1
|
Chen C, Huang L, Chen Y, Jin J, Xu Z, Liu F, Li K, Sun Y. Hydrolyzed egg yolk peptide prevented osteoporosis by regulating Wnt/β-catenin signaling pathway in ovariectomized rats. Sci Rep 2024; 14:10227. [PMID: 38702443 PMCID: PMC11068896 DOI: 10.1038/s41598-024-60514-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 04/24/2024] [Indexed: 05/06/2024] Open
Abstract
Hydrolyzed egg yolk peptide (YPEP) was shown to increase bone mineral density in ovariectomized rats. However, the underlying mechanism of YPEP on osteoporosis has not been explored. Recent studies have shown that Wnt/β-catenin signaling pathway and gut microbiota may be involved in the regulation of bone metabolism and the progression of osteoporosis. The present study aimed to explore the preventive effect of the YPEP supplementation on osteoporosis in ovariectomized (OVX) rats and to verify whether YPEP can improve osteoporosis by regulating Wnt/β-catenin signaling pathway and gut microbiota. The experiment included five groups: sham surgery group (SHAM), ovariectomy group (OVX), 17-β estradiol group (E2: 25 µg /kg/d 17β-estradiol), OVX with low-dose YPEP group (LYPEP: 10 mg /kg/d YPEP) and OVX with high-dose YPEP group (HYPEP: 40 mg /kg/d YPEP). In this study, all the bone samples used were femurs. Micro-CT analysis revealed improvements in both bone mineral density (BMD) and microstructure by YPEP treatment. The three-point mechanical bending test indicated an enhancement in the biomechanical properties of the YPEP groups. The serum levels of bone alkaline phosphatase (BALP), bone gla protein (BGP), calcium (Ca), and phosphorus (P) were markedly higher in the YPEP groups than in the OVX group. The LYPEP group had markedly lower levels of alkaline phosphatase (ALP), tartrate-resistant acid phosphatase (TRAP) and C-terminal telopeptide of type I collagen (CTX-I) than the OVX group. The YPEP groups had significantly higher protein levels of the Wnt3a, β-catenin, LRP5, RUNX2 and OPG of the Wnt/β-catenin signaling pathway compared with the OVX group. Compared to the OVX group, the ratio of OPG/RANKL was markedly higher in the LYPEP group. At the genus level, there was a significantly increase in relative abundance of Lachnospiraceae_NK4A136_group and a decrease in Escherichia_Shigella in YPEP groups, compared with the OVX group. However, in the correlation analysis, there was no correlation between these two bacteria and bone metabolism and microstructure indexes. These findings demonstrate that YPEP has the potential to improve osteoporosis, and the mechanism may be associated with its modulating effect on Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Chuanjing Chen
- School of Public Health, Qingdao University, Qingdao, China
| | - Ludi Huang
- School of Public Health, Qingdao University, Qingdao, China
| | | | - Jin Jin
- School of Public Health, Qingdao University, Qingdao, China
| | - Ze Xu
- School of Public Health, Qingdao University, Qingdao, China
| | - Fei Liu
- Fine Biotechnological R&D Center, Guangzhou, China
| | - Kelei Li
- School of Public Health, Qingdao University, Qingdao, China.
- Institute of Nutrition and Health, School of Public Health, Qingdao University, Qingdao, China.
| | - Yongye Sun
- School of Public Health, Qingdao University, Qingdao, China.
| |
Collapse
|
2
|
Xi X, Gao Y, Wang J, Zheng N. Strontium chloride improves bone mass by affecting the gut microbiota in young male rats. Front Endocrinol (Lausanne) 2023; 14:1198475. [PMID: 37795367 PMCID: PMC10545847 DOI: 10.3389/fendo.2023.1198475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 08/21/2023] [Indexed: 10/06/2023] Open
Abstract
Introduction Bone mass accumulated in early adulthood is an important determinant of bone mass throughout the lifespan, and inadequate bone deposition may lead to associated skeletal diseases. Recent studies suggest that gut bacteria may be potential factors in boosting bone mass. Strontium (Sr) as a key bioactive element has been shown to improve bone quality, but the precise way that maintains the equilibrium of the gut microbiome and bone health is still not well understood. Methods We explored the capacity of SrCl2 solutions of varying concentrations (0, 100, 200 and 400 mg/kg BW) on bone quality in 7-week-old male Wistar rats and attempted to elucidate the mechanism through gut microbes. Results The results showed that in a Wistar rat model under normal growth conditions, serum Ca levels increased after Sr-treatment and showed a dose-dependent increase with Sr concentration. Three-point mechanics and Micro-CT results showed that Sr exposure enhanced bone biomechanical properties and improved bone microarchitecture. In addition, the osteoblast gene markers BMP, BGP, RUNX2, OPG and ALP mRNA levels were significantly increased to varying degrees after Sr treatment, and the osteoclast markers RANKL and TRAP were accompanied by varying degrees of reduction. These experimental results show that Sr improves bones from multiple angles. Further investigation of the microbial population revealed that the composition of the gut microbiome was changed due to Sr, with the abundance of 6 of the bacteria showing a different dose dependence with Sr concentration than the control group. To investigate whether alterations in bacterial flora were responsible for the effects of Sr on bone remodeling, a further pearson correlation analysis was done, 4 types of bacteria (Ruminococcaceae_UCG-014, Lachnospiraceae_NK4A136_group, Alistipes and Weissella) were deduced to be the primary contributors to Sr-relieved bone loss. Of these, we focused our analysis on the most firmly associated Ruminococcaceae_UCG-014. Discussion To summarize, our current research explores changes in bone mass following Sr intervention in young individuals, and the connection between Sr-altered intestinal flora and potentially beneficial bacteria in the attenuation of bone loss. These discoveries underscore the importance of the "gut-bone" axis, contributing to an understanding of how Sr affects bone quality, and providing a fresh idea for bone mass accumulation in young individuals and thereby preventing disease due to acquired bone mass deficiency.
