1
|
Zhao Q, Wang J, Li Q, Zhang J, Hou R, Wang Z, Zhu Q, Zhou Y, Chen Y, Huang J. Integrated transcriptome and metabolome analysis provide insights into the mechanism of saponin biosynthesis and its role in alleviating cadmium-induced oxidative damage in Ophiopogon japonicum. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 210:108634. [PMID: 38642440 DOI: 10.1016/j.plaphy.2024.108634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/03/2024] [Accepted: 04/15/2024] [Indexed: 04/22/2024]
Abstract
Zhe-Maidong, a cultivar of Ophiopogon japonicus is a prominent traditional herbal medicine rich in saponins. This study explored the mechanism of saponin biosynthesis and its role in alleviating Cd-induced oxidative damage in the Zhe-Maidong cultivar using three experimental groups undergoing Cd stress. In the Cd-contaminated soil treatment, total saponins were 1.68 times higher than those in the control. The saponin content in the Cd-2 and Cd-3 treatments was approximately twice as high as that in the Cd-CK treatment. These findings revealed that Cd stress leads to total saponin accumulation. Metabolomic analysis identified the accumulated saponins, primarily several monoterpenoids, diterpenoids, and triterpenoids. The increased saponins exhibited an antioxidant ability to prevent the accumulation of Cd-induced reactive oxygen species (ROS). Subsequent saponin application experiments provided strong evidence that saponin played a crucial role in promoting superoxide dismutase (SOD) activity and reducing ROS accumulation. Transcriptome analysis revealed vital genes for saponin synthesis under Cd stress, including SE, two SSs, and six CYP450s, positively correlated with differentially expressed metabolite (DEM) levels in the saponin metabolic pathway. Additionally, the TF-gene regulatory network demonstrated that bHLH1, bHLH3, mTERF, and AUX/IAA transcript factors are crucial regulators of hub genes involved in saponin synthesis. These findings significantly contribute to our understanding of the regulatory network of saponin synthesis and its role in reducing oxidative damage in O. japonicum when exposed to Cd stress.
Collapse
Affiliation(s)
- Qian Zhao
- Zhejiang University of Science and Technology, Hangzhou, China
| | - Jie Wang
- Zhejiang University of Science and Technology, Hangzhou, China
| | - Qing Li
- Zhejiang University of Science and Technology, Hangzhou, China
| | - Jiarong Zhang
- Zhejiang University of Science and Technology, Hangzhou, China
| | - Ruijun Hou
- Zhejiang University of Science and Technology, Hangzhou, China
| | - Zhihui Wang
- Zhejiang University of Science and Technology, Hangzhou, China
| | - Qian Zhu
- Zhejiang University of Science and Technology, Hangzhou, China
| | - Yifeng Zhou
- Zhejiang University of Science and Technology, Hangzhou, China
| | - Yue Chen
- Horticulture Research Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Jun Huang
- Zhejiang University of Science and Technology, Hangzhou, China.
| |
Collapse
|
2
|
Hennebelle M, Villeneuve P, Durand E, Lecomte J, van Duynhoven J, Meynier A, Yesiltas B, Jacobsen C, Berton-Carabin C. Lipid oxidation in emulsions: New insights from the past two decades. Prog Lipid Res 2024; 94:101275. [PMID: 38280491 DOI: 10.1016/j.plipres.2024.101275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 01/29/2024]
Abstract
Lipid oxidation constitutes the main source of degradation of lipid-rich foods, including food emulsions. The complexity of the reactions at play combined with the increased demand from consumers for less processed and more natural foods result in additional challenges in controlling this phenomenon. This review provides an overview of the insights acquired over the past two decades on the understanding of lipid oxidation in oil-in-water (O/W) emulsions. After introducing the general structure of O/W emulsions and the classical mechanisms of lipid oxidation, the contribution of less studied oxidation products and the spatiotemporal resolution of these reactions will be discussed. We then highlight the impact of emulsion formulation on the mechanisms, taking into consideration the new trends in terms of emulsifiers as well as their own sensitivity to oxidation. Finally, novel antioxidant strategies that have emerged to meet the recent consumer's demand will be detailed. In an era defined by the pursuit of healthier, more natural, and sustainable food choices, a comprehensive understanding of lipid oxidation in emulsions is not only an academic quest, but also a crucial step towards meeting the evolving expectations of consumers and ensuring the quality and stability of lipid-rich food products.
Collapse
Affiliation(s)
- Marie Hennebelle
- Laboratory of Food Chemistry, Department of Agrotechnology and Food Sciences, Wageningen University, Wageningen, Netherlands.
| | - Pierre Villeneuve
- CIRAD, UMR Qualisud, Montpellier F34398, France; Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, Montpellier, France
| | - Erwann Durand
- CIRAD, UMR Qualisud, Montpellier F34398, France; Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, Montpellier, France
| | - Jérôme Lecomte
- CIRAD, UMR Qualisud, Montpellier F34398, France; Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, Montpellier, France
| | - John van Duynhoven
- Laboratory of Biophysics, Wageningen University & Research, Wageningen, the Netherlands; Unilever Food Innovation Centre, Wageningen, the Netherlands
| | | | - Betül Yesiltas
- Research group for Bioactives - Analysis and Application, Technical University of Denmark, National Food Institute, Kgs. Lyngby DK-2800, Denmark
| | - Charlotte Jacobsen
- Research group for Bioactives - Analysis and Application, Technical University of Denmark, National Food Institute, Kgs. Lyngby DK-2800, Denmark
| | - Claire Berton-Carabin
- INRAE, UR BIA, Nantes 44300, France; Laboratory of Food Process Engineering, Department of Agrotechnology and Food Sciences, Wageningen University, Wageningen, Netherlands
| |
Collapse
|
3
|
Wang R, Ma C, Yan H, Wang P, Yu S, Zhang T, Yin Z. Preparation and Characterization of GX-50 and Vitamin C Co-encapsulated Microcapsules by a Water-in-Oil-in-Water (W 1/O/W 2) Double Emulsion-Complex Coacervation Method. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:13863-13875. [PMID: 37733306 DOI: 10.1021/acs.langmuir.3c01360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Co-encapsulated xanthoxylin (GX-50) and vitamin C (Vc) microcapsules (GX-50-Vc-M) were prepared by the combination of a water-in-oil-in-water (W1/O/W2) double emulsion with complex coacervation. The W1/O/W2 double emulsion was prepared by two-step emulsification, and it has a uniform particle size of 8.388 μm and high encapsulation efficiencies of GX-50 (85.95%) and Vc (67.35%) under optimized process conditions. Complex coacervation occurs at pHs 4.0-4.7, which has the highest encapsulation efficiency of GX-50 and Vc at pH 4.5. The complex coacervate with tannic acid solidifying (namely, wet microcapsules) has better mechanical properties and also enhances the ability of co-encapsulation of active ingredients. The resulting microcapsules by freeze-drying of wet microcapsules were characterized by UV-vis absorbance spectroscopy (UV-vis), Fourier infrared spectroscopy (FI-IR), confocal laser scanning microscopy (CLSM), scanning electron microscopy (SEM), X-ray diffraction (XRD), 2,2-diphenyl-1-picrylhydrazyl (DPPH·) radical scavenging, and in vitro permeation measurements. Under optimal conditions, the encapsulation efficiency and drug loading of GX-50-Vc-M for GX-50 and Vc are, respectively, 78.38 ± 0.51 and 59.34 ± 0.56%, and 35.6 ± 0.68 and 29.8 ± 0.92%. A slight shift in the FTIR peak between single GX-50 or Vc and GX-50-Vc-M confirmed the successful co-encapsulation of GX-50 and Vc in microcapsules. GX-50-Vc-M has bridged irregular spherical aggregates, while GX-50 and Vc are, respectively, encapsulated in hydrophobic and hydrophilic cavities of microcapsules in an amorphous dissolved state. GX-50-Vc-M has the highest DPPH· radical scavenging rate of 62.51%, and the scavenging process of GX-50-Vc-M on DPPH· radicals is more in line with the pseudo-second-order kinetic equation model. Moreover, the in vitro permeation of GX-50 and Vc in GX-50-Vc-M can reach maximum values of 40 and 60%, respectively. This concludes that GX-50-Vc-M is a promising delivery system for the penetration of the antioxidant into the deeper layers of the skin for the antioxidant effect.
Collapse
Affiliation(s)
- Ruijuan Wang
- School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, Henan 450002, People's Republic of China
| | - Chunliu Ma
- School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, Henan 450002, People's Republic of China
| | - Haitao Yan
- Henan Provincial Institute of Cultural Relics and Archaeology, Zhengzhou, Henan 450000, People's Republic of China
| | - Pu Wang
- Shanghai Youren Biotechnology Co., Ltd., Shanghai 200444, People's Republic of China
| | - Shuyan Yu
- School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, Henan 450002, People's Republic of China
| | - Tongyan Zhang
- School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, Henan 450002, People's Republic of China
| | - Zhigang Yin
- School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, Henan 450002, People's Republic of China
| |
Collapse
|
4
|
Timilsena YP, Phosanam A, Stockmann R. Perspectives on Saponins: Food Functionality and Applications. Int J Mol Sci 2023; 24:13538. [PMID: 37686341 PMCID: PMC10487995 DOI: 10.3390/ijms241713538] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/28/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023] Open
Abstract
Saponins are a diverse group of naturally occurring plant secondary metabolites present in a wide range of foods ranging from grains, pulses, and green leaves to sea creatures. They consist of a hydrophilic sugar moiety linked to a lipophilic aglycone, resulting in an amphiphilic nature and unique functional properties. Their amphiphilic structures enable saponins to exhibit surface-active properties, resulting in stable foams and complexes with various molecules. In the context of food applications, saponins are utilized as natural emulsifiers, foaming agents, and stabilizers. They contribute to texture and stability in food products and have potential health benefits, including cholesterol-lowering and anticancer effects. Saponins possess additional bioactivities that make them valuable in the pharmaceutical industry as anti-inflammatory, antimicrobial, antiviral, and antiparasitic agents to name a few. Saponins can demonstrate cytotoxic activity against cancer cell lines and can also act as adjuvants, enhancing the immune response to vaccines. Their ability to form stable complexes with drugs further expands their potential in drug delivery systems. However, challenges such as bitterness, cytotoxicity, and instability under certain conditions need to be addressed for effective utilization of saponins in foods and related applications. In this paper, we have reviewed the chemistry, functionality, and application aspects of saponins from various plant sources, and have summarized the regulatory aspects of the food-based application of quillaja saponins. Further research to explore the full potential of saponins in improving food quality and human health has been suggested. It is expected that this article will be a useful resource for researchers in food, feed, pharmaceuticals, and material science.
