1
|
Deng H, Wang F, Wu Q, Sun H, Ma J, Ni R, Li Z, Zhang L, Zhang J, Liu M. Novel Multiresistant Osmotin-like Protein from Sweetpotato as a Promising Biofungicide to Control Ceratocystis fimbriata by Destroying Spores through Accumulation of Reactive Oxygen Species. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:1487-1499. [PMID: 38215405 DOI: 10.1021/acs.jafc.3c07663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2024]
Abstract
Osmotin-like proteins (OLPs) play an important role in host-plant defense. In this study, a novel multiresistant OLP (IbOLP1) was screened from sweetpotato (Ipomoea batatas) with a molecular weight of 26.3 kDa. The expression level of IbOLP1 was significantly higher in resistant cultivars than susceptible ones after inoculation with Ceratocystis fimbriata, which causes black rot disease in sweetpotato. The expression of IbOLP1 in Pichia pastoris led to the lysis of yeast cells themselves. The recombinant IbOLP1 displayed antifungal, antibacterial, and antinematode activity and stability. IbOLP1 could restrain the mycelial growth and lyse spores of C. fimbriata, distinctly reducing the incidence of black rot in sweetpotato. The IbOLP1 can trigger the apoptosis of black rot spores by elevating the intracellular levels of reactive oxygen species. Collectively, these findings suggest that IbOLP1 can be used to develop natural antimicrobial resources instead of chemical agents and generate new, disease-resistant germplasm.
Collapse
Affiliation(s)
- Huangyue Deng
- Department of Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu Province 221116, China
| | - Fangrui Wang
- Department of Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu Province 221116, China
| | - Qian Wu
- Department of Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu Province 221116, China
| | - Houjun Sun
- Xuzhou Institute of Agricultural Sciences in Jiangsu, Xuhuai District, Xuzhou, Jiangsu Province 221131, China
| | - Jukui Ma
- Xuzhou Institute of Agricultural Sciences in Jiangsu, Xuhuai District, Xuzhou, Jiangsu Province 221131, China
| | - Rui Ni
- Department of Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu Province 221116, China
| | - Zongyun Li
- Department of Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu Province 221116, China
| | - Liming Zhang
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, Shandong Province 250100, China
| | - Jian Zhang
- Department of Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu Province 221116, China
| | - Meiyan Liu
- Department of Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu Province 221116, China
| |
Collapse
|
2
|
Jin J, Zhao M, Jing T, Zhang M, Lu M, Yu G, Wang J, Guo D, Pan Y, Hoffmann TD, Schwab W, Song C. Volatile compound-mediated plant-plant interactions under stress with the tea plant as a model. HORTICULTURE RESEARCH 2023; 10:uhad143. [PMID: 37691961 PMCID: PMC10483893 DOI: 10.1093/hr/uhad143] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 07/15/2023] [Indexed: 09/12/2023]
Abstract
Plants respond to environmental stimuli via the release of volatile organic compounds (VOCs), and neighboring plants constantly monitor and respond to these VOCs with great sensitivity and discrimination. This sensing can trigger increased plant fitness and reduce future plant damage through the priming of their own defenses. The defense mechanism in neighboring plants can either be induced by activation of the regulatory or transcriptional machinery, or it can be delayed by the absorption and storage of VOCs for the generation of an appropriate response later. Despite much research, many key questions remain on the role of VOCs in interplant communication and plant fitness. Here we review recent research on the VOCs induced by biotic (i.e. insects and pathogens) and abiotic (i.e. cold, drought, and salt) stresses, and elucidate the biosynthesis of stress-induced VOCs in tea plants. Our focus is on the role of stress-induced VOCs in complex ecological environments. Particularly, the roles of VOCs under abiotic stress are highlighted. Finally, we discuss pertinent questions and future research directions for advancing our understanding of plant interactions via VOCs.