Collapse
Affiliation(s)
- Xueyao Xi
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yanan Gao
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jiaqi Wang
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Nan Zheng
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
3
|
Liu W, Tang C, Cai Z, Jin Y, Ahn DU, Xi H. The effectiveness of polypeptides from phosvitin and eggshell membrane in enhancing the bioavailability of eggshell powder calcium and its accumulation in bones. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
4
|
Li X, Zhang J, Kong X, Xerenbek T, Mamet T. Yak (Bos grunniens) milk improves bone mass and microarchitecture in mice with osteoporosis. J Dairy Sci 2022; 105:7878-7890. [PMID: 35965127 DOI: 10.3168/jds.2022-21880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 05/23/2022] [Indexed: 11/19/2022]
Abstract
The effect of milk on bone health is controversial. In this study, the effects of yak milk in mice with retinoic acid-induced osteoporosis (OP) were evaluated. Yak milk was provided to OP mice as a nutrition supplement for 6 wk. The results showed that yak milk significantly reduced bone turnover markers (tartrate acid phosphatase and alkaline phosphatase). The yak milk treatment was also associated with remarkably increased bone mineral density, bone volume, trabecular thickness, and trabecular number, as well as improved biomechanical properties (maximum load and stress) of the tibia. Furthermore, yak milk mitigated the deterioration of the network and thickness of trabecular bone in treated OP mice compared with the OP model group. The results indicated that yak milk could improve bone mass and microarchitecture through the inhibition of bone resorption in OP mice.
Collapse
Affiliation(s)
- Xiaotong Li
- Department of Food Science and Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China
| | - Jin Zhang
- Department of Food Science and Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China
| | - Xianglin Kong
- Department of Food Science and Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China
| | - Talaygul Xerenbek
- The First People's Hospital of Kashgar Prefecture, Kashgar 844000, China
| | - Torkun Mamet
- Department of Food Science and Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China; Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, Xinjiang University, Urumqi 830046, China.
| |
Collapse
|
5
|
Kim H, Roh Y, Yong Park S, Lee C, Lim S, Cho S, Lee HY, Auck Hong S, Jin Lee T, Chul Myung S, Yun SJ, Hyun Choi Y, Kim WJ, Moon SK. In vitro and in vivo anti-tumor efficacy of krill oil against bladder cancer: Involvement of tumor-associated angiogenic vasculature. Food Res Int 2022; 156:111144. [DOI: 10.1016/j.foodres.2022.111144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 03/11/2022] [Accepted: 03/13/2022] [Indexed: 11/04/2022]
|
6
|
Yue H, Tian Y, Li Y, Bai X, Wang X, Wang Y, Li Z, Xue C, Wang J. Comparative study of holothurin A and echinoside A on inhibiting the high bone turnover via downregulating PI3K/AKT/β-catenin and OPG/RANKL/NF-κB signaling in ovariectomized mice. Food Funct 2022; 13:4748-4756. [PMID: 35389397 DOI: 10.1039/d1fo04357a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Holothurin A (HA) and Echinoside A (EA) are the most abundant monomers in sea cucumber saponins, exhibiting different structures only in the side chain at position 20. However, although sea cucumber saponins have been proved to have osteogenic activity, the effect and structure-activity relationship of sea cucumber saponins to improve osteoporosis remain unknown. In the current study, mice with ovariectomization-induced osteoporosis were orally administered with HA and EA for 90 days. The result showed that both HA and EA reduced the levels of serum osteogenesis markers ALP, collagen I, and OCN and bone resorption markers MMP-9, Cath-K and TRAP, and thus inhibited the high bone turnover induced by ovariectomy. Furthermore, we found that HA and EA increased the bone mineral density and apposition rate, reversed the loss of trabecular bone and bone marrow stroma, in which EA exhibited more effective effects. CB1 and MKP-1 are the targets of the glucocorticoid-like effect of saponins. PCR and western blot results indicated that HA and EA alleviated overactive osteogenesis via stimulating CB1 and MKP-1, downregulating the PI3K/AKT/β-catenin signal pathway. The OPG/RANKL/NF-κB pathway was identified as a critical regulator of bone resorption. Further investigation revealed that HA and EA significantly downregulate the expression of IKK, NF-κB and phosphorylated NF-κB p65, suppressing the expression of osteoclastogenesis transcription factors c-fos and NFATC1. To the best of our knowledge, this is the first report showing that both HA and EA improved osteoporosis, and these activities depend on the structure of saponins. These findings would provide guidance for the application of saponins in the management of osteoporosis.
Collapse
Affiliation(s)
- Hao Yue
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, Shangdong, China.
| | - Yingying Tian
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, Shangdong, China. .,Marine Biomedical Research Institute of Qingdao, Qingdao, 266071, Shandong, China
| | - Yanqi Li
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, Shangdong, China.
| | - Xiaolin Bai
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, Shangdong, China.
| | - Xiaohong Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, Shangdong, China.
| | - Yuming Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, Shangdong, China.
| | - Zhaojie Li
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, Shangdong, China.
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, Shangdong, China. .,Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, Shandong Province, P.R. China.
| | - Jingfeng Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, Shangdong, China.
| |
Collapse
|
7
|
Yang M, Wu D, Cheng S, Dong Y, Wu C, Wang Z, Du M. Inhibitory effects of Atlantic cod (Gadus morhua) peptides on RANKL-induced osteoclastogenesis in vitro and osteoporosis in ovariectomized mice. Food Funct 2022; 13:1975-1988. [DOI: 10.1039/d1fo03696c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Atlantic cod (Gadus morhua) is one of the most important fishes in the world with high nutritional value and economic value. However, the impact and underlying mechanism of the G....