Collapse
Affiliation(s)
- Yakindra Prasad Timilsena
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Agriculture and Food, Werribee, VIC 3030, Australia;
| | - Arissara Phosanam
- Department of Food Technology and Nutrition, Faculty of Natural Resources and Agro-Industry, Kasetsart University, Chalermphrakiat Sakon Nakhon Province Campus, Sakhon Nakon 47000, Thailand;
| | - Regine Stockmann
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Agriculture and Food, Werribee, VIC 3030, Australia;
| |
Collapse
|
5
|
Yu Y, Chen D, Lee YY, Chen N, Wang Y, Qiu C. Physicochemical and In Vitro Digestion Properties of Curcumin-Loaded Solid Lipid Nanoparticles with Different Solid Lipids and Emulsifiers. Foods 2023; 12:foods12102045. [PMID: 37238863 DOI: 10.3390/foods12102045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/07/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Curcumin-loaded solid lipid nanoparticles (Cur-SLN) were prepared using medium- and long chain diacylglycerol (MLCD) or glycerol tripalmitate (TP) as lipid matrix and three kinds of surfactants including Tween 20 (T20), quillaja saponin (SQ) and rhamnolipid (Rha). The MLCD-based SLNs had a smaller size and lower surface charge than TP-SLNs with a Cur encapsulation efficiency of 87.54-95.32% and the Rha-based SLNs exhibited a small size but low stability to pH decreases and ionic strength. Thermal analysis and X-ray diffraction results confirmed that the SLNs with different lipid cores showed varying structures, melting and crystallization profiles. The emulsifiers slightly impacted the crystal polymorphism of MLCD-SLNs but largely influenced that of TP-SLNs. Meanwhile, the polymorphism transition was less significant for MLCD-SLNs, which accounted for the better stabilization of particle size and higher encapsulation efficiency of MLCD-SLNs during storage. In vitro studies showed that emulsifier formulation greatly impacted on the Cur bioavailability, whereby T20-SLNs showed much higher digestibility and bioavailability than that of SQ- and Rha-SLNs possibly due to the difference in the interfacial composition. Mathematical modeling analysis of the membrane release further confirmed that Cur was mainly released from the intestinal phase and T20-SLNs showed a faster release rate compared with other formulations. This work contributes to a better understanding of the performance of MLCD in lipophilic compound-loaded SLNs and has important implications for the rational design of lipid nanocarriers and in instructing their application in functional food products.
Collapse
Affiliation(s)
- Yasi Yu
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety, Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
- Guangdong International Joint Research Center for Oilseed Biorefinery, Nutrition and Safety, Guangzhou 510632, China
| | - Dechu Chen
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety, Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
- Guangdong International Joint Research Center for Oilseed Biorefinery, Nutrition and Safety, Guangzhou 510632, China
| | - Yee Ying Lee
- School of Science, Monash University Malaysia, Bandar Sunway 47500, Selangor, Malaysia
| | - Nannan Chen
- Department of Nutrition and Food Hygiene, Guangzhou Medical University, Guangzhou 511436, China
| | - Yong Wang
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety, Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
- Guangdong International Joint Research Center for Oilseed Biorefinery, Nutrition and Safety, Guangzhou 510632, China
| | - Chaoying Qiu
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety, Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
- Guangdong International Joint Research Center for Oilseed Biorefinery, Nutrition and Safety, Guangzhou 510632, China
| |
Collapse
|
6
|
Optimisation of the physicochemical stability of extra virgin olive oil-in-water nanoemulsion: processing parameters and stabiliser type. Eur Food Res Technol 2022. [DOI: 10.1007/s00217-022-04088-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AbstractExtra virgin olive oil-in-water nanoemulsions stabilised with synthetic or clean label surfactants (Tween 20 or soy lecithin) was prepared using high-pressure homogenisation (HPH). The effect of HPH pressure and the number of cycles were assessed through response surface methodology to optimise homogenisation processing parameter. Mean droplet diameter (MDD), polydispersity index (PDI), thermal stability and oxidation stability of the resulting emulsions were evaluated. The results showed that the formation and stability of nanoemulsions can be affected by the homogenisation processing parameters (pressure and cycles) and the properties of surfactants (interfacial tension, viscoelasticity and molecule structure). Although MDD and PDI of Tween 20 stabilised nanoemulsions were influenced by homogenisation pressure and cycles, there was not a significant effect on lecithin-stabilised nanoemulsions. A homogenisation pressure of at least 400 bars produced Tween 20 stabilised nanoemulsion (MDD < 200 nm), whereas lecithin-stabilised nanoemulsion were obtained after high-speed homogenisation without using HPH. HPH at 400 bars for 1 cycle produced nanoemulsions with greater physical stability when using either Tween 20 or lecithin. Tween 20 stabilised nanoemulsion showed significantly higher (p < 0.05) thermal stability and lipid oxidative stability than lecithin-stabilised nanoemulsion. Following an optimisation study using regression modelling, the optimal homogenisation parameter for MDD of Tween 20 stabilised emulsion was found at pressure of 764 bars with 1 cycle, while lecithin-stabilised emulsion was found at pressure of 3 bars with 2 cycles. Overall, this study has important implications for optimising nanoemulsion production for potential application in the food industry.
Collapse
|
7
|
Hebishy E, Collette L, Iheozor‐Ejiofor P, Onarinde B. Stability and antimicrobial activity of lemongrass essential oil in nanoemulsions produced by high‐intensity ultrasounds and stabilized by soy lecithin, hydrolysed whey proteins, gum Arabic or their ternary admixture. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Essam Hebishy
- Centre of Excellence in Agri‐food Technologies, National Centre for Food Manufacturing College of Sciences, University of Lincoln Holbeach Spalding United Kingdom
| | - Laurine Collette
- Centre of Excellence in Agri‐food Technologies, National Centre for Food Manufacturing College of Sciences, University of Lincoln Holbeach Spalding United Kingdom
- IUT‐Dijon‐Auxerre, Department of BioEngineering Dijon Cedex France
| | - Pamela Iheozor‐Ejiofor
- Centre of Excellence in Agri‐food Technologies, National Centre for Food Manufacturing College of Sciences, University of Lincoln Holbeach Spalding United Kingdom
| | - Bukola Onarinde
- Centre of Excellence in Agri‐food Technologies, National Centre for Food Manufacturing College of Sciences, University of Lincoln Holbeach Spalding United Kingdom
| |
Collapse
|
8
|
Qiu H, Qu K, Zhang H, Eun JB. Thermal oxidation stability of different multi-element oleogels via 1H NMR spectroscopy. Food Chem 2022; 394:133492. [PMID: 35759842 DOI: 10.1016/j.foodchem.2022.133492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 06/10/2022] [Accepted: 06/13/2022] [Indexed: 11/04/2022]
Abstract
In this study, 1H nuclear magnetic resonance was used to track the evolution of oxidation products of different multi-element oleogels (DMEOs) during temperature-accelerated oxidative degradation. The nutritional properties of the DMEOs were also indirectly explored. Oleogels prepared using sitosterol/lecithin oleogelator showed higher nutritional properties than those prepared using carnauba wax or ethyl cellulose oleogelators. Only a small amount of primary oxidation product hydroxide, (Z,E)-conjugated dienic systems, and (E,E)-conjugated dienic systems were produced from all oleogels upon accelerated oxidation. Furthermore, no 1H signal peaks of secondary oxidation products, such as aldehydes or ketones, were detected. However, very small amounts of primary alcohols (-CH2OH-), secondary alcohols (-CHOH-), and epoxides were identified. Moreover, resveratrol loading and surfactant addition effectively stabilized the internal structure and unsaturated fatty acid acyl content of the oleogels.
Collapse
Affiliation(s)
- Hongtu Qiu
- Department of Integrative Food, Bioscience and Biotechnology, Graduate School of Chonnam National University, Gwangju 61186, South Korea; Department of Food Science and Technology, Yanbian University, Yanji 133002, China
| | - Kexin Qu
- Department of Food Science and Technology, Yanbian University, Yanji 133002, China
| | - Hua Zhang
- Department of Food Science and Technology, Yanbian University, Yanji 133002, China.
| | - Jong-Bang Eun
- Department of Integrative Food, Bioscience and Biotechnology, Graduate School of Chonnam National University, Gwangju 61186, South Korea.
| |
Collapse
|
9
|
Schreiner T, Dias MM, Barreiro MF, Pinho SP. Saponins as Natural Emulsifiers for Nanoemulsions. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:6573-6590. [PMID: 35621387 PMCID: PMC9776534 DOI: 10.1021/acs.jafc.1c07893] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The awareness of sustainability approaches has focused attention on replacing synthetic emulsifiers with natural alternatives when formulating nanoemulsions. In this context, a comprehensive review of the different types of saponins being successfully used to form and stabilize nanoemulsions is presented, highlighting the most common natural sources and biosynthetic routes. Processes for their extraction and purification are also reviewed altogether with the recent advances for their characterization. Concerning the preparation of the nanoemulsions containing saponins, the focus has been initially given to screening methods, lipid phase used, and production procedures, but their characterization and delivery systems explored are also discussed. Most experimental outcomes showed that the saponins present high performance, but the challenges associated with the saponins' broader application, mainly the standardization for industrial use, are identified. Future perspectives report, among others, the emerging biotechnological processes and the use of byproducts in a circular economy context.
