1
|
Dong CL, Feng Z, Lu MX, Du YZ. Chilo suppressalis heat shock proteins are regulated by heat shock factor 1 during heat stress. INSECT MOLECULAR BIOLOGY 2023; 32:69-78. [PMID: 36279182 DOI: 10.1111/imb.12814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
Heat shock factor 1 (HSF1) functions to maintain cellular and organismal homeostasis by regulating the expression of target genes, including those encoding heat shock proteins (HSPs). In the present study, the gene encoding HSF1 was cloned from the rice pest Chilo suppressalis, and designated Cshsf1. The deduced protein product, CsHSF1, contained conserved domains typical of the HSF1 family, including a DNA-binding domain, two hydrophobic heptad repeat domains, and a C-terminal transactivation domain. Real-time quantitative PCR showed that Cshsf1 was highly expressed in hemocytes. Expression analysis in different developmental stages of C. suppressalis revealed that Cshsf1 was most highly expressed in male adults. RNAi-mediated silencing of Cshsf1 expression reduced C. suppressalis survival at high temperatures. To investigate the regulatory interactions between Cshsf1 and Cshsps, the promoters and expression patterns of 18 identified Cshsps in C. suppressalis were analysed; four types of heat shock elements (HSEs) were identified in promoter regions including canonical, tail-tail, head-head, and step/gap. The expression of Cshsp19.0, Cshsp21.7B, Cshsp60, Cshsp70 and Cshsp90 was positively regulated by Cshsf1; however, Cshsp22.8, Cshsp702, Cshsp705 and Cshsp706 gene expression was not altered. This study provides a foundation for future studies of HSF1 in insects during thermal stress.
Collapse
Affiliation(s)
- Chuan-Lei Dong
- College of Horticulture and Plant Protection & Institute of Applied Entomology, Yangzhou University, Yangzhou, China
| | - Zhu Feng
- Plant Protection and Quarantine Station of Jiangsu Province, Nanjing, China
| | - Ming-Xing Lu
- College of Horticulture and Plant Protection & Institute of Applied Entomology, Yangzhou University, Yangzhou, China
| | - Yu-Zhou Du
- College of Horticulture and Plant Protection & Institute of Applied Entomology, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education, Yangzhou University, Yangzhou, China
| |
Collapse
|
2
|
Huang C, Wu Y, Zhai N, Ju X, Zhao C, Luo X, Ozoe Y, Liu G. 5-(4-Pyridinyl)-3-isothiazolols as Competitive Antagonists of Insect GABA Receptors: Design, Synthesis, and a New Mechanism Leading to Insecticidal Effects. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:5765-5772. [PMID: 35535594 DOI: 10.1021/acs.jafc.1c08030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Ionotropic γ-aminobutyric acid (GABA) receptors (iGABARs) are validated targets of drugs and insecticides. Our previous studies showed that the competitive antagonists of insect iGABARs exhibit insecticidal activities and that the 3-isothiazolol scaffold is used as a lead for developing novel iGABAR antagonists. Here, we designed a novel series of 4-aryl-5-(4-pyridinyl)-3-isothiazolol (4-API) analogs that have various aromatic substituents at the 4-position. Two-electrode voltage clamp experiments showed that all synthesized 4-APIs exhibited antagonistic activity against Musca domestica and Spodoptera litura iGABARs (RDL) expressed in oocytes of Xenopus laevis at 100 μM. Of the 4-APIs, the 4-(1,1'-biphenylyl) analog was the most potent antagonist with IC50s of 7.1 and 9.9 μM against M. domestica and S. litura RDL receptors, respectively. This analog also showed a certain insecticidal activity against S. litura larvae, with >75% mortality at 100 μg/g diet. Molecular docking studies with a M. domestica iGABAR model indicated that the π-π stacking interactions formed between the pyridinyl ring and Y252 and between the 4-substituted aromatic group and Y107 might be important for antagonism by the 4-(1,1'-biphenylyl) analog. Our studies provide important information for designing novel iGABAR antagonists and suggest that the 4-APIs acting on iGABARs are promising insecticide leads for further studies.
