 , P.R. China
| | - Yihan Wang
- Zhejiang Institute for Food and Drug Control , Zhejiang 310000 , P.R. China
| | - Wallace Yokoyama
- Western Regional Research Center, ARS , USDA , Albany , California 94710 , United States
| | - Maoshen Chen
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education , Jiangnan University , Wuxi 214122 , P.R. China
- School of Food Science and Technology , Jiangnan University , Wuxi 214122 , P.R. China
| | - Fang Zhong
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education , Jiangnan University , Wuxi 214122 , P.R. China
- School of Food Science and Technology , Jiangnan University , Wuxi 214122 , P.R. China
| |
Collapse
|
28
|
Liposomal drug delivery systems for targeted cancer therapy: is active targeting the best choice? Future Med Chem 2016; 8:2091-2112. [PMID: 27774793 DOI: 10.4155/fmc-2016-0135] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Liposomes are biodegradable and biocompatible self-forming spherical lipid bilayer vesicles. They can encapsulate and deliver one or more hydrophobic and hydrophilic therapeutic agents with poor therapeutic indices to tumor sites. Properties such as lipid bilayer fluidity, charge, size and surface hydration can be modified to extend liposome circulation time in the bloodstream and enhance efficacy. The focus of this review is on ligand-conjugated liposomes and their potential application in tumor-targeted delivery. Ligand-conjugated liposomes are designed to target receptors which are overexpressed on tumor cells to decrease drugs side effects by enhancing their selective delivery to tumor site. Despite the extensive research in this area, no small molecule ligand-conjugated liposome has been approved up to date for cancer therapy.
Collapse
|
29
|
Biopolymer-coated liposomes by electrostatic adsorption of chitosan (chitosomes) as novel delivery systems for carotenoids. Food Hydrocoll 2016. [DOI: 10.1016/j.foodhyd.2015.08.016] [Citation(s) in RCA: 169] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
30
|
Tan C, Zhang Y, Abbas S, Feng B, Zhang X, Xia S, Chang D. Insights into chitosan multiple functional properties: the role of chitosan conformation in the behavior of liposomal membrane. Food Funct 2015; 6:3702-11. [DOI: 10.1039/c5fo00256g] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Interactions of chitosan with liposomes correlate with multiple functionalities. Chitosan chains can self-aggregate above a critical aggregation concentration. The physical properties of liposomes are affected by chitosan conformation. Chitosan displays “polymeric surfactant property” in the form of coils.
Collapse
Affiliation(s)
- Chen Tan
- State Key Laboratory of Food Science and Technology
- School of Food Science and Technology
- Jiangnan University
- Wuxi
- China
| | - Yating Zhang
- State Key Laboratory of Food Science and Technology
- School of Food Science and Technology
- Jiangnan University
- Wuxi
- China
| | - Shabbar Abbas
- State Key Laboratory of Food Science and Technology
- School of Food Science and Technology
- Jiangnan University
- Wuxi
- China
| | - Biao Feng
- State Key Laboratory of Food Science and Technology
- School of Food Science and Technology
- Jiangnan University
- Wuxi
- China
| | - Xiaoming Zhang
- State Key Laboratory of Food Science and Technology
- School of Food Science and Technology
- Jiangnan University
- Wuxi
- China
| | - Shuqin Xia
- State Key Laboratory of Food Science and Technology
- School of Food Science and Technology
- Jiangnan University
- Wuxi
- China
| | - Dawei Chang
- School of Food and Biological Engineering
- Shaanxi University of Science and Technology
- Xi'an
- China
| |
Collapse
|