Collapse
Affiliation(s)
- Tatiana
B. Schreiner
- Centro
de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa
Apolónia, 5300-253 Bragança, Portugal
- LSRE-LCM
- Laboratory of Separation and Reaction Engineering – Laboratory
of Catalysis and Materials, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Madalena M. Dias
- LSRE-LCM
- Laboratory of Separation and Reaction Engineering – Laboratory
of Catalysis and Materials, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Maria Filomena Barreiro
- Centro
de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa
Apolónia, 5300-253 Bragança, Portugal
| | - Simão P. Pinho
- Centro
de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa
Apolónia, 5300-253 Bragança, Portugal
| |
Collapse
|
10
|
Demets R, Bonneux L, Dejonghe C, Gheysen L, Van Loey A, Foubert I. Photo-Oxidative Stability of Aqueous Model Systems Enriched with Omega-3 Long-Chain Polyunsaturated Fatty Acid-Rich Microalgae as Compared to Autoxidative Stability. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:5691-5700. [PMID: 35471935 DOI: 10.1021/acs.jafc.1c07915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Several species of microalgae are promising as an alternative source of omega-3 long-chain polyunsaturated fatty acids (n-3 LC-PUFA). Photoautotrophic species show the greatest potential, since incorporating them into food products leads to oxidatively stable products; however, the presence of photosensitizers could reduce the shelf-life due to the appearance of photo-oxidation on exposure to light. This study investigated the oxidative impact of illumination for aqueous model suspensions enriched with Phaeodactylum (phototrophic microalgae─containing potential photosensitizers) and Schizochytrium (heterotrophic microalgae─lacking photosensitizers) during storage for 28 days at 37 °C. Primary (peroxide value) and secondary (volatiles with gas chromatography (GC)-mass spectrometry) oxidation products, n-3 LC-PUFA content (GC), and pigments (high-pressure liquid chromatography) were assessed. The results showed that photo-oxidation did not cause oxidative instability for Phaeodactylum samples compared with strong autoxidation in Schizochytrium samples. For the Phaeodactylum-enriched suspensions, only minimal photo-oxidation could be detected and the n-3 LC-PUFA content remained stable throughout storage regardless of illumination.
Collapse
Affiliation(s)
- Robbe Demets
- KU Leuven Kulak, Research Unit Food & Lipids, E. Sabbelaan, 8500 Kortrijk, Belgium
- Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Kasteelpark Arenberg 20, 3001 Leuven, Belgium
| | - Lore Bonneux
- KU Leuven Kulak, Research Unit Food & Lipids, E. Sabbelaan, 8500 Kortrijk, Belgium
- Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Kasteelpark Arenberg 20, 3001 Leuven, Belgium
| | - Céline Dejonghe
- KU Leuven Kulak, Research Unit Food & Lipids, E. Sabbelaan, 8500 Kortrijk, Belgium
- Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Kasteelpark Arenberg 20, 3001 Leuven, Belgium
| | - Lore Gheysen
- KU Leuven Kulak, Research Unit Food & Lipids, E. Sabbelaan, 8500 Kortrijk, Belgium
- Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Kasteelpark Arenberg 20, 3001 Leuven, Belgium
| | - Ann Van Loey
- Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Kasteelpark Arenberg 20, 3001 Leuven, Belgium
- KU Leuven, Laboratory of Food Technology, Kasteelpark Arenberg 22 box 2457, 3001 Leuven, Belgium
| | - Imogen Foubert
- KU Leuven Kulak, Research Unit Food & Lipids, E. Sabbelaan, 8500 Kortrijk, Belgium
- Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Kasteelpark Arenberg 20, 3001 Leuven, Belgium
| |
Collapse
|
11
|
Nanonutraceuticals — Challenges and Novel Nano-based Carriers for Effective Delivery and Enhanced Bioavailability. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02807-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
12
|
Yan J, Yang Z, Qiao X, Kong Z, Dai L, Wu J, Xu X, McClements DJ. Interfacial characteristics and in vitro digestion of emulsion coated by single or mixed natural emulsifiers: lecithin and/or rice glutelin hydrolysates. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:2990-2999. [PMID: 34773407 DOI: 10.1002/jsfa.11639] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/12/2021] [Accepted: 11/13/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND The interfacial characteristics and in vitro digestion of emulsion were related to emulsifier type. The mean droplet diameter, ζ-potential, microstructure, interfacial tension, Quartz crystal microbalance with dissipation (QCM-D) and in vitro gastrointestinal fate of emulsions stabilized by soybean lecithin, hydrolyzed rice glutelin (HRG) and their mixture were researched. RESULTS The value of interfacial tension was much more dramatically declined for the sample containing 20 g kg-1 of HRG. For QCM-D, a rigid layer was formed for all the samples after rinsing. The layer thickness was 0.87 ± 0.20, 2.11 ± 0.31 and 2.63 ± 0.22 nm, and adsorbed mass was 87.17 ± 10.31, 210.56 ± 20.12 and 263.09 ± 23.23 ng cm-2 , for HRG, lecithin and HRG/lecithin, respectively, indicating both HRG and lecithin were adsorbed at the oil-water interface. Structural rearrangements at the interface occurred for HRG/lecithin. The kinetics and final amount of lipid digestion depended on emulsifier type: lecithin > HRG/lecithin > HRG. These differences in digestion rate were primarily due to differences in the aggregation state of the emulsifiers. CONCLUSION The incorporation of lecithin into HRG emulsions had better interfacial properties comparing with HRG emulsion and facilitated lipid digestibility. These results provide important information for the rational design of plant-based functional food. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jiakai Yan
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Zhenyu Yang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Xin Qiao
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Zhihao Kong
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Lei Dai
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Jianyong Wu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Xingfeng Xu
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | | |
Collapse
|
13
|
Limnophila aromatica Crude Extracts as Natural Emulsifiers for Formation and Stabilizing of Oil-in-Water (O/W) Emulsions. COLLOIDS AND INTERFACES 2022. [DOI: 10.3390/colloids6020026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This study mainly focused on the emulsifying performance of Limnophila aromatica crude extracts obtained by using different ethanolic aqueous solutions (0, 25, 50, 75, and 99.5% (v/v)). All Limnophila aromatica extracts (LAEs) were able to produce emulsions with a volume mean droplet diameter (d4,3) ranging from 273 to 747 nm, except for LAE-99.5 (3269 nm). Only the emulsion prepared by LAE-75 was stable during seven days of storage, without significantly changing droplet size (479–495 nm). The result showed that all LAEs could reduce interfacial tension varied within 12.5 and 16.1 mN/m at the soybean oil/extracts (1% w/w) interface. Compared to other extracts, LAE-75 did not contain the highest protein, saponin, and phenol content (4.36%, 20.14%, and 11.68%, respectively), but it had the lowest ash content (14.74%). These results indicated that the emulsifying performance of LAEs did not rely only on interfacial tension and/or surface-active compounds. The residual demulsifiers, such as inorganic substances, were also significantly involved in the emulsions’ destabilization. Finally, the emulsion consisting of 0.5% (w/w) LAE-75 and 5% (w/w) soybean oil showed considerable stability during storage up to 30 days at different temperatures (5 or 25 °C). Therefore, Limnophila aromatica extract has a potential application as a new source of natural emulsifier.
Collapse
|
14
|
Ganesan NG, Miastkowska MA, Pulit-Prociak J, Dey P, Rangarajan V. Formulation of a stable biocosmetic nanoemulsion using a Bacillus lipopeptide as the green-emulsifier for skin-care applications. J DISPER SCI TECHNOL 2022. [DOI: 10.1080/01932691.2022.2059502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Neela Gayathri Ganesan
- Department of Chemical Engineering, Birla Institute of Technology and Science-Pilani, Zuarinagar, Goa, India
| | | | - Jolanta Pulit-Prociak
- Faculty of Chemical Engineering and Technology, Cracow University of Technology, Cracow, Poland
| | - Pinaki Dey
- Department of Biotechnology, Karunya Institute of Technology and Sciences, Coimbatore, Tamil Nadu, India
| | - Vivek Rangarajan
- Department of Chemical Engineering, Birla Institute of Technology and Science-Pilani, Zuarinagar, Goa, India
| |
Collapse
|
15
|
Co-delivery of insulin and quercetin in W/O/W double emulsions stabilized by different hydrophilic emulsifiers. Food Chem 2022; 369:130918. [PMID: 34455318 DOI: 10.1016/j.foodchem.2021.130918] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 08/11/2021] [Accepted: 08/17/2021] [Indexed: 01/08/2023]
Abstract
Insulin (hydrophilic) and quercetin (hydrophobic) have broad biological benefits; however, their rapid hydrolysis (via protease degradation) during digestion hinders their stability and delivery for absorption before degrading. In this study, we encapsulated insulin and quercetin using a self-assembled water-in-oil-in-water (W/O/W) double emulsion. We prepared the co-delivery emulsion by two-step emulsification and investigated the effects of the type of hydrophilic emulsifier for the outer water phase on the physicochemical properties, stability, and digestive properties. The black-bean-protein-stabilized W/O/W double emulsion had a higher absolute zeta potential value (52.80 mV), higher encapsulation efficiency (insulin: 95.7%, quercetin: 93.4%), lower viscosity, better emulsifying properties (EAI: 122.26 m2/g, ESI: 224 min), and lower levels of hydroperoxides (0.86 mmol/L) and TBARS (25.80 μmol/L) than emulsions stabilized by other hydrophilic emulsifiers. The emulsion yielded a 2.60- and 4.56-fold increase in the bioaccessibility of insulin and quercetin, respectively, while increasing their chemical stability and solubility under simulated gastrointestinal conditions.