Collapse
Affiliation(s)
- Cheng Huang
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Yun Wu
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Na Zhai
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Xiulian Ju
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Chunqing Zhao
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Xiaogang Luo
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, P. R. China
- School of Materials Science and Engineering, Zhengzhou University, No. 100 Science Avenue, Zhengzhou City 450001, Henan Province, P. R. China
| | - Yoshihisa Ozoe
- Faculty of Life and Environmental Sciences, Shimane University, Matsue 690-8504, Shimane, Japan
| | - Genyan Liu
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| |
Collapse
|
3
|
Kono M, Ozoe F, Asahi M, Ozoe Y. State-dependent inhibition of GABA receptor channels by the ectoparasiticide fluralaner. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 181:105008. [PMID: 35082031 DOI: 10.1016/j.pestbp.2021.105008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/15/2021] [Accepted: 12/07/2021] [Indexed: 06/14/2023]
Abstract
γ-Aminobutyric acid (GABA) receptors (GABARs) are ligand-gated Cl- channels, which cause an influx of Cl- that inhibits excitation in postsynaptic cells upon activation. GABARs are important targets for drugs and pest control chemicals. We previously reported that the isoxazoline ectoparasiticide fluralaner inhibits GABA-induced currents in housefly (Musca domestica) GABARs by binding to the putative binding site in the transmembrane subunit interface. In the present study, we investigated whether fluralaner inhibits the GABA response in the GABAR activated state, the resting state, or both, using two-electrode voltage clamp electrophysiology protocols. We found that inhibition progresses over time to steady-state levels by repeated short applications of GABA during fluralaner perfusion. The GABA response was not impaired by fluralaner treatment in the GABAR resting state. However, once inhibited, the GABA response was not restored by repeated applications of GABA. These findings suggest that fluralaner might reach the binding site of the activated conformation of GABARs in a stepwise fashion and tightly bind to it.
Collapse
Affiliation(s)
- Miku Kono
- Faculty of Life and Environmental Sciences, Shimane University, Matsue, Shimane 690-8504, Japan
| | - Fumiyo Ozoe
- Interdisciplinary Institute for Science Research, Organization for Research and Academic Information, Shimane University, Matsue, Shimane 690-8504, Japan
| | - Miho Asahi
- Biological Research Laboratories, Nissan Chemical Corporation, Shiraoka, Saitama 349-0294, Japan
| | - Yoshihisa Ozoe
- Faculty of Life and Environmental Sciences, Shimane University, Matsue, Shimane 690-8504, Japan; Interdisciplinary Institute for Science Research, Organization for Research and Academic Information, Shimane University, Matsue, Shimane 690-8504, Japan.
| |
Collapse
|
4
|
Felsztyna I, Villarreal MA, García DA, Miguel V. Insect RDL Receptor Models for Virtual Screening: Impact of the Template Conformational State in Pentameric Ligand-Gated Ion Channels. ACS OMEGA 2022; 7:1988-2001. [PMID: 35071887 PMCID: PMC8771969 DOI: 10.1021/acsomega.1c05465] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/28/2021] [Indexed: 06/14/2023]
Abstract
The RDL receptor is one of the most relevant protein targets for insecticide molecules. It belongs to the pentameric ligand-gated ion channel (pLGIC) family. Given that the experimental structures of pLGICs are difficult to obtain, homology modeling has been extensively used for these proteins, particularly for the RDL receptor. However, no detailed assessments of the usefulness of homology models for virtual screening (VS) have been carried out for pLGICs. The aim of this study was to evaluate which are the determinant factors for a good VS performance using RDL homology models, specially analyzing the impact of the template conformational state. Fifteen RDL homology models were obtained based on different pLGIC templates representing the closed, open, and desensitized states. A retrospective VS process was performed on each model, and their performance in the prioritization of active ligands was assessed. In addition, the three best-performing models among each of the conformations were subjected to molecular dynamics simulations (MDS) in complex with a representative active ligand. The models showed variations in their VS performance parameters that were related to the structural properties of the binding site. VS performance tended to improve in more constricted binding cavities. The best performance was obtained with a model based on a template in the closed conformation. MDS confirmed that the closed model was the one that best represented the interactions with an active ligand. These results imply that different templates should be evaluated and the structural variations between their channel conformational states should be specially examined, providing guidelines for the application of homology modeling for VS in other proteins of the pLGIC family.