Collapse
|
8
|
WANG S, ZHOU D, LIN H. Ameliorative effects of phosphorylated peptide from Antarctic krill (Euphausia superba) against H2O2-induced damage in MC3T3-E1 cells. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.64920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
| | - Deqing ZHOU
- Chinese Academy of Fishery Sciences, China; Pilot National Laboratory for Marine Science and Technology, China
| | - Haiyan LIN
- Chinese Academy of Fishery Sciences, China
| |
Collapse
|
9
|
Sea cucumber enzymatic hydrolysates relieve osteoporosis through OPG/RANK/RANKL system in ovariectomized rats. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101572] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
10
|
ZHU Y, JIN S, ZHANG D, DUAN Z, ZHAO D, HAN K, GU S, LI T, HUO N. Sheep bone collagen peptide ameliorates osteoporosis by regulating RANK/RANKL/OPG signal pathway. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.18822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Yixin ZHU
- College of Veterinary Medicine, China
| | | | | | - Zhuo DUAN
- College of Veterinary Medicine, China
| | | | | | | | - Tao LI
- College of Veterinary Medicine, China
| | | |
Collapse
|
11
|
A novel nonapeptide SSDAFFPFR from Antarctic krill exerts a protective effect on PC12 cells through the BCL-XL/Bax/Caspase-3/p53 signaling pathway. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101345] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
12
|
Wang F, Weng Z, Song H, Bao Y, Sui H, Fang Y, Tang X, Shen X. Ferric ammonium citrate (FAC)-induced inhibition of osteoblast proliferation/differentiation and its reversal by soybean-derived peptides (SDP). Food Chem Toxicol 2021; 156:112527. [PMID: 34464636 DOI: 10.1016/j.fct.2021.112527] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 08/22/2021] [Accepted: 08/27/2021] [Indexed: 11/25/2022]
Abstract
Ferric citrate has been used to treat hyperphosphatemia, a prevalent symptom in patients with chronic kidney disease while ferric ammonium citrate (FAC), a more dissolvable format, is widely used as food additive. However, excess iron is associated with osteoporosis. Dietary soybean products have been shown to prevent the progression of osteoporosis. In this study, a group of peptides, referred as P3, was identified from the enzymolysis of soybean protein isolates, and its biological functions were investigated. The results showed that MC3T3-E1 cell cycle progression from G0/G1 to S phase was accelerated by P3 treatment. MC3T3-E1 cell proliferation was enhanced by P3 via ERK1/2 activation. Importantly, P3 treatment abolished the antiproliferative effect of FAC on MC3T3-E1 cell. In addition, P3 treatment increased the expression of ALP, COL-1, OCN, consequently promoting the differentiation and mineralization of MC3T3-E1 cells via activation of p38 MAPK pathway. Consequently, P3 treatment was able to reverse the inhibitory effect of FAC on osteoblasts differentiation and mineralization. Our findings suggest P3, as a dietary supplement, has a potential therapeutic function to attenuate the adverse effects of FAC on bone metabolism and to prevent osteoporosis progression.
Collapse
Affiliation(s)
- Fang Wang
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, 210023, China
| | - Zebin Weng
- School of Traditional Chinese Medicine & School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Haizhao Song
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, 210023, China
| | - Yifang Bao
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, 210023, China
| | - Huilin Sui
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, 210023, China
| | - Yong Fang
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, 210023, China
| | - Xiaozhi Tang
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, 210023, China
| | - Xinchun Shen
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, 210023, China.
| |
Collapse
|
13
|
Shen Q, Zhang C, Qin X, Zhang H, Zhang Z, Richel A. Modulation of gut microbiota by chondroitin sulfate calcium complex during alleviation of osteoporosis in ovariectomized rats. Carbohydr Polym 2021; 266:118099. [PMID: 34044918 DOI: 10.1016/j.carbpol.2021.118099] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/29/2021] [Accepted: 04/15/2021] [Indexed: 12/21/2022]
Abstract
Although chondroitin sulfate calcium complex (CSCa) was claimed to have the bioactivity for bone care in vitro, its anti-osteoporosis bioactivity was little reported in vivo. Here, the effects of CSCa on osteoporosis rats were investigated. Results showed that, compared with the osteoporosis rats, CSCa could improve the bone mineral density and microstructure of femur, and change the bone turnover markers level in serum. 16S rRNA sequencing and metabolomics analysis indicated CSCa intervention altered the composition of gut microbiota along with metabolite profiles in ovariectomized rat faeces. The correlation analysis showed some gut microbiota taxa were significantly correlated with osteoporosis phenotypes and the enriched metabolites. Taken together, dietary CSCa intervention has the potential to alleviate the osteoporosis and related symptoms probably involving gut microbiota or the metabolite profiles as demonstrated in rats. This study provides some scientific evidence for the potential effects of CSCa as the food supplement on the osteoporosis.
Collapse
Affiliation(s)
- Qingshan Shen
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China; University of Liege-Gembloux Agro-Bio Tech, Laboratory of Biomass and Green Technologies, Passage des déportés 2, B-5030 Gembloux, Belgium
| | - Chunhui Zhang
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Xiaojie Qin
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Hongru Zhang
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China; University of Liege-Gembloux Agro-Bio Tech, Laboratory of Biomass and Green Technologies, Passage des déportés 2, B-5030 Gembloux, Belgium
| | - Zhiqiang Zhang
- Shandong Haiyu Biotechnology Co., Ltd., Jining 272113, China
| | - Aurore Richel
- University of Liege-Gembloux Agro-Bio Tech, Laboratory of Biomass and Green Technologies, Passage des déportés 2, B-5030 Gembloux, Belgium
| |
Collapse
|
14
|
Lycopene ameliorates diabetic osteoporosis via anti-inflammatory, anti-oxidation, and increasing Osteoprotegerin/RANKL expression ratio. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104539] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
15
|
Transcriptome Analysis of Egg Yolk Sialoglycoprotein on Osteogenic Activity in MC3T3-E1 Cells. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11146428] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In this study, the effects of egg yolk sialoglycoprotein (EYG) on osteogenesis in MC3T3-E1 cells were investigated and the DEGs (differentially expressed genes) were explored by transcriptome analysis. The results found that EYG effectively increased cell proliferation, enhanced ALP activity, promoted the secretion of extracellular matrix protein COL-I and OCN, enhanced bone mineralization activity, exhibiting good osteogenic activity. Further study of the mechanism was explored through transcriptome analysis. Transcriptome analysis showed that 123 DEGs were triggered by EYG, of which 78 genes were downregulated and 45 genes were upregulated. GO (gene ontology) analysis showed that EYG mainly caused differences in gene expression of biological processes and cell composition categories in the top 30 most enriched items. KEGG (Kyoto Encyclopedia of Genes and Genomes) analysis showed that EYG inhibited inflammatory factors and downregulated inflammation-related pathways. The results also showed EYG regulated such genes as COL2A1, COL4A1 and COL4A2 to up-regulate pathways including ECM–receptor interaction, focal adhesion and protein digestion and absorption, enhancing the proliferation and differentiation of osteoblasts. Gene expression of COL-I, Runx2, BMP2 and β-catenin was determined by qRT-PCR for verification, which found that EYG significantly increased COL-I, Runx2, BMP2 and β-catenin gene expression, suggesting that BMP-2 mediated osteogenesis pathway was activated.