Collapse
|
16
|
Tan H, Zhang R, Han L, Zhang T, Ngai T. Pickering emulsions stabilized by aminated gelatin nanoparticles: Are gelatin nanoparticles acting as genuine Pickering stabilizers or structuring agents? Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107151] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
17
|
Liu J, Gao T, Li F, Xie T. The addition of oxidized tea polyphenols enhances the physical and oxidative stability of rice bran protein hydrolysate-stabilized oil-in-water emulsions. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2022. [DOI: 10.3136/fstr.fstr-d-21-00248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Jingxue Liu
- College of Food Engineering, Jilin Agricultural Science and Technology College
| | - Tingting Gao
- College of Food Engineering, Jilin Agricultural Science and Technology College
| | - Fenglin Li
- College of Food Engineering, Jilin Agricultural Science and Technology College
| | - Tian Xie
- College of Food Engineering, Jilin Agricultural Science and Technology College
| |
Collapse
|
18
|
One-pot ultrasonic cavitational emulsification of phytosterols oleogel-based flavor emulsions and oil powder stabilized by natural saponin. Food Res Int 2021; 150:110757. [PMID: 34865775 DOI: 10.1016/j.foodres.2021.110757] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 09/24/2021] [Accepted: 10/06/2021] [Indexed: 01/03/2023]
Abstract
Phytosterols oleogel-based flavor emulsions were successfully fabricated for the first time using natural tea saponin as emulsifier and one-pot ultrasonic technique. The effects of ultrasonic time and power, surfactant concentration, and type of flavor oils (e.g., orange, lemon and peppermint) on the emulsion droplet size were investigated. Submicron emulsions with a dispersed phase made by flavor oil (20 wt%) + phytosterol (4 wt%) were stabilized with 3 wt% saponin were obtained by applying an ultrasonic time of 5 min and ultrasonic power of 280 W. The natural tea saponin emulsions exhibited a superior stability and encapsulation efficiency of phytosterol, compared to traditional emulsifiers. Flavor oil-phytosterol enriched powders were prepared by spray-drying and characterized by SEM, XRD and repose angle. The natural saponin encapsulated oil + phytosterol powders had excellent fluidity, redispersion behavior and low phytosterol crystallinity. It was demonstrated that ultrasound is an effective and suitable technique for fabricating fortified flavor emulsions and microcapsules, which may be used for developing functional lipids-based applications in the food, beverage and cosmetic industries.
Collapse
|
19
|
Evaluation of the encapsulation capacity of nervous acid in nanoemulsions obtained with natural and ethoxylated surfactants. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117632] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
20
|
Villeneuve P, Bourlieu-Lacanal C, Durand E, Lecomte J, McClements DJ, Decker EA. Lipid oxidation in emulsions and bulk oils: a review of the importance of micelles. Crit Rev Food Sci Nutr 2021:1-41. [PMID: 34839769 DOI: 10.1080/10408398.2021.2006138] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Lipid oxidation is a major cause of quality deterioration in food products. In these foods, lipids are often present in a bulk or in emulsified forms. In both systems, the rate, extent and pathway of oxidation are highly dependent on the presence of colloidal structures and interfaces because these are the locations where oxidation normally occurs. In bulk oils, reverse micelles (association colloids) are present and are believed to play a crucial role on lipid oxidation. Conversely, in emulsions, surfactant micelles are present that also play a major role in lipid oxidation pathways. After a brief description of lipid oxidation and antioxidants mechanisms, this review discusses the current understanding of the influence of micellar structures on lipid oxidation. In particular, is discussed the major impact of the presence of micelles in emulsions, or reverse micelles (association colloids) in bulk oil on the oxidative stability of both systems. Indeed, both micelles in emulsions and associate colloids in bulk oils are discussed in this review as nanoscale structures that can serve as reservoirs of antioxidants and pro-oxidants and are involved in their transport within the concerned system. Their role as nanoreactors where lipid oxidation reactions occur is also commented.
Collapse
Affiliation(s)
- Pierre Villeneuve
- CIRAD, UMR QualiSud, Montpellier, France.,QualiSud, Univ Montpellier, CIRAD, Montpellier SupAgro, Université d'Avignon, Université de La Réunion, Montpellier, France
| | - Claire Bourlieu-Lacanal
- QualiSud, Univ Montpellier, CIRAD, Montpellier SupAgro, Université d'Avignon, Université de La Réunion, Montpellier, France.,UMR IATE, Univ Montpellier, INRAE, Institut Agro, Montpellier, France
| | - Erwann Durand
- CIRAD, UMR QualiSud, Montpellier, France.,QualiSud, Univ Montpellier, CIRAD, Montpellier SupAgro, Université d'Avignon, Université de La Réunion, Montpellier, France
| | - Jérôme Lecomte
- CIRAD, UMR QualiSud, Montpellier, France.,QualiSud, Univ Montpellier, CIRAD, Montpellier SupAgro, Université d'Avignon, Université de La Réunion, Montpellier, France
| | | | - Eric A Decker
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| |
Collapse
|
21
|
Xu M, Wan Z, Yang X. Recent Advances and Applications of Plant-Based Bioactive Saponins in Colloidal Multiphase Food Systems. Molecules 2021; 26:6075. [PMID: 34641618 PMCID: PMC8512339 DOI: 10.3390/molecules26196075] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/30/2021] [Accepted: 10/01/2021] [Indexed: 11/16/2022] Open
Abstract
The naturally occurring saponins exhibit remarkable interfacial activity and also possess many biological activities linking to human health benefits, which make them particularly attractive as bifunctional building blocks for formulation of colloidal multiphase food systems. This review focuses on two commonly used food-grade saponins, Quillaja saponins (QS) and glycyrrhizic acid (GA), with the aim of clarifying the relationship between the structural features of saponin molecules and their subsequent self-assembly and interfacial properties. The recent applications of these two saponins in various colloidal multiphase systems, including liquid emulsions, gel emulsions, aqueous foams and complex emulsion foams, are then discussed. A particular emphasis is on the unique use of GA and GA nanofibrils as sole stabilizers for fabricating various multiphase food systems with many advanced qualities including simplicity, ultrastability, stimulability, structural viscoelasticity and processability. These natural saponin and saponin-based colloids are expected to be used as sustainable, plant-based ingredients for designing future foods, cosmetics and pharmaceuticals.
Collapse
Affiliation(s)
- Mengyue Xu
- Laboratory of Food Proteins and Colloids, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China; (M.X.); (X.Y.)
| | - Zhili Wan
- Laboratory of Food Proteins and Colloids, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China; (M.X.); (X.Y.)
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510640, China
| | - Xiaoquan Yang
- Laboratory of Food Proteins and Colloids, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China; (M.X.); (X.Y.)
| |
Collapse
|
22
|
Schreiner TB, Colucci G, Santamaria-Echart A, Fernandes IP, Dias MM, Pinho SP, Barreiro MF. Evaluation of saponin-rich extracts as natural alternative emulsifiers: A comparative study with pure Quillaja Bark saponin. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126748] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
23
|
Ji R, Cui H, Duhoranimana E, Hayat K, Yu J, Hussain S, Usman Tahir M, Zhang X, Ho CT. Co-encapsulation of L-ascorbic acid and quercetin by gelatin/sodium carboxymethyl cellulose coacervates using different interlayer oils. FOOD RESEARCH INTERNATIONAL (OTTAWA, ONT.) 2021; 145:110411. [PMID: 34112414 DOI: 10.1016/j.foodres.2021.110411] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 04/08/2021] [Accepted: 05/08/2021] [Indexed: 11/28/2022]
Abstract
A two-step emulsification prior to complex coacervation was employed to develop a co-encapsulation technology of hydrophilic and hydrophobic components for nutrition enhancement. Processing parameters of mononuclear ellipse-like microcapsules using gelatin and sodium carboxymethyl cellulose as wall materials were evaluated. The particle size and morphology of microcapsules and the encapsulation efficiency of L-ascorbic acid were significantly affected by the water-oil phase ratio and total biopolymer concentration. The L-ascorbic acid and quercetin co-encapsulated microcapsules with an average size of 65.26 µm showed good physical and chemical stability. The encapsulation efficiencies of L-ascorbic acid and quercetin were 69.91% and 88.21%, respectively. To predict the potential of functional lipids as hydrophobic carriers, microcapsules using soybean oil, olive oil, fish oil, and conjugated linoleic acid as interlayer oils were developed. The encapsulation efficiencies of hydrophobic compounds carried by different oils were similarly high (88.21-93.08%), whereas, hydrophilic ones carried by conjugated linoleic acid had the lowest encapsulation efficiency (32.54%). The interface tension results indicated that the interfacial stability was impaired by a competitive relation between conjugated linoleic acid and hydrophobic emulsifier at the interface, due to their structural similarity. These results provided the guidance for improving the quality of interlayer oils from microcapsules.