Collapse
Affiliation(s)
- Iván Felsztyna
- Facultad
de Ciencias Exactas, Físicas y Naturales, Departamento de Química.
Cátedra de Química Biológica, Universidad Nacional de Córdoba, Córdoba 5016, Argentina
- Instituto
de Investigaciones Biológicas y Tecnológicas (IIByT), CONICET-Universidad Nacional de Córdoba, Córdoba 5016, Argentina
| | - Marcos A. Villarreal
- Facultad
de Ciencias Químicas, Departamento de Química Teórica
y Computacional, Universidad Nacional de
Córdoba, Córdoba 5016, Argentina
- Instituto
de Investigaciones en Físico-Química de Córdoba
(INFIQC), CONICET-Universidad Nacional de
Córdoba, Córdoba 5016, Argentina
| | - Daniel A. García
- Facultad
de Ciencias Exactas, Físicas y Naturales, Departamento de Química.
Cátedra de Química Biológica, Universidad Nacional de Córdoba, Córdoba 5016, Argentina
- Instituto
de Investigaciones Biológicas y Tecnológicas (IIByT), CONICET-Universidad Nacional de Córdoba, Córdoba 5016, Argentina
| | - Virginia Miguel
- Facultad
de Ciencias Exactas, Físicas y Naturales, Departamento de Química.
Cátedra de Química Biológica, Universidad Nacional de Córdoba, Córdoba 5016, Argentina
- Instituto
de Investigaciones Biológicas y Tecnológicas (IIByT), CONICET-Universidad Nacional de Córdoba, Córdoba 5016, Argentina
| |
Collapse
|
5
|
Jiang X, Yang S, Yan Y, Lin F, Zhang L, Zhao W, Zhao C, Xu H. Design, Synthesis, and Insecticidal Activity of 5,5-Disubstituted 4,5-Dihydropyrazolo[1,5- a]quinazolines as Novel Antagonists of GABA Receptors. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:15005-15014. [PMID: 33269911 DOI: 10.1021/acs.jafc.0c02462] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
To control the development of resistance to conventional insecticides acting as γ-aminobutyric acid (GABA) receptor antagonists (e.g., fipronil), new GABAergic 5,5-disubstituted 4,5-dihydropyrazolo[1,5-a]quinazolines were designed via a scaffold-hopping strategy and synthesized with a facile method. Among the 50 target compounds obtained, compounds 5a, 5b, 7a, and 7g showed excellent insecticidal activities against a susceptible strain of Plutella xylostella (LC50 values ranging from 1.03 to 1.44 μg/mL), which were superior to that of fipronil (LC50 = 3.02 μg/mL). Remarkably, the insecticidal activity of compound 5a was 64-fold better than that of fipronil against the field population of fipronil-resistant P. xylostella. Electrophysiological studies against the housefly GABA receptor heterologously expressed in Xenopus oocytes indicated that compound 5a could act as a potent GABA receptor antagonist, and IC50 was calculated to be 32.5 nM. Molecular docking showed that the binding poses of compound 5a with the housefly GABA receptor can be different compared to fipronil, which explains the effectiveness of compound 5a against fipronil-resistant insects. These findings have suggested compound 5a as a lead compound for a novel GABA receptor antagonist controlling field-resistant insects and provided a basis for further design, structural modification, and development of 4,5-dihydropyrazolo[1,5-a]quinazoline motifs as new insecticidal GABA receptor antagonists.
Collapse
Affiliation(s)
- Xunyuan Jiang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources and Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| | - Shuai Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources and Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| | - Ying Yan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources and Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| | - Fei Lin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources and Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| | - Ling Zhang
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Weijing Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources and Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| | - Chen Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources and Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| | - Hanhong Xu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources and Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
6
|
Yugandar S, Morita T, Nakamura H. Rhodium(III)-catalysed decarboxylative C-H functionalization of isoxazoles with alkenes and sulfoxonium ylides. Org Biomol Chem 2020; 18:8625-8628. [PMID: 33084719 DOI: 10.1039/d0ob02027c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Decarboxylative C-H functionalization of isoxazoles with electron-deficient alkenes and sulfoxonium ylides at the C5 position was achieved in the presence of rhodium(iii) catalysts to give the corresponding alkenylation and acylmethylation products, respectively.