Collapse
|
16
|
Zhang SY, Zhao GX, Suo SK, Wang YM, Chi CF, Wang B. Purification, Identification, Activity Evaluation, and Stability of Antioxidant Peptides from Alcalase Hydrolysate of Antarctic Krill ( Euphausia superba) Proteins. Mar Drugs 2021; 19:md19060347. [PMID: 34204535 PMCID: PMC8235214 DOI: 10.3390/md19060347] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/13/2021] [Accepted: 06/15/2021] [Indexed: 12/21/2022] Open
Abstract
For utilizing the largest source of marine proteins, Antarctic krill (Euphausia superba) proteins were defatted and hydrolyzed separately using pepsin, alcalase, papain, trypsin, and netrase, and alcalase hydrolysate (EPAH) showed the highest DPPH radical (DPPH·) and hydroxyl radical (HO·) scavenging activity among five hydrolysates. Using ultrafiltration and chromatography methods, fifteen antioxidant peptides were purified from EPAH and identified as Asn-Gln-Met (NQM), Trp-Phe-Pro-Met (WFPM), Gln-Asn-Pro-Thr (QNPT), Tyr-Met-Asn-Phe (YMNF), Ser-Gly-Pro-Ala (SGPA), Ser-Leu-Pro-Tyr (SLPY), Gln-Tyr-Pro-Pro-Met-Gln-Tyr (QYPPMQY), Glu-Tyr-Glu-Ala (EYEA), Asn-Trp-Asp-Asp-Met-Arg-Ile-Val-Ala-Val (NWDDMRIVAV), Trp-Asp-Asp-Met-Glu-Arg-Leu-Val-Met-Ile (WDDMERLVMI), Asn-Trp-Asp-Asp-Met-Glu-Pro-Ser-Phe (NWD-DMEPSF), Asn-Gly-Pro-Asp-Pro-Arg-Pro-Ser-Gln-Gln (NGPDPRPSQQ), Ala-Phe-Leu-Trp-Asn (AFLWA), Asn-Val-Pro-Asp-Met (NVPDM), and Thr-Phe-Pro-Ile-Tyr-Asp-Tyr-Pro-Gln (TFPIYDPQ), respectively, using a protein sequencer and ESI/MS. Among fifteen antioxidant peptides, SLPY, QYPPMQY and EYEA showed the highest scavenging activities on DPPH· (EC50 values of 1.18 ± 0.036, 1.547 ± 0.150, and 1.372 ± 0.274 mg/mL, respectively), HO· (EC50 values of 0.826 ± 0.027, 1.022 ± 0.058, and 0.946 ± 0.011 mg/mL, respectively), and superoxide anion radical (EC50 values of 0.789 ± 0.079, 0.913 ± 0.007, and 0.793 ± 0.056 mg/mL, respectively). Moreover, SLPY, QYPPMQY and EYEA showed strong reducing power, protective capability against H2O2-damaged plasmid DNA, and lipid peroxidation inhibition ability. Furthermore, SLPY, QYPPMQY, and EYEA had high stability under temperatures lower than 80 °C, pH values ranged from 6-8, and simulated GI digestion for 180 min. The results showed that fifteen antioxidant peptides from alcalase hydrolysate of Antarctic krill proteins, especially SLPY, QYPPMQY and EYEA, might serve as effective antioxidant agents applied in food and health products.
Collapse
Affiliation(s)
- Shuang-Yi Zhang
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China; (S.-Y.Z.); (G.-X.Z.); (S.-K.S.); (Y.-M.W.)
| | - Guo-Xu Zhao
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China; (S.-Y.Z.); (G.-X.Z.); (S.-K.S.); (Y.-M.W.)
| | - Shi-Kun Suo
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China; (S.-Y.Z.); (G.-X.Z.); (S.-K.S.); (Y.-M.W.)
| | - Yu-Mei Wang
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China; (S.-Y.Z.); (G.-X.Z.); (S.-K.S.); (Y.-M.W.)
| | - Chang-Feng Chi
- National and Provincial Joint Laboratory of Exploration and Utilization of Marine Aquatic Genetic Resources, National Engineering Research Center of Marine Facilities Aquaculture, School of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316022, China
- Correspondence: (C.-F.C.); (B.W.); Tel./Fax: +86-580-255-4818 (C.-F.C.); +86-580-255-4781 (B.W.)
| | - Bin Wang
- National and Provincial Joint Laboratory of Exploration and Utilization of Marine Aquatic Genetic Resources, National Engineering Research Center of Marine Facilities Aquaculture, School of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316022, China
- Correspondence: (C.-F.C.); (B.W.); Tel./Fax: +86-580-255-4818 (C.-F.C.); +86-580-255-4781 (B.W.)
| |
Collapse
|
17
|
Wang F, Sheng J, Chen Y, Xu J. Microbial diversity and dominant bacteria causing spoilage during storage and processing of the Antarctic krill, Euphausia superba. Polar Biol 2021. [DOI: 10.1007/s00300-020-02789-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
18
|
Zhu Y, Tian Y, Wang N, Chang Y, Xue C, Wang J. Structure-function relationship analysis of fucoidan from sea cucumber (Holothuria tubulosa) on ameliorating metabolic inflammation. J Food Biochem 2020; 45:e13500. [PMID: 33300146 DOI: 10.1111/jfbc.13500] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 08/26/2020] [Accepted: 09/04/2020] [Indexed: 01/16/2023]
Abstract
The structure-function relationships of sea cucumber fucoidan has been seldom investigated. In this study, the effect of fucoidan which extracted from sea cucumber Holothuria tubulosa (Ht-FUC) with different molecular weight and chain conformation (Ht1/2/3/4) in metabolic inflammation was investigated. A co-cultured system comprising adipocytes and macrophages was used to explore the impact in vitro. The high-fat high-sucrose diet (HFD)-fed obese mice model was established to verified the effect of Ht-FUC in vivo. The results demonstrated that all examined Ht-FUC attenuated the productions of inflammatory cytokines, promoted the M2 phenotypic polarization of co-cultured macrophage by activating PPARγ. Furthermore Ht-FUC impressed lipolysis of the co-cultured adipocytes by inhibiting TLR4/NF-κB-dependent pathway. In vivo, Ht-FUC especially reduced serum inflammation level, attenuated M1/M2 polarization of liver Kupffer cells, and attenuated inflammatory infiltration of epididymal adipose tissue. Consistently, Ht3 played the best effect, and may be more beneficial for the intervention of metabolic disease. PRACTICAL APPLICATIONS: In this study, the structure-function relationships of fucoidan extracted from Holothuria tubulosa (Ht-FUC) on ameliorating metabolic inflammation was investigated for the first time. In this research, we reported that Ht-FUC ameliorating metabolic inflammation by improving FFA-induced macrophage polarization and lipolysis in both co-cultured system and obese mice. The study provides some theoretical basis for the high-value utilization of Ht-FUC with different molecular weight.