Collapse
Affiliation(s)
- Jieyang Jin
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, 230036, Hefei, Anhui, China
| | - Mingyue Zhao
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, 230036, Hefei, Anhui, China
| | - Tingting Jing
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, 230036, Hefei, Anhui, China
| | - Mengting Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, 230036, Hefei, Anhui, China
| | - Mengqian Lu
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, 230036, Hefei, Anhui, China
| | - Guomeng Yu
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, 230036, Hefei, Anhui, China
| | - Jingming Wang
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, 230036, Hefei, Anhui, China
| | - Danyang Guo
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, 230036, Hefei, Anhui, China
| | - Yuting Pan
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, 230036, Hefei, Anhui, China
| | - Timothy D Hoffmann
- Biotechnology of Natural Products, Technische Universität München, Liesel-Beckmann-Str. 1, 85354 Freising, Germany
| | - Wilfried Schwab
- Biotechnology of Natural Products, Technische Universität München, Liesel-Beckmann-Str. 1, 85354 Freising, Germany
| | - Chuankui Song
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, 230036, Hefei, Anhui, China
| |
Collapse
|
3
|
Identification of the key genes contributing to the LOX-HPL volatile aldehyde biosynthesis pathway in jujube fruit. Int J Biol Macromol 2022; 222:285-294. [PMID: 36150569 DOI: 10.1016/j.ijbiomac.2022.09.155] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 09/05/2022] [Accepted: 09/15/2022] [Indexed: 11/23/2022]
Abstract
Jujube (Ziziphus jujuba Mill.) is a traditional popular fruit widely grown in China. The volatiles in jujube determine its unique flavor and the high fruit quality required by consumers. However, the biosynthesis of volatiles in jujube were remain unknown. By using gas chromatography-mass spectrometry, there were 46 volatile compounds were identified and determined from three representative jujube fruit types at six developmental stages, including the dry-used (Z. jujuba cv. 'Junzao'), the fresh-used (Z. jujuba cv. 'Dongzao'), and wild jujube (Z. jujuba var. spinosa Hu. cv. 'Qingjiansuanzao'). The aldehydes were identified as major volatile contributors to flavor, of which (E)-2-hexenal was the primary volatile in jujube fruit. Then LOX and HPL gene family were identified in jujube, which were involved in aldehyde biosynthesis through the lipoxygenase-hydroperoxide lyase (LOX-HPL) pathway. Gene expression analysis suggested that ZjLOX3, ZjLOX4, and ZjHPL1 were highly correlated with the accumulation of (E)-2-hexenal, and their proteins were localized to the nucleus and cytoplasm. Transient over-expression of ZjLOX3, ZjLOX4, and ZjHPL1 in jujube fruit significantly enhanced the accumulation of (E)-2-hexenal. Our study provides valuable information on the major volatiles and their biosynthesis in different types of jujube fruit. These results will help determine flavor improvements for future breeding.
Collapse
|
4
|
Chen C, Yu F, Wen X, Chen S, Wang K, Wang F, Zhang J, Wu Y, He P, Tu Y, Li B. Characterization of a new (Z)-3:(E)-2-hexenal isomerase from tea (Camellia sinensis) involved in the conversion of (Z)-3-hexenal to (E)-2-hexenal. Food Chem 2022; 383:132463. [PMID: 35183969 DOI: 10.1016/j.foodchem.2022.132463] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 02/03/2022] [Accepted: 02/12/2022] [Indexed: 11/04/2022]
Abstract
Two major green leaf volatiles (GLVs) in tea that contribute greatly to tea aroma, particularly the green odor, are (E)-2-hexenal and (Z)-3-hexenal. Until now, their formation and related mechanisms during tea manufacture have remained unclear. Our data showed that the contents of (E)-2-hexenal and (Z)-3-hexenal increased more than 1000-fold after live tea leaves were torn. Subsequently, a new (Z)-3:(E)-2-hexenal isomerase (CsHI) was identified in Camellia sinensis. CsHI irreversibly catalyzed the conversion of (Z)-3-hexenal to (E)-2-hexenal. Abiotic stresses including low temperature, dehydration, and mechanical wounding, did not influence the (E)-2-hexenal content in intact tea leaves during withering, but regulated the proportions of (Z)-3-hexenal and (E)-2-hexenal in torn leaves by modulating CsHI at the transcript level. For the first time, this work reveals the formation of (E)-2-hexenal during tea processing and suggests that CsHI may play a pivotal role in tea flavor development as well as in plant defense against abiotic stresses.