Collapse
Affiliation(s)
- Somaraju Yugandar
- Laboratory of Chemistry and Life Science, Innovative Institute of Research Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan.
| | - Taiki Morita
- Laboratory of Chemistry and Life Science, Innovative Institute of Research Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan.
| | - Hiroyuki Nakamura
- Laboratory of Chemistry and Life Science, Innovative Institute of Research Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan.
| |
Collapse
|
7
|
Han C, Hu B, Li Z, Liu C, Wang N, Fu C, Shen Y. Determination of Fipronil and Four Metabolites in Foodstuffs of Animal Origin Using a Modified QuEChERS Method and GC–NCI–MS/MS. FOOD ANAL METHOD 2020. [DOI: 10.1007/s12161-020-01872-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
8
|
Liu G, Wu Y, Gao Y, Ju X, Ozoe Y. Potential of Competitive Antagonists of Insect Ionotropic γ-Aminobutyric Acid Receptors as Insecticides. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:4760-4768. [PMID: 32243147 DOI: 10.1021/acs.jafc.9b08189] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Ionotropic γ-aminobutyric acid (GABA) receptors (GABARs) represent an important insecticide target. Currently used GABAR-targeting insecticides are non-competitive antagonists (NCAs) of these receptors. Recent studies have demonstrated that competitive antagonists (CAs) of GABARs have functions of inhibiting insect GABARs similar to NCAs and that they also exhibit insecticidal activity. CAs have different binding sites and different mechanisms of action compared to those of NCAs. Therefore, GABAR CAs should have the potential to be developed into novel insecticides, which could be used to overcome the developed resistance of insect pests to conventional NCA insecticides. Although research on insect GABAR CAs has lagged behind that on mammalian GABAR CAs, research on the CAs of insect ionotropic GABARs has made great progress in recent years, and several series of heterocyclic compounds, such as 3-isoxazolols and 6-iminopyridazines, have been identified as insect GABAR CAs. In this review, we briefly summarize the design strategies, structures, and biological activities of the novel GABAR CAs that have been found in the past decade. Updated information about GABAR CAs may benefit the design and development of novel GABAR-targeting insecticides.
Collapse
Affiliation(s)
- Genyan Liu
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, Hubei 430205, People's Republic of China
| | - Yun Wu
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, Hubei 430205, People's Republic of China
| | - Ya Gao
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, Hubei 430205, People's Republic of China
| | - Xiulian Ju
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, Hubei 430205, People's Republic of China
| | - Yoshihisa Ozoe
- Faculty of Life and Environmental Science, Shimane University, Matsue, Shimane 690-8504, Japan
| |
Collapse
|
9
|
Yang Z, Zhao Y, Li P, He Y. Design, synthesis, and insecticidal activity of novel isoxazole derivatives containing bisamide moiety. J Heterocycl Chem 2019. [DOI: 10.1002/jhet.3699] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Zaibo Yang
- School of Chemistry and Chemical EngineeringQiannan Normal University for Nationalities Duyun People's Republic of China
| | - Yang Zhao
- Technology Center, China Tobacco Guizhou Industrial CO., LTD. Guiyang People's Republic of China
| | - Pei Li
- School of Chemistry and Chemical EngineeringQiannan Normal University for Nationalities Duyun People's Republic of China
- Qiandongnan Engineering and Technology Research Center for Comprehensive Utilization of National MedicineKaili University Kaili People's Republic of China
| | - Yinju He
- School of Chemistry and Chemical EngineeringQiannan Normal University for Nationalities Duyun People's Republic of China
| |
Collapse
|
10
|
Crnjar A, Comitani F, Melis C, Molteni C. Mutagenesis computer experiments in pentameric ligand-gated ion channels: the role of simulation tools with different resolution. Interface Focus 2019; 9:20180067. [PMID: 31065340 PMCID: PMC6501341 DOI: 10.1098/rsfs.2018.0067] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/26/2019] [Indexed: 12/21/2022] Open
Abstract
Pentameric ligand-gated ion channels (pLGICs) are an important class of widely expressed membrane neuroreceptors, which play a crucial role in fast synaptic communications and are involved in several neurological conditions. They are activated by the binding of neurotransmitters, which trigger the transmission of an electrical signal via facilitated ion flux. They can also be activated, inhibited or modulated by a number of drugs. Mutagenesis electrophysiology experiments, with natural or unnatural amino acids, have provided a large body of functional data that, together with emerging structural information from X-ray spectroscopy and cryo-electron microscopy, are helping unravel the complex working mechanisms of these neuroreceptors. Computer simulations are complementing these mutagenesis experiments, with insights at various levels of accuracy and resolution. Here, we review how a selection of computational tools, including first principles methods, classical molecular dynamics and enhanced sampling techniques, are contributing to construct a picture of how pLGICs function and can be pharmacologically targeted to treat the disorders they are responsible for.