Collapse
Affiliation(s)
- Yujie Zhu
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Yingying Tian
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Na Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Yaoguang Chang
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Jingfeng Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| |
Collapse
|
19
|
Mei F, Duan Z, Chen M, Lu J, Zhao M, Li L, Shen X, Xia G, Chen S. Effect of a high-collagen peptide diet on the gut microbiota and short-chain fatty acid metabolism. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104278] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
20
|
Sun N, Zhang P, Jiang P, Wang Y, Cui P, Li T, Lin S. Herring egg phosphopeptides as calcium carriers for improving calcium absorption and bone microarchitecture in vivo. Food Funct 2020; 11:10936-10944. [PMID: 33245079 DOI: 10.1039/d0fo01232g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Phosphorylation may enhance the functional properties of proteins/peptides. Herring egg phosphopeptides (HEPPs) have been found to be more effective than the non-phosphorylated variant in calcium-binding activities due to the introduced phosphate groups. However, whether HEPPs as calcium carriers will be superior to herring egg peptides (HEPs) in improving calcium bioavailability in vivo, for the equivalent calcium intake prerequisite, remains to be clarified. This study aimed to evaluate the effect of HEPPs-calcium complex and HEPs-calcium complex on calcium absorption and bioavailability in calcium-deficient mice. Results showed that the remarkably lower calcium absorption and bone calcium deposition induced by long-term calcium deficiency were accompanied by deterioration of the trabecular bone microarchitecture (P < 0.05). The HEPPs-Ca supplements significantly improved the apparent calcium absorption, increased the serum calcium level, decreased the alkaline phosphatase activity, strengthened the bone biomechanical property, and increased bone volume/tissue volume (BV/TV) and trabecular number (Tb·N) in calcium-deficient mice (P < 0.05), as determined by micro-computed tomography (micro-CT) assay. The effect of HEPPs-Ca on calcium absorption and bioavailability was comparable to that of CPPs-Ca, but better than that of HEPs-Ca and CaCO3. This study brings new insights into the potential of HEPPs as an alternative to CPPs for use in calcium supplements.
Collapse
Affiliation(s)
- Na Sun
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
21
|
Ye M, Zhang C, Jia W, Shen Q, Qin X, Zhang H, Zhu L. Metabolomics strategy reveals the osteogenic mechanism of yak (Bos grunniens) bone collagen peptides on ovariectomy-induced osteoporosis in rats. Food Funct 2020; 11:1498-1512. [PMID: 31993619 DOI: 10.1039/c9fo01944h] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Our previous work demonstrated that yak bone collagen peptides (YBP) possessed excellent osteogenic activity in vitro. However, associations between YBP and osteoporosis were less established, and the positive effect and underlying mechanism of YBP in the treatment of osteoporotic rats in vivo remained unclear. Herein, ovariectomized rats were intragastrically administered with YBP or 17β-estradiol for 12 weeks. Bone turnover markers, bone biomechanical parameters and bone microarchitecture were investigated to identify the specific changes of potential antagonistic effects of YBP on ovariectomized rats. Then, serum samples were analyzed by UPLC/Q-TOF-MS to identify metabolites. The results showed that YBP treatment remarkably altered the content of serum bone turnover markers and prevented the ovariectomy-induced deterioration of bone mechanical and microarchitecture characteristics. A total of forty-one biomarkers for which levels changed markedly upon treatment have been identified based on non-targeted metabolomics. Among them, twenty-one metabolites displayed a downward expression level, while twenty metabolites showed an upward expression level in the YBP group and finally were selected as potential biomarkers. The levels of these biomarkers displayed significant alterations and a tendency to be restored to normal values in YBP treated osteoporotic rats. A systematic network analysis of their corresponding pathways delineated that the protective or recovery effect of YBP on osteoporosis occurred primarily by regulating the amino acid metabolism and lipid metabolism (especially unsaturated fatty acid). Collectively, these findings highlight that such peptides hold promise in further advancement as a natural alternative for functional and health-promoting foods, which could be potentially used in mediated treatment of osteoporosis.
Collapse
Affiliation(s)
- Mengliang Ye
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | | | | | | | | | | | | |
Collapse
|
22
|
Chen Y, Chen J, Chen J, Yu H, Zheng Y, Zhao J, Zhu J. Recent advances in seafood bioactive peptides and their potential for managing osteoporosis. Crit Rev Food Sci Nutr 2020; 62:1187-1203. [PMID: 33094645 DOI: 10.1080/10408398.2020.1836606] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Marine biodiversity provides a range of diverse biological resources, including seafoods that are rich in protein and a well-balanced amino acid composition. Previous studies have shown that peptides can improve bone formation and/or inhibit bone resorption, suggesting the potential for seafood bioactive peptides (SBPs) in development of food and pharmaceuticals for management of osteoporosis. In this review, we provided an up-to-date overview of the anti-osteoporosis activity of SBPs and describe their underlying molecular mechanisms. We focus on SBPs' development, broadening the scope and depth of research, as well as strengthening in vivo and clinical research. In vitro cell cultures and in vivo animal osteoporosis models have demonstrated the potential for seafood-derived SBPs, including fish, mollusks, crustaceans, seaweed and microalgae, in preventing osteoporosis. These peptides may act by activating the signaling pathways, such as BMP/Smads, MAPK, OPG/RANKL/RANK, and NF-κB, which are associated with modulation bone health.