Collapse
Affiliation(s)
- Cong Chen
- Department of Tea Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Fei Yu
- Department of Tea Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Xinli Wen
- Department of Tea Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Shuna Chen
- Department of Tea Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Kaixi Wang
- Department of Tea Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Feiquan Wang
- College of Tea and Food Science, Wuyi University, 358 Baihua Road, Wuyishan 354300, China
| | - Jianming Zhang
- College of Tea and Food Science, Wuyi University, 358 Baihua Road, Wuyishan 354300, China
| | - Yuanyuan Wu
- Department of Tea Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Puming He
- Department of Tea Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Youying Tu
- Department of Tea Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Bo Li
- Department of Tea Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China.
| |
Collapse
|
5
|
Tea (Camellia sinensis): A Review of Nutritional Composition, Potential Applications, and Omics Research. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12125874] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Tea (Camelliasinensis) is the world’s most widely consumed non-alcoholic beverage with essential economic and health benefits since it is an excellent source of polyphenols, catechins, amino acids, flavonoids, carotenoids, vitamins, and polysaccharides. The aim of this review is to summarize the main secondary metabolites in tea plants, and the content and distribution of these compounds in six different types of tea and different organs of tea plant were further investigated. The application of these secondary metabolites on food processing, cosmetics industry, and pharmaceutical industry was reviewed in this study. With the rapid advancements in biotechnology and sequencing technology, omics analyses, including genome, transcriptome, and metabolome, were widely used to detect the main secondary metabolites and their molecular regulatory mechanisms in tea plants. Numerous functional genes and regulatory factors have been discovered, studied, and applied to improve tea plants. Research advances, including secondary metabolites, applications, omics research, and functional gene mining, are comprehensively reviewed here. Further exploration and application trends are briefly described. This review provides a reference for basic and applied research on tea plants.
Collapse
|
6
|
Liu S, Guo L, Zhou Q, Jiang Z, Jin L, Zhu J, Xie H, Wei C. Identification and Functional Analysis of Two Alcohol Dehydrogenase Genes Involved in Catalyzing the Reduction of ( Z)-3-Hexenal into ( Z)-3-Hexenol in Tea Plants ( Camellia sinensis). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:1830-1839. [PMID: 35112571 DOI: 10.1021/acs.jafc.1c06984] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Alcohol dehydrogenase (ADH) is a vital enzyme in the biosynthesis pathway of six-carbon volatiles in plants. However, little is known about its functions in tea plants. Here, we identified two ADH genes (CsADH1 and CsADH2). An in vitro protein expression assay showed that both CsADH1 and CsADH2 proteins can catalyze the reduction of (Z)-3-hexenal into (Z)-3-hexenol. Subcellular localization revealed that both CsADH1 and CsADH2 proteins were predominantly localized in the nucleus and cytosol. CsADH1 had high transcripts in young stems in autumn, while CsADH2 showed extremely high expression levels in stems and roots. The expression of CsADH2 was mainly downregulated under ABA treatment, while CsADH1 and CsADH2 transcripts were significantly lower under MeJA treatment at 12 and 24 h. Under cold treatment, CsADH1 transcripts first decreased and then increased, while CsADH2 demonstrated an almost opposite expression pattern. Notably, CsADH2 was significantly upregulated under simulated Ectropis obliqua invasion. Gene suppression by antisense oligonucleotides (AsODNs) demonstrated that AsODN_ADH2 treatment significantly reduced CsADH2 transcripts and the abundance of (Z)-3-hexenol products. The results indicate that the two CsADH genes may play an important role in response to (a)biotic stresses and in the process of (Z)-3-hexenol biosynthesis.
Collapse
Affiliation(s)
- Shengrui Liu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Lingxiao Guo
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Qiying Zhou
- Henan Key Laboratory of Tea Plant Biology, Xinyang Normal University, Xinyang 464000, China
| | | | - Ling Jin
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Jiaxin Zhu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Hui Xie
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Chaoling Wei
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
7
|
Liao Y, Tan H, Jian G, Zhou X, Huo L, Jia Y, Zeng L, Yang Z. Herbivore-Induced ( Z)-3-Hexen-1-ol is an Airborne Signal That Promotes Direct and Indirect Defenses in Tea ( Camellia sinensis) under Light. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:12608-12620. [PMID: 34677960 DOI: 10.1021/acs.jafc.1c04290] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Tea (Camellia sinensis) is the most popular nonalcoholic beverage worldwide. During cultivation, tea plants are susceptible to herbivores and pathogens, which can seriously affect tea yield and quality. A previous report showed that (Z)-3-hexenol is a potentially efficient defensive substance. However, the molecular mechanism mediating (Z)-3-hexenol signaling in tea plants and the resulting effects on plant defenses remain uncharacterized. To clarify the signaling mechanisms in which (Z)-3-hexenol and light are involved, the gene transcription and metabolite levels were assessed, respectively. This study demonstrated that tea plants rapidly and continuously release (Z)-3-hexen-1-ol in response to an insect infestation. (Z)-3-Hexen-1-ol absorbed by adjacent healthy plants would be converted into three insect defensive compounds: (Z)-3-hexenyl-glucoside, (Z)-3-hexenyl-primeveroside, and (Z)-3-hexenyl-vicianoside identified with laboratory-synthesized standards. Moreover, (Z)-3-hexen-1-ol also activates the synthesis of jasmonic acid to enhance the insect resistance of tea plants. Additionally, a continuous light treatment induces the accumulation of (Z)-3-hexenyl-glycosides. Hence, (Z)-3-hexenol serves as a light-regulated signaling molecule that activates the systemic defenses of adjacent plants. Our study reveals the molecular mechanisms by which biotic and abiotic factors synergistically regulate the signaling functions of herbivore-induced plant volatiles in plants, providing valuable information for future comprehensive analyses of the systemic defense mechanisms in plants.