Collapse
Affiliation(s)
- Alessandro Crnjar
- King’s College London, Department of Physics, Strand, London WC2R 2LS, UK
| | - Federico Comitani
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Claudio Melis
- Universitá degli Studi di Cagliari, Complesso Universitario di Monserrato, Dipartimento di Fisica, S.P. Monserrato-Sestu Km 0,700, Monserrato (CA) 09042, Italy
| | - Carla Molteni
- King’s College London, Department of Physics, Strand, London WC2R 2LS, UK
| |
Collapse
|
11
|
Chen W, Geng SL, Song Z, Li YJ, Wang H, Cao JY. Alternative splicing and expression analysis of HSF1 in diapause pupal brains in the cotton bollworm, Helicoverpa armigera. PEST MANAGEMENT SCIENCE 2019; 75:1258-1269. [PMID: 30324758 DOI: 10.1002/ps.5238] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 10/07/2018] [Accepted: 10/09/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Diapause is the arrest of the development of insects and can be used for the development of effective agricultural pest management strategies. Heat shock protein 70 (Hsp70) is reported to be up-regulated during diapause to maintain survival in some insect species. However, its regulatory mechanism is unknown. RESULTS Expression of hsp70 in Helicoverpa armigera was found to be up-regulated in diapause pupal brains. To elucidate the molecular regulatory mechanisms of hsp70, we focused our attention on its transcription factor, heat shock factor 1 (HSF1). Four alternative splicing variants of HSF1 from pupal brains of H. armigera were identified, and subcellular localization analysis indicated that these variants were exclusively expressed in the nucleus. Real-time PCR analysis showed that all of these variants were up-regulated in diapause pupal brains, and their expression patterns were consistent with that of hsp70. Finally, promoter activity assay and Western blotting detection demonstrated that hsp70 was activated and up-regulated by these variants. CONCLUSION Expression of hsp70 in H. armigera during diapause is regulated by multiple alternatively spliced isoforms of HSF1. The results of this study may provide important information for understanding the regulatory mechanisms of hsps during insect diapause. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Wei Chen
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Shao-Lei Geng
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Zhe Song
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Yu-Juan Li
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Hui Wang
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
- School of Biological Medicine, Beijing City University, Beijing, China
| | - Jian-Yun Cao
- School of Economics and Trade, South China University of Technology, Guangzhou, China
| |
Collapse
|
12
|
Kita T, Mino H, Ozoe F, Ozoe Y. Spatiotemporally different expression of alternatively spliced GABA receptor subunit transcripts in the housefly Musca domestica. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2019; 101:e21541. [PMID: 30821008 DOI: 10.1002/arch.21541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 02/01/2019] [Accepted: 02/07/2019] [Indexed: 06/09/2023]
Abstract
Insect γ-aminobutyric acid (GABA) receptors are important as major inhibitory neurotransmitter receptors and targets for insecticides. The housefly GABA receptor subunit gene MdRdl is alternatively spliced at exons 3 (a or b) and 6 (c or d) to yield the variants of ac, ad, bc, and bd combinations. In the present study, the expression of the MdRdl transcript in the body parts and in the developmental stages of the housefly Musca domestica was examined by quantitative polymerase chain reaction using specific primers that amplify the combinations of alternative exons. The results indicated that the transcripts of MdRdl, including four combinations, were highly expressed in the adult stage. MdRdlbd was the most abundant in the adult head. The expression pattern did not change in the adult stage over 7 days after eclosion. The expression level of the MdRdl bd transcript in the female head was similar to that of the male head. In contrast, MdRdl bc was the predominant transcript in the pupal head and the adult leg. Because the homomeric Rdl bc GABA receptor has a high affinity for GABA, our results provide grounds for designing agonist or competitive-antagonist insecticides that target the orthosteric site of the GABA receptor containing this Rdl variant.