Collapse
Affiliation(s)
- Ran Ji
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, PR China
| | - Heping Cui
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, PR China
| | - Emmanuel Duhoranimana
- Department of Biotechnologies, Faculty of Applied Fundamental Sciences, Institutes of Applied Sciences, INES-Ruhengeri, P.O. Box 155 Ruhengeri, Rwanda
| | - Khizar Hayat
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Jingyang Yu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, PR China
| | - Shahzad Hussain
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Muhammad Usman Tahir
- Department of Plant Production, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Xiaoming Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, PR China.
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, New Brunswick, NJ 08901, USA.
| |
Collapse
|
24
|
Effect of oil type and β-carotene incorporation on the properties of gelatin nanoparticle-stabilized pickering emulsions. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.110903] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
25
|
Gonçalves RFS, Martins JT, Abrunhosa L, Vicente AA, Pinheiro AC. Nanoemulsions for Enhancement of Curcumin Bioavailability and Their Safety Evaluation: Effect of Emulsifier Type. NANOMATERIALS 2021; 11:nano11030815. [PMID: 33806777 PMCID: PMC8004751 DOI: 10.3390/nano11030815] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/14/2021] [Accepted: 03/18/2021] [Indexed: 12/02/2022]
Abstract
This work aimed at evaluating the effects of different emulsifiers on curcumin-loaded nanoemulsions’ behavior during digestion, its safety and absorption, to develop nanoemulsions that provide safety and improved curcumin functionality. Nanoemulsions (NEs) were produced using two bio-based (lecithin (LEC) and rhamnolipids (RHAM)) and one synthetic (Tween®80 (TWE)) emulsifier at similar concentrations. Different NEs were subjected to in vitro digestion. The cytotoxicity and permeability tests were performed in Caco-2 cells. NE_TWE were stable during all phases of in vitro digestion, whereas NE_LEC and NE_RHAM were found to be unstable from the gastric phase. NE_TWE showed 100% of free fatty acids released, followed by NE_RHAM and NE_LEC. Curcumin’s bioaccessibility and stability increased in the following order: NE_LEC > NE_RHAM > NE_TWE. NE_LEC and NE_TWE did not show cytotoxic effects in any of the concentrations tested, while NE_RHAM presented high cytotoxicity in all concentrations tested. The apparent permeability coefficients were determined for NE_LEC and NE_TWE; however, the results were not statistically different. These results showed that the emulsifier used has a high impact on nanoemulsions’ behavior under the digestion process and on their cytotoxicity. This work contributed to the state-of-the-art’s progress on the development of safer curcumin delivery systems with improved functionality, particularly regarding the proper selection of ingredients to produce said systems.
Collapse
|
26
|
Recent advances in nanoencapsulation of hydrophobic marine bioactives: Bioavailability, safety, and sensory attributes of nano-fortified functional foods. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.01.045] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
27
|
Vellido-Perez J, Ochando-Pulido J, Brito-de la Fuente E, Martinez-Ferez A. Novel emulsions–based technological approaches for the protection of omega–3 polyunsaturated fatty acids against oxidation processes – A comprehensive review. FOOD STRUCTURE-NETHERLANDS 2021. [DOI: 10.1016/j.foostr.2021.100175] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
28
|
Inapurapu SP, Ibrahim A, Kona SR, Pawar SC, Bodiga S, Bodiga VL. Development and characterization of ω-3 fatty acid nanoemulsions with improved physicochemical stability and bioaccessibility. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.125515] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
29
|
Chen XW, Sun SD, Ma CG, Yang XQ. Oil-Water Interfacial-Directed Spontaneous Self-Assembly of Natural Quillaja Saponin for Controlling Interface Permeability in Colloidal Emulsions. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:13854-13862. [PMID: 33166459 DOI: 10.1021/acs.jafc.0c04431] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Assembly of amphiphiles at the interface of two immiscible fluids is of great scientific and technological interest in offering efficient routes to smart vehicles for functional deliveries. Natural Quillaja saponin (QS) has gathered widespread interest within the scientific community as a result of its unique interfacial properties. Herein, spontaneously interface-driven self-assembly (SIDSA) of QS at the oil-water interface was systematically studied by morphology and spectroscopy. It was found to self-assemble into a micrometer-scale network in helical fibers by combined intermolecular π-π stacking and hydrogen bonding among saponins at the liquid-liquid interface. From SIDSA, multilayer films on the surfaces of dispersed droplets were formed and enhanced emulsion stability. Interfacial QS-based films on droplet surfaces were also shown to confine interfacial diffusion processes by serving as transport barriers. Furthermore, they can be exploited to control the release of volatiles from the dispersed liquid phase by regulating the interface film, which is shown by molecular dynamics to occur through a hydrogen-bonded mechanism. These results provide new insight into the interfacial assembly structure that can enable unique controllable release in a broad range of applications in food, beverages, pharmaceuticals, and cosmetics.
Collapse
Affiliation(s)
- Xiao-Wei Chen
- Lipid Technology and Engineering, College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, PR China
- Laboratory of Food Proteins and Colloids, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, PR China
| | - Shang-De Sun
- Lipid Technology and Engineering, College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| | - Chuan-Guo Ma
- Lipid Technology and Engineering, College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| | - Xiao-Quan Yang
- Laboratory of Food Proteins and Colloids, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, PR China
| |
Collapse
|
30
|
Jampilek J, Kralova K. Potential of Nanonutraceuticals in Increasing Immunity. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2224. [PMID: 33182343 PMCID: PMC7695278 DOI: 10.3390/nano10112224] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 10/29/2020] [Accepted: 11/04/2020] [Indexed: 12/12/2022]
Abstract
Nutraceuticals are defined as foods or their extracts that have a demonstrably positive effect on human health. According to the decision of the European Food Safety Authority, this positive effect, the so-called health claim, must be clearly demonstrated best by performed tests. Nutraceuticals include dietary supplements and functional foods. These special foods thus affect human health and can positively affect the immune system and strengthen it even in these turbulent times, when the human population is exposed to the COVID-19 pandemic. Many of these special foods are supplemented with nanoparticles of active substances or processed into nanoformulations. The benefits of nanoparticles in this case include enhanced bioavailability, controlled release, and increased stability. Lipid-based delivery systems and the encapsulation of nutraceuticals are mainly used for the enrichment of food products with these health-promoting compounds. This contribution summarizes the current state of the research and development of effective nanonutraceuticals influencing the body's immune responses, such as vitamins (C, D, E, B12, folic acid), minerals (Zn, Fe, Se), antioxidants (carotenoids, coenzyme Q10, polyphenols, curcumin), omega-3 fatty acids, and probiotics.
Collapse
Affiliation(s)
- Josef Jampilek
- Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, 842 15 Bratislava, Slovakia
- Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacky University, Slechtitelu 27, 783 71 Olomouc, Czech Republic
| | - Katarina Kralova
- Institute of Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, 842 15 Bratislava, Slovakia;
| |
Collapse
|
31
|
Nanochitin-stabilized pickering emulsions: Influence of nanochitin on lipid digestibility and vitamin bioaccessibility. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.105878] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
32
|
Uluata S, Durmaz G, Julian McClements D, Decker EA. Comparing DPPP fluorescence and UV based methods to assess oxidation degree of krill oil-in-water emulsions. Food Chem 2020; 339:127898. [PMID: 32871303 DOI: 10.1016/j.foodchem.2020.127898] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 08/14/2020] [Accepted: 08/18/2020] [Indexed: 12/19/2022]
Abstract
In this study, lipid oxidation evaluation methods were compared for a krill-oil-in-water emulsion system. With this aim, thiocyanate and DPPP (diphenyl-1-pyrenylphosphine) fluorescence methods were comparatively examined to determine primary oxidation products. 2-thiobarbituric acid reactive substances (TBARS), hexanal and propanal formation were also monitored as secondary oxidations products. All oxidation experiments were performed via both auto-oxidation at 45 °C and light-riboflavin induced photooxidation at 37 °C. The results have shown that thiocyanate method was not suitable to measure lipid hydroperoxides by the both in auto- and photo-oxidation systems. On the other hand, fluorescence intensity of samples containing the DPPP probe increased during incubation period which indicates the formation of lipid hydroperoxides could be detected via this method. TBARS, hexanal and propanal concentrations also increased during storage period and the formation kinetics of secondary oxidation products was confirmed that the DPPP fluorescence method was accurate and reliable at different environmental conditions.