Collapse
Affiliation(s)
- Yinyin Liao
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, No. 723 Xingke Road, Tianhe District, Guangzhou 510650, China
| | - Haibo Tan
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, No. 723 Xingke Road, Tianhe District, Guangzhou 510650, China
- College of Life Sciences, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Guotai Jian
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, No. 723 Xingke Road, Tianhe District, Guangzhou 510650, China
- College of Life Sciences, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Xiaochen Zhou
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, No. 723 Xingke Road, Tianhe District, Guangzhou 510650, China
- College of Life Sciences, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Luqiong Huo
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, No. 723 Xingke Road, Tianhe District, Guangzhou 510650, China
- College of Life Sciences, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Yongxia Jia
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, No. 723 Xingke Road, Tianhe District, Guangzhou 510650, China
| | - Lanting Zeng
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, No. 723 Xingke Road, Tianhe District, Guangzhou 510650, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, No. 723 Xingke Road, Tianhe District, Guangzhou 510650, China
| | - Ziyin Yang
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, No. 723 Xingke Road, Tianhe District, Guangzhou 510650, China
- College of Life Sciences, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, No. 723 Xingke Road, Tianhe District, Guangzhou 510650, China
| |
Collapse
|
8
|
Zhang J, Jia H, Zhu B, Li J, Yang T, Zhang ZZ, Deng WW. Molecular and Biochemical Characterization of Jasmonic Acid Carboxyl Methyltransferase Involved in Aroma Compound Production of Methyl Jasmonate during Black Tea Processing. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:3154-3164. [PMID: 33666433 DOI: 10.1021/acs.jafc.0c06248] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Methyl jasmonate (MeJA), a volatile organic compound, is a principal flowery aromatic compound in tea. During the processing of black tea, MeJA is produced by jasmonic acid carboxyl methyltransferase (JMT) of the jasmonic acid (JA) substrate, forming a specific floral fragrance. CsJMT was cloned from tea leaves; the three-dimensional structure of CsJMT was predicted. Enzyme activity was identified, and protein purification was investigated. Site-directed deletions revealed that N-10, S-22, and Q-25 residues in the beginning amino acids played a key functional role in enzyme activity. The expression patterns of CsJMT in tea organs differed; the highest expression of CsJMT was observed in the fermentation process of black tea. These results aid in further understanding the synthesis of MeJA during black tea processing, which is crucial for improving black tea quality using specific fragrances and could be applied to the aromatic compound regulation and tea breeding improvement in further studies.