Collapse
Affiliation(s)
- Tomo Kita
- Department of Life Science and Biotechnology, Faculty of Life and Environmental Science, Shimane University, Matsue, Shimane, Japan
| | - Hayata Mino
- Department of Life Science and Biotechnology, Faculty of Life and Environmental Science, Shimane University, Matsue, Shimane, Japan
| | - Fumiyo Ozoe
- Department of Life Science and Biotechnology, Faculty of Life and Environmental Science, Shimane University, Matsue, Shimane, Japan
| | - Yoshihisa Ozoe
- Department of Life Science and Biotechnology, Faculty of Life and Environmental Science, Shimane University, Matsue, Shimane, Japan
| |
Collapse
|
13
|
Liu G, Li H, Shi J, Wang W, Furuta K, Liu D, Zhao C, Ozoe F, Ju X, Ozoe Y. 4-Aryl-5-carbamoyl-3-isoxazolols as competitive antagonists of insect GABA receptors: Synthesis, biological activity, and molecular docking studies. Bioorg Med Chem 2018; 27:416-424. [PMID: 30579800 DOI: 10.1016/j.bmc.2018.12.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 12/09/2018] [Accepted: 12/11/2018] [Indexed: 12/01/2022]
Abstract
Competitive antagonists (CAs) of ionotropic GABA receptors (GABARs) reportedly exhibit insecticidal activity and have potential for development as novel insecticides for overcoming emerging resistance to traditional GABAR-targeting insecticides. Our previous studies demonstrated that 4,5-disubstituted 3-isoxazolols or 3-isothiazolols are an important class of insect GABAR CAs. In the present study, we synthesized a series of 4-aryl-5-carbamoyl-3-isoxazolols and examined their antagonism of insect GABARs expressed in Xenopus oocytes. Several of these 3-isoxazolols exhibited potent antagonistic activities against housefly and common cutworm GABARs, with IC50 values in the low-micromolar range in both receptors. 4-(3-Amino-4-methylphenyl)-5-carbamoyl-3-isoxazolol (3u) displayed the highest antagonism, with IC50 values of 2.0 and 0.9 μM in housefly and common cutworm GABARs, respectively. Most of the synthesized 3-isoxazolols showed moderate larvicidal activities against common cutworms, with more than 50% mortality at 100 μg/g. These results indicate that 4-monocyclic aryl-5-carbamoyl-3-isoxazolol is a promising scaffold for insect GABAR CA discovery and provide important information for the design and development of GABAR-targeting insecticides with a novel mode of action.
Collapse
Affiliation(s)
- Genyan Liu
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, PR China.
| | - Huaguang Li
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, PR China
| | - Jiaying Shi
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, PR China
| | - Wenjie Wang
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, PR China
| | - Kenjiro Furuta
- Faculty of Life and Environmental Science, Shimane University, Matsue, Shimane 690-8504, Japan
| | - Di Liu
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Chunqing Zhao
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, PR China.
| | - Fumiyo Ozoe
- Faculty of Life and Environmental Science, Shimane University, Matsue, Shimane 690-8504, Japan
| | - Xiulian Ju
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, PR China
| | - Yoshihisa Ozoe
- Faculty of Life and Environmental Science, Shimane University, Matsue, Shimane 690-8504, Japan.
| |
Collapse
|
14
|
Novel Pyrazole-Hydrazone Derivatives Containing an Isoxazole Moiety: Design, Synthesis, and Antiviral Activity. Molecules 2018; 23:molecules23071798. [PMID: 30037021 PMCID: PMC6100116 DOI: 10.3390/molecules23071798] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 07/17/2018] [Accepted: 07/18/2018] [Indexed: 11/17/2022] Open
Abstract
In this study, a series of novel pyrazole-hydrazone derivatives containing an isoxazole moiety were synthesized. Antiviral bioassays indicated that some of the title compounds exhibited better in vivo antiviral activities against tobacco mosaic virus (TMV). In particular, compounds 6a, 6c and 6q exhibited the best curative activity, protection activity, and inactivation activity against TMV, respectively, which were superior to those of Ningnanmycin. This study demonstrated that this series of novel pyrazole-hydrazone derivatives containing an isoxazole amide moiety could effectively control TMV.