Collapse
Affiliation(s)
- Yixuan Chen
- College of Biosystems Engineering & Food Science, Zhejiang University, Hangzhou, China
| | - Jianchu Chen
- College of Biosystems Engineering & Food Science, Zhejiang University, Hangzhou, China.,Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou, China
| | - Juan Chen
- College of Biosystems Engineering & Food Science, Zhejiang University, Hangzhou, China
| | - Huilin Yu
- College of Biosystems Engineering & Food Science, Zhejiang University, Hangzhou, China
| | - Yangfan Zheng
- College of Biosystems Engineering & Food Science, Zhejiang University, Hangzhou, China
| | - Jiawen Zhao
- College of Biosystems Engineering & Food Science, Zhejiang University, Hangzhou, China
| | - Jiajin Zhu
- College of Biosystems Engineering & Food Science, Zhejiang University, Hangzhou, China.,Ningbo Research Institute, Zhejiang University, Ningbo, China
| |
Collapse
|
23
|
Yu Y, Liu X, Miao J, Leng K. Chitin from Antarctic krill shell: Eco-preparation, detection, and characterization. Int J Biol Macromol 2020; 164:4125-4137. [PMID: 32890560 DOI: 10.1016/j.ijbiomac.2020.08.244] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 08/07/2020] [Accepted: 08/31/2020] [Indexed: 12/17/2022]
Abstract
Antarctic krill is a nutrient-rich crustacean that is one of the main species in the Antarctic ecosystem. Antarctic krill shell (AKS) can be used as raw materials to prepare chitin. In this study, lactic acid and dispase were used to prepare Antarctic krill chitin (AKC-1). Amino-monosaccharide contents of chitin samples were detected by pre-column PMP-HPLC method. Analytical instruments were conducted to determine characteristics of chitin samples. Results showed that the amino-monosaccharide content of AKS was 4.62 g/100 g (measured in D-glucosamine). The yield of AKC-1 was 5.49 g/100 g, and the amino-monosaccharide content was 80.90 g/100 g. AKC-1 showed smooth flakes, a porous surface, and α-chitin structural characteristics. The maximum degradation temperature (DTGmax) was 318.3 °C. The yield of deacetylated chitin (AKC-2) was 4.74 g/100 g, with deacetylation degree of 80.8%, viscosity average molecular weight of approximately 145.7 kDa, and amino-monosaccharide content of 97.06 g/100 g. The surface morphology of AKC-2 was similar to that of AKC-1, and the DTGmax was 311.5 °C. A mild, eco-friendly chitin preparation method and an amino-monosaccharide content detection method of raw material before chitin preparation are described in this study, which can provide technical support for comprehensive utilization of Antarctic krill resources.
Collapse
Affiliation(s)
- Yuan Yu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Sustainable Development of Polar Fishery, Ministry of Agriculture and Rural Affairs, No.106 Nanjing Road, Qingdao, Shandong Province 266071, PR China
| | - Xiaofang Liu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Sustainable Development of Polar Fishery, Ministry of Agriculture and Rural Affairs, No.106 Nanjing Road, Qingdao, Shandong Province 266071, PR China
| | - Junkui Miao
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Sustainable Development of Polar Fishery, Ministry of Agriculture and Rural Affairs, No.106 Nanjing Road, Qingdao, Shandong Province 266071, PR China
| | - Kailiang Leng
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Sustainable Development of Polar Fishery, Ministry of Agriculture and Rural Affairs, No.106 Nanjing Road, Qingdao, Shandong Province 266071, PR China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No.1 Wenhai Road, Qingdao, Shandong Province 266200, PR China.
| |
Collapse
|
24
|
Huang W, He Q, Zhou ZR, He HB, Jiang RW. Enzymatic Synthesis of Puerarin Glucosides Using Cyclodextrin Glucanotransferase with Enhanced Antiosteoporosis Activity. ACS OMEGA 2020; 5:12251-12258. [PMID: 32548408 PMCID: PMC7271355 DOI: 10.1021/acsomega.0c00950] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 05/06/2020] [Indexed: 06/11/2023]
Abstract
Puerarin (PU) is the most abundant isoflavone from the root of Pueraria lobata and exhibits a broad range of pharmacological activities. However, poor water solubility and low bioavailability limit its use. Enzymatic transglycosylation is emerging as a new strategy to improve the pharmacodynamic and pharmacokinetic properties of natural products for drug development. In this study, three PU glucosides (PU-G, PU-2G, and PU-3G) were synthesized by using a cyclodextrin glucanotransferase from Bacillus licheniformis with PU as the acceptor and α-cyclodextrin as the sugar donor. The transglycosylation products were isolated and structurally identified by mass spectrometry and nuclear magnetic resonance. The water solubilities of PU-G, PU-2G, and PU-3G were 15.6, 100.9, and 179.1 times higher than that of PU, respectively. Moreover, the antiosteoporosis activities of these glucosides were tested, and PU-G was found to show much more potent antiosteoporosis activity as compared to the original PU.
Collapse
|
25
|
Abstract
PURPOSE OF REVIEW Summarize the in vivo evidences on the association between nutrition and osteoporosis fracture healing. RECENT FINDINGS Osteoporotic fractures constitute a considerable public health burden. The healing capacity of fractures is influenced by local factors related to the fracture and by general factors (e.g., age, sex, osteoporosis, muscular mass, smoking, alcohol, drugs, and diet). The systematic review was conducted according to PRISMA statement. From the literature search on PubMed and Web of Science, from January 2016 to October 2019, twelve studies were selected and resulted highly variable in samples, exposure, methods, outcomes, and outcome assessment. Eleven studies were conducted on laboratory animals. Only one study aimed to investigate the impact of nutritional status on fracture healing in osteoporotic patients. In this review, the role of calcium/vitamin D supplementation remained controversial, while sialoglycoprotein supplementation, phytoestrogen-rich herb extract, flavonoids, and phosphorylated peptides showed a positive effect on osteoporotic fracture healing.
Collapse
Affiliation(s)
- Manuela Chiavarini
- Department of Experimental Medicine, Section of Public Heath, University of Perugia, Perugia, Italy
| | - Giulia Naldini
- School of Specialization in Hygiene and Preventive Medicine, Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Roberto Fabiani
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy.
| |
Collapse
|
26
|
Urinary Metabolic Profiling via LC-MS/MS Reveals Impact of Bovine Lactoferrin on Bone Formation in Growing SD Rats. Nutrients 2020; 12:nu12041116. [PMID: 32316396 PMCID: PMC7230685 DOI: 10.3390/nu12041116] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 04/02/2020] [Accepted: 04/14/2020] [Indexed: 12/18/2022] Open
Abstract
Lactoferrin (LF) exerts a promoting bone health function. The effects of LF on bone formation at the metabolic level have been less explored. Urinary metabolic profiling of growing Sprague-Dawley (SD) rats LF-supplemented (1000 mg/kg bw) for four weeks were explored by Liquid chromatography–tandem mass spectrometry (LC-MS/MS). The serum markers of bone formation and bone resorption, the bone mass, and the osteogenesis markers of femur were measured by an enzyme-linked immunosorbent assay, micro-computerized tomography, and immunohistochemistry, respectively. Compared with the control, LF supplementation improved bone formation (p < 0.05), reduced bone resorption (p < 0.05), enhanced femoral bone mineral density and microarchitecture (p < 0.05), and upregulated osteocalcin, osterix, and Runx-2 expression (p < 0.05) of femur. LF upregulated 69 urinary metabolites. KEGG and pathway enrichment analyses of those urinary metabolites, and the Person’s correlation analyses among those urinary metabolites and bone status revealed that LF impacted on bone formation via regulatory comprehensive pathways including taurine and hypotaurine metabolism, arginine and proline metabolism, cyanoamino acid metabolism, nitrogen metabolism, nicotinate and nicotinamide metabolism, and fatty acid biosynthesis. The present study indicated the metabolomics is a useful and practical tool to elucidate the mechanisms by which LF augments bone mass formation in growing animals.