Collapse
Affiliation(s)
- Jing Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui 230036, People's Republic of China
| | - Huiyan Jia
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui 230036, People's Republic of China
| | - Biying Zhu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui 230036, People's Republic of China
| | - Junyao Li
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui 230036, People's Republic of China
| | - Tianyuan Yang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui 230036, People's Republic of China
| | - Zheng-Zhu Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui 230036, People's Republic of China
| | - Wei-Wei Deng
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui 230036, People's Republic of China
| |
Collapse
|
9
|
Li H, Wang Z, Han K, Guo M, Zou Y, Zhang W, Ma W, Hua H. Cloning and functional identification of a Chilo suppressalis-inducible promoter of rice gene, OsHPL2. PEST MANAGEMENT SCIENCE 2020; 76:3177-3187. [PMID: 32336018 DOI: 10.1002/ps.5872] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 03/11/2020] [Accepted: 04/26/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Promoters play a key role in driving insect-resistant genes during breeding of transgenic plants. In current transgenic procedures for breeding rice resistance to striped stem borer (Chilo suppressalis Walker, SSB), the constitutive promoter is used to drive the insect-resistant gene. To reduce the burden of constitutive promoters on plant growth, isolation and identification of insect-inducible promoters are particularly important. However, few promoters are induced specifically by insect feeding. RESULTS We found rice hydroperoxide lyase gene (OsHPL2) (LOC_Os02g12680) was upregulated after feeding by SSB. We subsequently cloned the promoter of OsHPL2 and analysed its expression pattern using the β-glucuronidase (GUS) reporter gene. Histochemical assays and quantitative analyses of GUS activity confirmed that P HPL2 :GUS was activated by SSB, but did not respond to brown planthopper (Nilaparvata lugens Stål, BPH) infestation, mechanical wounding or phytohormone treatments. A series of 5' truncated assays were conducted and three positive regulatory regions (-1452 to -1213, -903 to -624, and -376 to -176) induced by SSB infestation were identified. P2R123-min 35S and P2TR2-min 35S promoters linked with cry1C of transgenic plants showed the highest levels of Cry1C protein expression and SSB larval mortality. CONCLUSION We identified an SSB-inducible promoter and three positive internal regions. Transgenic rice plants with the OsHPL2 promoter and its positive regions driving cry1C exhibited the expected larvicidal effect on SSB. Our study is the first report of an SSB-inducible promoter that could be used as a potential resource for breeding insect-resistant transgenic crops. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Hanpeng Li
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zhengjie Wang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Kehong Han
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Mengjian Guo
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yulan Zou
- College of Life Science, Huazhong Agricultural University, Wuhan, China
| | - Wei Zhang
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan, China
| | - Weihua Ma
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Hongxia Hua
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
10
|
Liu M, Gong Y, Sun H, Zhang J, Zhang L, Sun J, Han Y, Huang J, Wu Q, Zhang C, Li Z. Characterization of a Novel Chitinase from Sweet Potato and Its Fungicidal Effect against Ceratocystis fimbriata. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:7591-7600. [PMID: 32585101 DOI: 10.1021/acs.jafc.0c01813] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Black rot, caused by Ceratocystis fimbriata, is a destructive disease of sweet potatoes (Ipomoea batatas). In this study, a novel chitinase (IbChiA) was screened from sweet potatoes, which showed a remarkably higher expression level in resistant varieties than in susceptible ones after inoculation with C. fimbriata. Sequence analysis indicated that IbChiA belongs to family 19 class II extracellular chitinase with a MW of 26.3 kDa and pI of 5.96. Recombinant IbChiA, produced by Pichia pastoris, displayed antifungal activity and stability. IbChiA could restrain the mycelium extension of C. fimbriata. FDA/PI double staining combined with transmission electron microscopy observation revealed the remarkable fungicidal effect of IbChiA on the conidia of C. fimbriata. The disease symptoms on the surface of slices and tuberous roots of sweet potatoes were significantly reduced after treatment with IbChiA. These results indicated that IbChiA could be used as a potential biofungicide to replace chemical fungicides.
Collapse
Affiliation(s)
- Meiyan Liu
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu Province 221116, China
| | - Ying Gong
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu Province 221116, China
| | - Houjun Sun
- Jiangsu Xuzhou Sweet Potato Research Center, Xuzhou, Jiangsu Province 221131, China
| | - Jian Zhang
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu Province 221116, China
| | - Liming Zhang
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, Shandong Province 250100, China
| | - Jian Sun
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu Province 221116, China
| | - Yonghua Han
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu Province 221116, China
| | - Jinjin Huang
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, Jiangsu Normal University, Xuzhou, Jiangsu Province 221116, China
| | - Qian Wu
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu Province 221116, China
| | - Chengling Zhang
- Jiangsu Xuzhou Sweet Potato Research Center, Xuzhou, Jiangsu Province 221131, China
| | - Zongyun Li
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu Province 221116, China
| |
Collapse
|
11
|
Stolterfoht H, Rinnofner C, Winkler M, Pichler H. Recombinant Lipoxygenases and Hydroperoxide Lyases for the Synthesis of Green Leaf Volatiles. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:13367-13392. [PMID: 31591878 DOI: 10.1021/acs.jafc.9b02690] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Green leaf volatiles (GLVs) are mainly C6- and in rare cases also C9-aldehydes, -alcohols, and -esters, which are released by plants in response to biotic or abiotic stresses. These compounds are named for their characteristic smell reminiscent of freshly mowed grass. This review focuses on GLVs and the two major pathway enzymes responsible for their formation: lipoxygenases (LOXs) and fatty acid hydroperoxide lyases (HPLs). LOXs catalyze the peroxidation of unsaturated fatty acids, such as linoleic and α-linolenic acids. Hydroperoxy fatty acids are further converted by HPLs into aldehydes and oxo-acids. In many industrial applications, plant extracts have been used as LOX and HPL sources. However, these processes are limited by low enzyme concentration, stability, and specificity. Alternatively, recombinant enzymes can be used as biocatalysts for GLV synthesis. The increasing number of well-characterized enzymes efficiently expressed by microbial hosts will foster the development of innovative biocatalytic processes for GLV production.