Collapse
|
15
|
Design, Synthesis and Bioactivities of Novel Isoxazole-Containing Pyrazole Oxime Derivatives. Molecules 2017; 22:molecules22122000. [PMID: 29186906 PMCID: PMC6149770 DOI: 10.3390/molecules22122000] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 11/24/2017] [Accepted: 11/24/2017] [Indexed: 11/17/2022] Open
Abstract
In this study, in order to find novel biologically active pyrazole oxime derivatives, twenty-eight new pyrazole oxime compounds containing a substituted isoxazole ring were synthesized and evaluated for their acaricidaland insecticidal activities. Bioassays exhibited that some target compounds indicated good acaricidal and insecticidal activities against Tetranychus cinnabarinus, Aphis medicaginis, Mythimna separata, and Nilaparvata lugens. Especially, compounds 9c, 9h, 9u, and 9v showed 100.00%, 90.56%, 90.78%, and 90.62% insecticidal activities against A. medicaginis at the concentration of 20 μg/mL, respectively, compounds 9k and 9u had 70.86% and 100.00% insecticidal activities against M. separata at 20 μg/mL, respectively.
Collapse
|
16
|
Xiang W, Cheng-hao T, Guo-lan W, Jie-feng L. Novel 4(3H)-Quinazolinone Derivatives Containing an Isoxazole Moiety: Design, Synthesis, and Bioactivity Evaluation. J Heterocycl Chem 2017. [DOI: 10.1002/jhet.2939] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Wang Xiang
- Qiandongnan Engineering and Technology Research Center for Comprehensive Utilization of National Medicine; Kaili University; Kaili 556011 China
- College of Chemistry and Materials Engineering; Kaili University; Kaili 556011 China
| | - Tang Cheng-hao
- Qiandongnan Engineering and Technology Research Center for Comprehensive Utilization of National Medicine; Kaili University; Kaili 556011 China
- College of Chemistry and Materials Engineering; Kaili University; Kaili 556011 China
| | - Wei Guo-lan
- Qiandongnan Engineering and Technology Research Center for Comprehensive Utilization of National Medicine; Kaili University; Kaili 556011 China
- College of Chemistry and Materials Engineering; Kaili University; Kaili 556011 China
| | - Long Jie-feng
- Qiandongnan Engineering and Technology Research Center for Comprehensive Utilization of National Medicine; Kaili University; Kaili 556011 China
- College of Chemistry and Materials Engineering; Kaili University; Kaili 556011 China
| |
Collapse
|
17
|
Comitani F, Limongelli V, Molteni C. The Free Energy Landscape of GABA Binding to a Pentameric Ligand-Gated Ion Channel and Its Disruption by Mutations. J Chem Theory Comput 2016; 12:3398-406. [PMID: 27228114 DOI: 10.1021/acs.jctc.6b00303] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Pentameric ligand-gated ion channels (pLGICs) of the Cys-loop superfamily are important neuroreceptors that mediate fast synaptic transmission. They are activated by the binding of a neurotransmitter, but the details of this process are still not fully understood. As a prototypical pLGIC, here we choose the insect resistance to dieldrin (RDL) receptor involved in resistance to insecticides and investigate the binding of the neurotransmitter GABA to its extracellular domain at the atomistic level. We achieve this by means of μ-sec funnel-metadynamics simulations, which efficiently enhance the sampling of bound and unbound states by using a funnel-shaped restraining potential to limit the exploration in the solvent. We reveal the sequence of events in the binding process from the capture of GABA from the solvent to its pinning between the charged residues Arg111 and Glu204 in the binding pocket. We characterize the associated free energy landscapes in the wild-type RDL receptor and in two mutant forms, where the key residues Arg111 and Glu204 are mutated to Ala. Experimentally these mutations produce nonfunctional channels, which is reflected in the reduced ligand binding affinities due to the loss of essential interactions. We also analyze the dynamical behavior of the crucial loop C, whose opening allows the access of GABA to the binding site and closure locks the ligand into the protein. The RDL receptor shares structural and functional features with other pLGICs; hence, our work outlines a valuable protocol to study the binding of ligands to pLGICs beyond conventional docking and molecular dynamics techniques.