Collapse
Affiliation(s)
- Sibel Uluata
- Department of Nutrition and Dietetics, Inonu University, 44280 Malatya, Turkey.
| | - Gokhan Durmaz
- Department of Food Engineering, Inonu University, 44280 Malatya, Turkey
| | - D Julian McClements
- Department of Food Science University of Massachusetts Amherst 228 Chenoweth Laboratory, 100 Holdsworth Way Amherst, MA 01003 USA
| | - Eric A Decker
- Department of Food Science University of Massachusetts Amherst 228 Chenoweth Laboratory, 100 Holdsworth Way Amherst, MA 01003 USA
| |
Collapse
|
33
|
Dammak I, Sobral PJDA, Aquino A, Neves MAD, Conte‐Junior CA. Nanoemulsions: Using emulsifiers from natural sources replacing synthetic ones—A review. Compr Rev Food Sci Food Saf 2020; 19:2721-2746. [DOI: 10.1111/1541-4337.12606] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 07/10/2020] [Accepted: 07/11/2020] [Indexed: 01/02/2023]
Affiliation(s)
- Ilyes Dammak
- Food Science ProgramInstitute of Chemistry, Federal University of Rio de Janeiro Rio de Janerio Brazil
| | - Paulo José do Amaral Sobral
- Department of Food EngineeringFZEAUniversity of São Paulo Pirassununga São Paulo Brazil
- Food Research Center (FoRC)University of São Paulo Pirassununga São Pau Brazil
| | - Adriano Aquino
- Food Science ProgramInstitute of Chemistry, Federal University of Rio de Janeiro Rio de Janerio Brazil
- Nanotechnology NetworkCarlos Chagas Filho Research Support Foundation of the State of Rio de Janeiro Rio de Janerio Brazil
| | | | - Carlos Adam Conte‐Junior
- Food Science ProgramInstitute of Chemistry, Federal University of Rio de Janeiro Rio de Janerio Brazil
- Nanotechnology NetworkCarlos Chagas Filho Research Support Foundation of the State of Rio de Janeiro Rio de Janerio Brazil
| |
Collapse
|
34
|
Kan X, Yan Y, Ran L, Lu L, Mi J, Zhang Z, Li X, Zeng X, Cao Y. Evaluation of bioaccessibility of zeaxanthin dipalmitate from the fruits of Lycium barbarum in oil-in-water emulsions. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.105781] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
35
|
Anestopoulos I, Kiousi DE, Klavaris A, Galanis A, Salek K, Euston SR, Pappa A, Panayiotidis MI. Surface Active Agents and Their Health-Promoting Properties: Molecules of Multifunctional Significance. Pharmaceutics 2020; 12:E688. [PMID: 32708243 PMCID: PMC7407150 DOI: 10.3390/pharmaceutics12070688] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 07/15/2020] [Accepted: 07/17/2020] [Indexed: 12/11/2022] Open
Abstract
Surface active agents (SAAs) are molecules with the capacity to adsorb to solid surfaces and/or fluid interfaces, a property that allows them to act as multifunctional ingredients (e.g., wetting and dispersion agents, emulsifiers, foaming and anti-foaming agents, lubricants, etc.) in a widerange of the consumer products of various industrial sectors (e.g., pharmaceuticals, cosmetics, personal care, detergents, food, etc.). Given their widespread utilization, there is a continuously growing interest to explore their role in consumer products (relevant to promoting human health) and how such information can be utilized in order to synthesize better chemical derivatives. In this review article, weaimed to provide updated information on synthetic and biological (biosurfactants) SAAs and their health-promoting properties (e.g., anti-microbial, anti-oxidant, anti-viral, anti-inflammatory, anti-cancer and anti-aging) in an attempt to better define some of the underlying mechanism(s) by which they exert such properties.
Collapse
Affiliation(s)
- Ioannis Anestopoulos
- Department of Molecular Biology & Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (I.A.); (D.E.K.); (A.G.)
| | - Despoina Eugenia Kiousi
- Department of Molecular Biology & Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (I.A.); (D.E.K.); (A.G.)
| | - Ariel Klavaris
- Department of Biological Sciences, University of Cyprus, 2109 Nicosia, Cyprus;
| | - Alex Galanis
- Department of Molecular Biology & Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (I.A.); (D.E.K.); (A.G.)
| | - Karina Salek
- Institute of Mechanical, Process & Energy Engineering, Heriot Watt University, Edinburgh EH14 4AS, UK; (K.S.); (S.R.E.)
| | - Stephen R. Euston
- Institute of Mechanical, Process & Energy Engineering, Heriot Watt University, Edinburgh EH14 4AS, UK; (K.S.); (S.R.E.)
| | - Aglaia Pappa
- Department of Molecular Biology & Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (I.A.); (D.E.K.); (A.G.)
| | - Mihalis I. Panayiotidis
- Department of Applied Sciences, Northumbria University, Newcastle Upon Tyne NE1 8ST, UK
- Department of Electron Microscopy & Molecular Pathology, The Cyprus Institute of Neurology & Genetics, 2371 Nicosia, Cyprus
- The Cyprus School of Molecular Medicine, P.O. Box 23462, 1683 Nicosia, Cyprus
| |
Collapse
|
36
|
Optimization of the Emulsifying Properties of Food Protein Hydrolysates for the Production of Fish Oil-in-Water Emulsions. Foods 2020; 9:foods9050636. [PMID: 32429164 PMCID: PMC7278789 DOI: 10.3390/foods9050636] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/13/2020] [Accepted: 05/14/2020] [Indexed: 01/15/2023] Open
Abstract
The incorporation of lipid ingredients into food matrices presents a main drawback-their susceptibility to oxidation-which is associated with the loss of nutritional properties and the generation of undesirable flavors and odors. Oil-in-water emulsions are able to stabilize and protect lipid compounds from oxidation. Driven by consumers' demand, the search for natural emulsifiers, such as proteins, is gaining much interest in food industries. This paper evaluates the in vitro emulsifying properties of protein hydrolysates from animal (whey protein concentrate) and vegetal origin (a soy protein isolate). By means of statistical modelling and bi-objective optimization, the experimental variables, namely, the protein source, enzyme (i.e., subtilisin, trypsin), degree of hydrolysis (2-14%) and emulsion pH (2-8), were optimized to obtain their maximal in vitro emulsifying properties. This procedure concluded that the emulsion prepared from the soy protein hydrolysate (degree of hydrolysis (DH) 6.5%, trypsin) at pH 8 presented an optimal combination of emulsifying properties (i.e., the emulsifying activity index and emulsifying stability index). For validation purposes, a fish oil-in-water emulsion was prepared under optimal conditions, evaluating its physical and oxidative stability for ten days of storage. This study confirmed that the use of soy protein hydrolysate as an emulsifier stabilized the droplet size distribution and retarded lipid oxidation within the storage period, compared to the use of a non-hydrolyzed soy protein isolate.
Collapse
|
37
|
Long J, Song J, Zhang X, Deng M, Xie L, Zhang L, Li X. Tea saponins as natural stabilizers for the production of hesperidin nanosuspensions. Int J Pharm 2020; 583:119406. [PMID: 32387309 DOI: 10.1016/j.ijpharm.2020.119406] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/27/2020] [Accepted: 05/03/2020] [Indexed: 12/26/2022]
Abstract
Tea saponins (TS), a novel multifunctional stabilizer, were explored to stabilize the nanosuspensions. The purpose of this study was to investigate the effect of TS on the stability and redispersibility of nanosuspensions. In present work, hesperidin (HDN), a poorly soluble drug, was used as a model drug. HDN nanosuspensions (HDN-NS) with particle size of 250-270 nm were prepared by high-speed shearing and high-pressure homogenization. The zeta potential of HDN-NS was -23.16 ± 1.12 mV. Compared with traditional stabilizers, TS were superior in stabilization efficiency at low concentrations. Nanosuspensions freeze-dried powder using TS and lactose as cryoprotectants had good redispersibility, and the average particle size was 266.5 ± 9.0 nm after reconstitution. TS and lactose can effectively prevent the irreversible agglomeration of HDN-NS during freeze-drying. The dissolution was enhanced owing to particle size reduction. Transmission electron microscopy (TEM) and Scanning electron microscopy (SEM) results showed that HDN nanocrystals were irregularly lumpy. The chemical structure and crystal state of HDN had not significantly changed during production. In conclusion, TS have the potential to stabilize and disperse nanosuspensions and provide a promising strategy for the development of poorly soluble drugs.
Collapse
Affiliation(s)
- Jiaying Long
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 610072, PR China
| | - Jiawen Song
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 610072, PR China
| | - Xumin Zhang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 610072, PR China
| | - Mao Deng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 610072, PR China
| | - Long Xie
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 610072, PR China
| | - Linlin Zhang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 610072, PR China
| | - Xiaofang Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 610072, PR China.
| |
Collapse
|
38
|
Shi MJ, Wang F, Jiang H, Qian WW, Xie YY, Wei XY, Zhou T. Effect of enzymatic degraded polysaccharides from Enteromorpha prolifera on the physical and oxidative stability of fish oil-in-water emulsions. Food Chem 2020; 322:126774. [PMID: 32305876 DOI: 10.1016/j.foodchem.2020.126774] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 02/27/2020] [Accepted: 04/07/2020] [Indexed: 02/08/2023]
Abstract
To explore the potential application of enzymatic degraded polysaccharides from Enteromorpha prolifra (EEP) as antioxidant in fish oils, a stable fish oil emulsion system incorporating EEP was established. Effects of emulsifier (Tween 80, gum arabic and lecithin) and EEP concentration on the physical characteristics of fish oil emulsions were investigated. The results indicated that Tween 80 was the best choice, and 1% (w/w) of EEP was the optimum concentration for the preparation of fish oil emulsions. Influence of EEP on the oxidative stability and physical stability of fish oil emulsions was compared with that of antioxidants VE and TBHQ by determining the physical properties, lipid hydroperoxide formation, secondary reaction products formation, pH and long chain polyunsaturated fatty acid content, during storage at 45 °C. The results indicated that the fish oil emulsion system (5% oil, 1% EEP and 1% Tween 80, w/w) possessed good physical and oxidative stabilities.