Collapse
|
27
|
Tuna Bone Powder Alleviates Glucocorticoid‐Induced Osteoporosis via Coregulation of the NF‐κB and Wnt/β‐Catenin Signaling Pathways and Modulation of Gut Microbiota Composition and Metabolism. Mol Nutr Food Res 2020; 64:e1900861. [DOI: 10.1002/mnfr.201900861] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 12/06/2019] [Indexed: 12/12/2022]
|
28
|
Zhan Q, Tian Y, Han L, Wang K, Wang J, Xue C. The opposite effects of Antarctic krill oil and arachidonic acid-rich oil on bone resorption in ovariectomized mice. Food Funct 2020; 11:7048-7060. [DOI: 10.1039/d0fo00884b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The opposite effects and mechanism of AKO and AAO in the regulation of bone resorption in postmenopausal osteoporosis were systematically investigated to support the recommendations on fatty acid types in dietary oils for people with osteoporosis.
Collapse
Affiliation(s)
- Qiping Zhan
- College of Food Science and Engineering
- Ocean University of China
- Qingdao 266003
- China
- College of Food Science and Engineering
| | - Yingying Tian
- College of Food Science and Engineering
- Ocean University of China
- Qingdao 266003
- China
- Marine Biomedical Research Institute of Qingdao
| | - Lihua Han
- College of Food Science and Engineering
- Ocean University of China
- Qingdao 266003
- China
| | - Kai Wang
- College of Food Science and Engineering
- Ocean University of China
- Qingdao 266003
- China
| | - Jingfeng Wang
- College of Food Science and Engineering
- Ocean University of China
- Qingdao 266003
- China
| | - Changhu Xue
- College of Food Science and Engineering
- Ocean University of China
- Qingdao 266003
- China
| |
Collapse
|
29
|
Methoxsalen and Bergapten Prevent Diabetes-Induced Osteoporosis by the Suppression of Osteoclastogenic Gene Expression in Mice. Int J Mol Sci 2019; 20:ijms20061298. [PMID: 30875838 PMCID: PMC6471636 DOI: 10.3390/ijms20061298] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 03/01/2019] [Accepted: 03/11/2019] [Indexed: 12/22/2022] Open
Abstract
This study evaluated whether bergapten and methoxsalen could prevent diabetes-induced osteoporosis and its underlying mechanism. For 10 weeks, bergapten or methoxsalen (0.02%, w/w) was applied to diabetic mice that were provided with a high-fat diet and streptozotocin. Bone mineral density (BMD) and microarchitecture quality were significantly reduced in the diabetic control group; however, both bergapten and methoxsalen reversed serum osteocalcin, bone-alkaline phosphatase and femur BMD. These coumarin derivatives significantly increased bone volume density and trabecular number, whereas they decreased the structure model index of femur tissue in diabetic mice. Conversely, tartrate-resistant acid phosphatase 5 (TRAP) staining revealed that these derivatives reduced osteoclast numbers and formation in diabetic bone tissue. Additionally, both bergapten and methoxsalen tended to downregulate the expression of osteoclast-related genes such as receptor activator of nuclear factor kappa-B ligand (RANKL), nuclear of activated T-cells, cytoplasmic 1 (NFATc1) and TRAP in diabetic femurs, with NFATc1 and TRAP expression showing significant reductions. Our data suggest that both bergapten and methoxsalen prevent diabetic osteoporosis by suppressing bone resorption.
Collapse
|
30
|
Functional Calcium Binding Peptides from Pacific Cod ( Gadus macrocephalus) Bone: Calcium Bioavailability Enhancing Activity and Anti-Osteoporosis Effects in the Ovariectomy-Induced Osteoporosis Rat Model. Nutrients 2018; 10:nu10091325. [PMID: 30231572 PMCID: PMC6163644 DOI: 10.3390/nu10091325] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 09/16/2018] [Accepted: 09/17/2018] [Indexed: 12/20/2022] Open
Abstract
Calcium binding peptides from Pacific cod (Gadus macrocephalus) bone have attracted attention due to their potential effects on bone health. In this study, calcium binding peptides (CBP) were prepared from Pacific cod bone by trypsin and neutral protease. Ultraviolet spectra, circular dichroism (CD), and Fourier transform infrared spectroscopy (FTIR) revealed that carboxyl and amino groups in CBP could bind to Ca2+, and form the peptide-calcium complex (CBP-Ca). Single-pass intestinal perfusion (SPIP) experiments indicated that the intestinal calcium absorption was significantly enhanced (p < 0.01) in CBP-Ca treated Wistar rats. The anti-osteoporosis activity of CBP-Ca was investigated in the ovariectomized (OVX) Wistar rat model. The administration of CBP-Ca significantly (p < 0.01) improved the calcium bioavailability, trabecular bone structure, bone biomechanical properties, bone mineral density, and bone mineralization degree. CBP-Ca notably (p < 0.01) increased serum calcium, however, it remarkably (p < 0.01) reduced the levels of osteocalcin (OCN), bone alkaline phosphatase (BALP), tartrate-resistant acid phosphatase isoform 5b (TRAP5b), and C-telopeptide of type I collagen (CTX-1) in serum. Results suggested that the cod bone derived CBP could bind with calcium, improve the intestinal calcium absorption, calcium bioavailability, and serum calcium, then reduce the bone turnover rate, and thus ameliorate osteoporosis.