Collapse
Affiliation(s)
- Federico Comitani
- Department of Physics, King's College London , Strand, London WC2R 2LS, United Kingdom
| | - Vittorio Limongelli
- Universitá della Svizzera Italiana (USI) , Faculty of Informatics, Institute of Computational Science - Center for Computational Medicine in Cardiology, via G. Buffi 13, CH-6900 Lugano, Switzerland.,Department of Pharmacy, University of Naples "Federico II" , via D. Montesano 49, I-80131 Naples, Italy
| | - Carla Molteni
- Department of Physics, King's College London , Strand, London WC2R 2LS, United Kingdom
| |
Collapse
|
18
|
Rossi R, Lessi M, Manzini C, Marianetti G, Bellina F. Achievement of regioselectivity in transition metal-catalyzed direct C–H (hetero)arylation reactions of heteroarenes with one heteroatom through the use of removable protecting/blocking substituents or traceless directing groups. Tetrahedron 2016. [DOI: 10.1016/j.tet.2016.02.037] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
19
|
Liu G, Frølund B, Ozoe F, Ozoe Y. Differential interactions of 5-(4-piperidyl)-3-isoxazolol analogues with insect γ-aminobutyric acid receptors leading to functional selectivity. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2015; 66:64-71. [PMID: 26453818 DOI: 10.1016/j.ibmb.2015.10.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 09/15/2015] [Accepted: 10/02/2015] [Indexed: 06/05/2023]
Abstract
γ-Aminobutyric acid (GABA) receptors (GABARs) mediate fast inhibitory synaptic transmission and are also targets for drugs and insecticides. To better understand the molecular interactions of ligands with the orthosteric sites of GABARs, we examined 4-aryl/arylalkyl-5-(4-piperidyl)-3-isoxazolol, 4-aryl-5-(4-piperidyl)-3-isothiazolol, and 5-aryl-4-(4-piperidyl)-1-hydroxypyrazole for their antagonism with regard to three insect GABARs. The 3-isoxazolol was preferable to the 3-isothiazolol and 1-hydroxypyrazole in antagonism to common cutworm and housefly GABARs. Of the tested analogues, 4-(3-biphenylyl)-5-(4-piperidyl)-3-isoxazolol (2a) displayed the greatest antagonism for common cutworm and housefly GABARs, with IC50 values of 3.4 and 10.2 μM, respectively. In contrast to the antagonism of the two GABARs, 2a showed partial agonism for the case of small brown planthopper GABARs, with an EC50 value of 31.3 μM. Homology models and docking simulations revealed that a cation-π interaction between an analogue and an Arg residue in loop C or E of the orthosteric site is a key component of antagonism. This specific phenomenon was lacking in the interactions between 2a and the orthosteric site of small brown planthopper GABARs. These findings provide important insights into designing and developing novel drugs and insecticides.
Collapse
Affiliation(s)
- Genyan Liu
- Division of Bioscience and Biotechnology, Course of Bioresources Science, The United Graduate School of Agricultural Sciences, Tottori University, Tottori 680-8553, Japan
| | - Bente Frølund
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 162, 2100 Copenhagen Φ, Denmark
| | - Fumiyo Ozoe
- Department of Life Science and Biotechnology, Faculty of Life and Environmental Science, Shimane University, Matsue, Shimane 690-8504, Japan
| | - Yoshihisa Ozoe
- Division of Bioscience and Biotechnology, Course of Bioresources Science, The United Graduate School of Agricultural Sciences, Tottori University, Tottori 680-8553, Japan; Department of Life Science and Biotechnology, Faculty of Life and Environmental Science, Shimane University, Matsue, Shimane 690-8504, Japan.
| |
Collapse
|