Collapse
Affiliation(s)
- Mei-Jia Shi
- School of Food Science and Biotechnology, Zhejiang Gongshang University, 18, Xuezheng Street, Xiasha, Hangzhou, Zhejiang, 310018, PR China; Zhoushan Institute for Food and Drug Inspection and Testing, 49 Honglu Road, Beichan, Baiquan, Zhoushan, Zhejiang 316012, PR China
| | - Fan Wang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, 18, Xuezheng Street, Xiasha, Hangzhou, Zhejiang, 310018, PR China
| | - Hui Jiang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, 18, Xuezheng Street, Xiasha, Hangzhou, Zhejiang, 310018, PR China
| | - Wen-Wen Qian
- School of Food Science and Biotechnology, Zhejiang Gongshang University, 18, Xuezheng Street, Xiasha, Hangzhou, Zhejiang, 310018, PR China
| | - Yuan-Yuan Xie
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Xiao-Yi Wei
- Department of Food Science, Faculty of Hospitality Management, Shanghai Business School, Shanghai 200235, PR China
| | - Tao Zhou
- School of Food Science and Biotechnology, Zhejiang Gongshang University, 18, Xuezheng Street, Xiasha, Hangzhou, Zhejiang, 310018, PR China.
| |
Collapse
|
39
|
Kharat M, Skrzynski M, Decker EA, McClements DJ. Enhancement of chemical stability of curcumin-enriched oil-in-water emulsions: Impact of antioxidant type and concentration. Food Chem 2020; 320:126653. [PMID: 32217430 DOI: 10.1016/j.foodchem.2020.126653] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 03/10/2020] [Accepted: 03/19/2020] [Indexed: 02/06/2023]
Abstract
Curcumin is claimed to have many health benefits, but it has low chemical stability. In this study, the influence of food-grade antioxidants on the chemical degradation of curcumin-enriched oil-in-water emulsions was examined. The curcumin degradation rate and extent depended on antioxidant type. The water-soluble antioxidants were more effective at protecting curcumin from degradation than the oil-soluble ones, which may have been because curcumin degrades faster in water than in oil. Interestingly, the amphiphilic antioxidant was almost as effective as the water-soluble ones. The oil-soluble antioxidant actually slightly promoted curcumin degradation. In summary, curcumin retention after storage declined in the following order: 82.6% (Trolox) ~82.2% (ascorbic acid) >79.5% (ascorbyl palmitate) ≫57.9% (control) >52.7% (α-tocopherol). The effectiveness of ascorbic acid in stabilizing curcumin increased as its concentration was raised (0-300 μM). Our results may facilitate the creation of curcumin-enriched foods and beverages with enhanced bioactivity.
Collapse
Affiliation(s)
- Mahesh Kharat
- Department of Food Science, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Matt Skrzynski
- Department of Bioengineering, Northeastern University, Boston, MA 02115, USA
| | - Eric Andrew Decker
- Department of Food Science, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - David Julian McClements
- Department of Food Science, University of Massachusetts Amherst, Amherst, MA 01003, USA; Department of Food Science & Bioengineering, Zhejiang Gongshang University, 18 Xuezheng Street, Hangzhou, Zhejiang 310018, China.
| |
Collapse
|
40
|
da Silveira TFF, Cajaíba LM, Valentin L, Baréa B, Villeneuve P, Castro IA. Effect of sinapic acid ester derivatives on the oxidative stability of omega-3 fatty acids rich oil-in-water emulsions. Food Chem 2020; 309:125586. [DOI: 10.1016/j.foodchem.2019.125586] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 09/19/2019] [Accepted: 09/23/2019] [Indexed: 01/27/2023]
|
41
|
Wei Y, Tong Z, Dai L, Ma P, Zhang M, Liu J, Mao L, Yuan F, Gao Y. Novel colloidal particles and natural small molecular surfactants co-stabilized Pickering emulsions with hierarchical interfacial structure: Enhanced stability and controllable lipolysis. J Colloid Interface Sci 2020; 563:291-307. [DOI: 10.1016/j.jcis.2019.12.085] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 12/17/2019] [Accepted: 12/18/2019] [Indexed: 12/15/2022]
|
42
|
Lane KE, Zhou Q, Robinson S, Li W. The composition and oxidative stability of vegetarian omega-3 algal oil nanoemulsions suitable for functional food enrichment. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:695-704. [PMID: 31602647 DOI: 10.1002/jsfa.10069] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 09/27/2019] [Accepted: 09/29/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Long chain omega-3 polyunsaturated fatty acid (LCn3PUFA) nanoemulsion enriched foods offer the potential to address habitually low oily fish intakes. Nanoemulsions increase LCn3PUFA bioavailability, although they may cause lipid oxidation. The present study examined the oxidative stability of LCn3PUFA algal oil-in-water nanoemulsions created by ultrasound using natural and synthetic emulsifiers during 5 weeks of storage at 4, 20 and 40 °C. Fatty acid composition, droplet size ranges and volatile compounds were analysed. RESULTS No significant differences were found for fatty acid composition at various temperatures and storage times. Lecithin nanoemulsions had significantly larger droplet size ranges at baseline and during storage, regardless of temperatures. Although combined Tween 40 and lecithin nanoemulsions had low initial droplet size ranges, there were significant increases at 40 °C after 5 weeks of storage. Gas chromatograms identified hexanal and propanal as predominant volatile compounds, along with 2-ethylfuran, propan-3-ol and valeraldehyde. The Tween 40 only nanoemulsion sample showed the formation of lower concentrations of volatiles compared to lecithin samples. The formation of hexanal and propanal remained stable at lower temperatures, although higher concentrations were found in nanoemulsions than in bulk oil. The lecithin only sample had formation of higher concentrations of volatiles at increased temperatures, despite having significantly larger droplet size ranges than the other samples. CONCLUSION Propanal and hexanal were the most prevalent of five volatile compounds detected in bulk oil and lecithin and/or Tween 40 nanoemulsions. Oxidation compounds remained more stable at lower temperatures, indicating suitability for the enrichment of refrigerated foods. Further research aiming to evaluate the oxidation stability of these systems within food matrices is warranted. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Katie E Lane
- Liverpool John Moores University, School of Sport and Exercise Sciences, Faculty of Science, Liverpool, UK
| | - Qiqian Zhou
- Institute of Food Science and Innovation, University of Chester, Chester, UK
| | - Sharon Robinson
- NOW Food Research Centre, University of Chester, Chester, UK
| | - Weili Li
- Institute of Food Science and Innovation, University of Chester, Chester, UK
| |
Collapse
|
43
|
Ahmadi O, Jafarizadeh-Malmiri H. Green approach in food nanotechnology based on subcritical water: effects of thyme oil and saponin on characteristics of the prepared oil in water nanoemulsions. Food Sci Biotechnol 2020; 29:783-792. [PMID: 32523788 DOI: 10.1007/s10068-019-00727-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 12/04/2019] [Accepted: 12/15/2019] [Indexed: 12/13/2022] Open
Abstract
Thyme oil in water nanomulsion was prepared under subcritical water conditions using water and saponin, as solvent and emulsifier, respectively. Gas chromatography revealed that there were 44 bioactive components in the extracted thyme essential oil which, thymol and carvacrol were two mains of them. Experiments were designed based on central composite design and effects of amounts of saponin and thyme essential oil were evaluated on particle size, polydispersity index (PDI) and zeta potential of the prepared nanoemulsions using response surface methodology. Obtained results revealed that more desirable thyme oil nanoemulsions with minimum particle size (184.51 nm) and PDI (0.514), and maximum zeta potential (- 22.51 mV) were prepared using 0.94 g of saponin and 0.28 mL of thyme essential oil. Furthermore, results indicated that prepared nanoemulsion using obtained optimum production conditions had relatively high antioxidant activity (24%) and high antibacterial and antifungal activities against Staphylococcus aureus and Penicillium digitatum.
Collapse
Affiliation(s)
- Omid Ahmadi
- Faculty of Chemical Engineering, Sahand University of Technology, Tabriz, East Azarbaijan 51335-1996 Iran
| | - Hoda Jafarizadeh-Malmiri
- Faculty of Chemical Engineering, Sahand University of Technology, Tabriz, East Azarbaijan 51335-1996 Iran
| |
Collapse
|
44
|
Riquelme N, Sepúlveda C, Arancibia C. Influence of Ternary Emulsifier Mixtures on Oxidative Stability of Nanoemulsions Based on Avocado Oil. Foods 2020; 9:E42. [PMID: 31947752 PMCID: PMC7022498 DOI: 10.3390/foods9010042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 12/31/2019] [Accepted: 01/01/2020] [Indexed: 12/20/2022] Open
Abstract
The aim of this work was to study the effect of two emulsifiers (M1: SL-soy lecithin, Tw80-Tween 80 and CasCa-calcium caseinate and M2: SL-soy lecithin, Tw80-Tween 80 and SE-sucrose esters) on the oxidative stability of avocado oil-based nanoemulsions. Oil-in-water nanoemulsions were prepared using 3.6% w/w of two emulsifier mixtures, which were optimized by mixture experimental design in order to minimize particle size (PS) and polydispersity index (PdI). Then, the oxidative stability of nanoemulsions was evaluated through both an induction period and a quantification of hydroperoxides and thiobarbituric acid reactive species (TBARs) under accelerated storage conditions. The simplex-centroid mixture design showed that PS and PdI varied when proportions of different emulsifiers were modified, obtaining an optimized concentration for each mixture of: 85% SL, 10% Tw80 and 5%CasCa (M1) and 85% SL, 7.4% Tw80 and 7.6% SE (M2) that produced nanoemulsions with PS ~116 nm and PdI < 0.2. Nanoemulsions elaborated with M1 and M2 presented similar particle characteristics and physical stability to the control sample with Tw80. However, M1 nanoemulsions were more stable against lipid oxidation, since they showed the highest induction period and lower formation of hydroperoxides and TBARs during storage.
Collapse
Affiliation(s)
- Natalia Riquelme
- Food Science and Technology Department, Technological Faculty, Universidad de Santiago de Chile, Obispo Umaña 050, Estación Central 9170201, Chile; (N.R.); (C.S.)