Collapse
|
31
|
Han L, Mao X, Wang K, Li Y, Zhao M, Wang J, Xue C. Phosphorylated peptides from Antarctic krill (Euphausia superba) ameliorated osteoporosis by activation of osteogenesis-related MAPKs and PI3K/AKT/GSK-3β pathways in dexamethasone-treated mice. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.06.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
32
|
Antarctic Krill Oil improves articular cartilage degeneration via activating chondrocyte autophagy and inhibiting apoptosis in osteoarthritis mice. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.05.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
33
|
Bone impairment caused by AlCl3 is associated with activation of the JNK apoptotic pathway mediated by oxidative stress. Food Chem Toxicol 2018; 116:307-314. [PMID: 29704576 DOI: 10.1016/j.fct.2018.04.057] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 04/23/2018] [Accepted: 04/24/2018] [Indexed: 01/30/2023]
|
34
|
Wang K, Han L, Wang N, Wang Y, Wang J. Sialoglycoprotein from Gadous morhua eggs improve high bone turnover activity via down-regulating BMP-2/Smads and Wnt/β-catenin signal pathways. Food Sci Biotechnol 2018; 27:1455-1465. [PMID: 30319856 DOI: 10.1007/s10068-018-0379-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 04/04/2018] [Accepted: 04/06/2018] [Indexed: 12/31/2022] Open
Abstract
Abstract The effect of sialoglycoprotein isolated from Gadous morhua eggs (Gm-SGP) on ovariectomized (OVX) induced osteoporosis, which is characterized by high bone turnover activity was investigated. Results revealed that Gm-SGP significantly increased bone mineral density, enhanced bone biomechanical properties and repaired the microstructure of the trabecular bone. Also, the treatment with Gm-SGP remarkably decreased biochemical marker contents or activities, such as serum BALP, PICP, BMP-2, TrACP, Cath-K, urine Ca and P, leading to the reduction in bone turnover. The elevation in the rate of bone formative process contributed in the increase of bone turnover. Both BMP-2/Smads and Wnt/β-catenin signaling pathways played an important role in osteogenesis. Gm-SGP suppressed the key factors expression in these two pathways such as BMP-2, Smad1, Smad4, Lrp-5b, Runx2, Osx, ALP, Col1, OCN and β-catenin. These findings might provide some theoretical basis for the application of Gm-SGP as a potential anti-osteoporotic drug or as functional food. Graphical Abstract
Collapse
Affiliation(s)
- Kai Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003 Shandong Province China
| | - Lihua Han
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003 Shandong Province China
| | - Na Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003 Shandong Province China
| | - Yiming Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003 Shandong Province China
| | - Jingfeng Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003 Shandong Province China
| |
Collapse
|
35
|
A Hop Extract Lifenol® Improves Postmenopausal Overweight, Osteoporosis, and Hot Flash in Ovariectomized Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:2929107. [PMID: 29619067 PMCID: PMC5829324 DOI: 10.1155/2018/2929107] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Accepted: 12/17/2017] [Indexed: 11/17/2022]
Abstract
Objective In order to assess the effectiveness of a hop extract (HE) for postmenopausal symptoms, the effects of Lifenol on ovariectomy-induced osteoporosis, hyperlipidemia, body weight increase, and hot flash were investigated in rats. Methods Female Sprague-Dawley rats were ovariectomized and subjected to a daily scheduled exercise training (15 min at 15 m/min) or treated with HE (30 or 100 mg/kg, oral) or 17β-estradiol (100 μg/kg, intraperitoneal) for 12 weeks. Body and visceral fat weights, serum lipid profiles, osteoporotic parameters in serum, and femoral bones were analyzed. Separately, forced running-induced dermal and rectal temperatures and blood flow velocity were measured in ovariectomized rats. Results Ovariectomy increased blood lipids including triglycerides, total cholesterol, and low-density lipoproteins, leading to visceral fat accumulation and overweight. Estrogen depletion caused osteoporosis, displaying decreased femoral bone weight, bone mineral density and content, and blood phosphorus level. The disturbances in lipid metabolism and bone resorption were recovered by treatment with HE in a dose-dependent manner. In addition, HE treatment shortened the duration of forced running-induced alterations in skin and rectal temperatures by reducing blood flow velocity. Conclusion The results indicate that HE attenuated overweight, osteoporosis, and hot flash in estrogen-deficient animals by regulating blood lipid profile and fat accumulation, blood estrogen and bone resorption factors, and dermal blood flow.
Collapse
|
36
|
Wang F, Wang Y, Zhao Y, Zhan Q, Yu P, Wang J, Xue C. Sialoglycoprotein Isolated from Eggs of Carassius auratus Ameliorates Osteoporosis: An Effect Associated with Regulation of the Wnt/β-Catenin Pathway in Rodents. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:2875-2882. [PMID: 27023001 DOI: 10.1021/acs.jafc.5b06132] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
In the current study, ovariectomized (OVX) rats and the senescence-accelerated mouse strain P6 (SAMP6) were employed to establish models of postmenopausal osteoporosis and senile osteoporosis, respectively. The effects of treatment with sialoglycoprotein isolated from the eggs of Carassius auratus (Ca-SGP) on these two types of osteoporosis were investigated in vivo. Results showed that Ca-SGP significantly increased bone mineral density, ameliorated trabecular bone microstructure, and improved bone biomechanical properties in both OVX rats and SAMP6. The osteogenesis related Wnt/β-catenin pathway was targeted to study the underlying mechanism of Ca-SGP activity. In postmenopausal osteoporosis, Ca-SGP suppressed the activation of Wnt/β-catenin signal via down-regulating the expression of key genes including LRP5, β-catenin, and Runx2, suggesting that overactive osteogenesis was controlled by Ca-SGP. The bone formation was sharply weakened in senile osteoporosis, whereas Ca-SGP treatment promoted osteoblast activity by stimulating the Wnt/β-catenin signal. In conclusion, Ca-SGP ameliorated these two types of osteoporosis by normalizing bone anabolism.
Collapse
Affiliation(s)
- Fei Wang
- College of Food Science and Engineering, Ocean University of China , Qingdao, Shandong Province 266003, China
| | - Yiming Wang
- College of Food Science and Engineering, Ocean University of China , Qingdao, Shandong Province 266003, China
| | - Yanlei Zhao
- College of Food Science and Engineering, Ocean University of China , Qingdao, Shandong Province 266003, China
| | - Qiping Zhan
- College of Food Science and Engineering, Ocean University of China , Qingdao, Shandong Province 266003, China
| | - Peng Yu
- College of Food Science and Engineering, Ocean University of China , Qingdao, Shandong Province 266003, China
| | - Jingfeng Wang
- College of Food Science and Engineering, Ocean University of China , Qingdao, Shandong Province 266003, China
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China , Qingdao, Shandong Province 266003, China
| |
Collapse
|