- Food Science and Chemical Technology Department, Universidad de Chile, Santos Dumont 964, Independencia 8380494, Chile
| | - Camila Sepúlveda
- Food Science and Technology Department, Technological Faculty, Universidad de Santiago de Chile, Obispo Umaña 050, Estación Central 9170201, Chile; (N.R.); (C.S.)
| | - Carla Arancibia
- Food Science and Technology Department, Technological Faculty, Universidad de Santiago de Chile, Obispo Umaña 050, Estación Central 9170201, Chile; (N.R.); (C.S.)
| |
Collapse
|
45
|
Omega-3 fatty acids as adjunctive therapeutics: prospective of nanoparticles in its formulation development. Ther Deliv 2020; 11:851-868. [DOI: 10.4155/tde-2019-0072] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Omega-3 polyunsaturated fatty acids (ω-3-PUFAs) are dietary components that have been extensively recognized for their therapeutic value and have shown diverse therapeutic effects including anti-inflammatory, antiarrhythmic, antithrombotic, immunomodulatory and antineoplastic activities. Most of the ω-3-PUFAs are obtained through diet or supplements because the body does not synthesize them. The high instability of ω-3-PUFAs to oxidative deterioration, lower bioavailability at the target tissues and reduced bioactivity of ω-3-PUFAs is an impediment for achieving their therapeutic potential. The present review provides an overview of potential therapeutic activities of ω-3-PUFAs and different novel technical approaches based on nanotechnology, which have been emphasized to overcome instability problems as well as enhance the bioactivity of ω-3-PUFAs. Future prospects related to this area of research are also provided.
Collapse
|
46
|
Costa M, Freiría-Gándara J, Losada-Barreiro S, Paiva-Martins F, Bravo-Díaz C. Effects of droplet size on the interfacial concentrations of antioxidants in fish and olive oil-in-water emulsions and nanoemulsions and on their oxidative stability. J Colloid Interface Sci 2019; 562:352-362. [PMID: 31855798 DOI: 10.1016/j.jcis.2019.12.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 11/28/2019] [Accepted: 12/03/2019] [Indexed: 02/05/2023]
Abstract
HYPOTHESIS One fundamental and unsolved question in colloid chemistry, and also in the food industry, is whether molecular distributions, specifically the interfacial concentrations of antioxidants (AOI), are independent of the droplet sizes. Pseudophase kinetic models, widely employed to interpret chemical reactivity in colloidal systems and to determine antioxidant distributions, assume that they are independent. EXPERIMENTS To prove, or discard, the above hypothesis, we prepared and characterized a series of olive and fish oil-in-water nanoemulsions with different droplet sizes, carried out a kinetic study to evaluate their oxidative stability, both in the presence and absence of gallic acid (GA), and determined its interfacial concentrations. FINDINGS Results indicate that a change in the droplet size (80-1300 nm) does not alter the oxidative stability of the nanoemulsions in the absence of GA. Addition of GA increases their oxidative shelf-life and, at constant surfactant volume fraction, ΦI, the oxidative stability and the antioxidant distribution do not depend on the droplet size. Overall, results suggest that the droplet size does not affect the ratio between the rates of radical production and of inhibition by antioxidants, ratio that defines an "efficient" (or inefficient) antioxidant, providing experimental evidence supporting the operative assumption of pseudophase kinetic models.
Collapse
Affiliation(s)
- Marlene Costa
- REQUIMTE-LAQV, Departamento de Química e Bioquímica. Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal
| | - Josefa Freiría-Gándara
- Universidad de Vigo, Facultad de Química, Departamento de Química - Física, 36310 Vigo, Spain
| | - Sonia Losada-Barreiro
- REQUIMTE-LAQV, Departamento de Química e Bioquímica. Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal; Universidad de Vigo, Facultad de Química, Departamento de Química - Física, 36310 Vigo, Spain.
| | - Fátima Paiva-Martins
- REQUIMTE-LAQV, Departamento de Química e Bioquímica. Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal
| | - Carlos Bravo-Díaz
- Universidad de Vigo, Facultad de Química, Departamento de Química - Física, 36310 Vigo, Spain
| |
Collapse
|
47
|
Riquelme N, Zúñiga R, Arancibia C. Physical stability of nanoemulsions with emulsifier mixtures: Replacement of tween 80 with quillaja saponin. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.05.067] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
48
|
Jalali-Jivan M, Abbasi S, Scanlon MG. Microemulsion as nanoreactor for lutein extraction: Optimization for ultrasound pretreatment. J Food Biochem 2019; 43:e12929. [PMID: 31368559 DOI: 10.1111/jfbc.12929] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 05/06/2019] [Accepted: 05/12/2019] [Indexed: 12/19/2022]
Abstract
In the present study, the capability of microemulsion technique, as a novel technique for synchronous extraction and solubilization of lipophilic compounds, on lutein extraction from marigold petals was investigated. Under the optimized sonication (amplitude 100%, 120 s, 25°C), the extraction efficiency increased (85%) using SDS:ethanol (1:2)-based ME. Moreover, sonication led to smaller droplets (12-163 nm) with favorable thermodynamic stability. In addition, the developed MEs showed higher thermal and especially UV stability in comparison to organic solvent extracts which were fainted with first-order kinetics. It was also found that co-surfactant could be eliminated from formulation on the expense of the optimized sonication, was valuable output form industrial point of view. These findings revealed the high potential of ultrasound technique on the extraction and solubilization of lutein by ME technique which can be directly utilized in lutein-enriched functional foods and beverages. PRACTICAL APPLICATIONS: From applicability point of view, the solvent extracted compounds cannot be easily dissolved in food or pharmaceutical systems that are mostly hydrophilic. Therefore, microemulsions (MEs), as green and environmentally friendly food-grade systems, due to their potential capability for simultaneous extraction and solubilization of carotenoids are of great interest. Therefore, the present study confirmed the practical ability of MEs in lutein extraction and protection. All in all, the developed lutein MEs with high lutein extraction capacity and superior lutein chemical stability against thermal treatment and especially UV radiation is an original finding which allows design of new functional foods and could be potentially useful for enriching foods, pharmaceuticals, nutraceuticals, and supplement formulation.
Collapse
Affiliation(s)
- Mehdi Jalali-Jivan
- Food Colloids and Rheology Lab., Department of Food Science and Technology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Soleiman Abbasi
- Food Colloids and Rheology Lab., Department of Food Science and Technology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Martin G Scanlon
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
49
|
Jalali Jivan M, Abbasi S. Nano based lutein extraction from marigold petals: optimization using different surfactants and co-surfactants. Heliyon 2019; 5:e01572. [PMID: 31183433 PMCID: PMC6488751 DOI: 10.1016/j.heliyon.2019.e01572] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 02/06/2019] [Accepted: 04/23/2019] [Indexed: 11/23/2022] Open
Abstract
Nanotechnology has high potential in processing of industrial crops and by-products in order to extract valuable biological active compounds. The present study endeavored to take advantage of nanotech approach (i.e microemulsion, ME), as a novel green technique, for lutein extraction from marigold (Tagetes erecta) as an industrial crop. The pseudo-ternary phase diagrams confirmed the effect of surfactant type on the formation of mono-phasic lutein MEs. The combination of sucrose monopalmitate:1-poropanol (1:5) showed the highest efficiency in the presence of marigold petal powder (MPP, 18%) and water (42%). In addition, the efficiency of primitive MEs (without co-surfactants) was outstandingly increased as MPP was moistened by co-surfactants. Furthermore, different MEs resulted in various droplet size (14–250nm), PDI (0.05–0.32) and zeta potential (−1.96 to −38.50 mV). These findings revealed the outstanding importance of the surfactants and co-surfactants and their ratio on the extraction capability of MEs. These findings also proved the capability of microemulsion technique (MET) as a potential alternative to conventional solvent with possible applicability for extraction of lutein and other industrial plant based bio-compounds.
Collapse
Affiliation(s)
- Mehdi Jalali Jivan
- Food Colloids and Rheology Lab., Department of Food Science and Technology, Faculty of Agriculture, Tarbiat Modares University, P O Box, 14115-336, Tehran, Iran
| | - Soliman Abbasi
- Food Colloids and Rheology Lab., Department of Food Science and Technology, Faculty of Agriculture, Tarbiat Modares University, P O Box, 14115-336, Tehran, Iran
| |
Collapse
|
50
|
Reichert CL, Salminen H, Weiss J. Quillaja Saponin Characteristics and Functional Properties. Annu Rev Food Sci Technol 2019; 10:43-73. [DOI: 10.1146/annurev-food-032818-122010] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Consumer concerns about synthetically derived food additives have increased current research efforts to find naturally occurring alternatives. This review focuses on a group of natural surfactants, the Quillaja saponins, that can be extracted from the Quillaja saponaria Molina tree. Quillaja saponins are triterpenoid saponins comprising a hydrophobic quillaic acid backbone and hydrophilic sugar moieties. Commercially available Quillaja saponin products and their composition and properties are described, and the technofunctionality of Quillaja saponins in a variety of food, cosmetic, and pharmaceutical product applications is discussed. These applications make use of the biological and interfacial activities of Quillaja saponins and their ability to form and stabilize colloidal structures such as emulsions, foams, crystallized lipid particles, heteroaggregates, and micelles. Further emphasis is given to the complexation and functional properties of Quillaja saponins with other cosurfactants to create mixed surfactant systems, an approach that has the potential to facilitate new interfacial structures and novel functionalities.
Collapse
Affiliation(s)
- Corina L. Reichert
- Department of Food Physics and Meat Science, Institute of Food Science and Biotechnology, University of Hohenheim, 70599 Stuttgart, Germany
| | - Hanna Salminen
- Department of Food Physics and Meat Science, Institute of Food Science and Biotechnology, University of Hohenheim, 70599 Stuttgart, Germany
| | - Jochen Weiss
- Department of Food Physics and Meat Science, Institute of Food Science and Biotechnology, University of Hohenheim, 70599 Stuttgart, Germany
| |
Collapse
|