Collapse
Affiliation(s)
- Holly Stolterfoht
- Austrian Centre of Industrial Biotechnology , Petersgasse 14 , 8010 Graz , Austria
| | - Claudia Rinnofner
- Austrian Centre of Industrial Biotechnology , Petersgasse 14 , 8010 Graz , Austria
- bisy e.U. , Wetzawinkel 20 , 8200 Hofstaetten , Austria
| | - Margit Winkler
- Austrian Centre of Industrial Biotechnology , Petersgasse 14 , 8010 Graz , Austria
- Institute of Molecular Biotechnology , TU Graz, NAWI Graz, BioTechMed Graz , Petersgasse 14 , 8010 Graz , Austria
| | - Harald Pichler
- Austrian Centre of Industrial Biotechnology , Petersgasse 14 , 8010 Graz , Austria
- Institute of Molecular Biotechnology , TU Graz, NAWI Graz, BioTechMed Graz , Petersgasse 14 , 8010 Graz , Austria
| |
Collapse
|
12
|
Xu Q, Cheng L, Mei Y, Huang L, Zhu J, Mi X, Yu Y, Wei C. Alternative Splicing of Key Genes in LOX Pathway Involves Biosynthesis of Volatile Fatty Acid Derivatives in Tea Plant ( Camellia sinensis). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:13021-13032. [PMID: 31693357 DOI: 10.1021/acs.jafc.9b05925] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Volatile fatty acid derivatives (VFADs) produced in tea plants (Camellia sinensis) not only have been shown to function as defense compounds but also impart a "fresh green" odor to green tea products; however, little is known about alternative splicing (AS) of genes in regulating the production of VFADs in plants. In this study, the contents of VFADs and corresponding transcriptome profiles were obtained in five different months (April, June, August, September, and October). Correlation analysis identified seven unique transcripts of enzyme-coding genes (CsLOX2, CsLOX4, CsADH4, CsADH8, and CsADH10), which are responsible for regulating VFAD biosynthesis; four AS transcripts of these genes (CsLOX2, CsLOX4, CsADH4, and CsADH8) were validated by RT-PCR. By employing the gene-specific antisense oligodeoxynucleotide-mediated reduction method, we found the expression levels of alternatively spliced transcripts of CsLOX4-iso1, CsLOX4-iso2, and CsADH4-iso3 were lower, and the contents of cis-3-hexenol were correspondingly reduced in the leaves of tea plant; this result suggested that the AS play important roles in regulating biosynthesis of VFADs in C. sinensis. Our results provide new insights into the important contribution of AS events in regulating the VFAD biosynthesis in tea plant.
Collapse
Affiliation(s)
- Qingshan Xu
- College of Horticulture , Northwest A&F University , Yangling , Shaanxi 712100 , China
| | - Long Cheng
- College of Horticulture , Northwest A&F University , Yangling , Shaanxi 712100 , China
| | - Yu Mei
- State Key Laboratory of Tea Plant Biology and Utilization , Anhui Agricultural University , Hefei , Anhui , China
| | - Linli Huang
- College of Horticulture , Northwest A&F University , Yangling , Shaanxi 712100 , China
| | - Junyan Zhu
- State Key Laboratory of Tea Plant Biology and Utilization , Anhui Agricultural University , Hefei , Anhui , China
| | - Xiaozeng Mi
- State Key Laboratory of Tea Plant Biology and Utilization , Anhui Agricultural University , Hefei , Anhui , China
| | - Youben Yu
- College of Horticulture , Northwest A&F University , Yangling , Shaanxi 712100 , China
| | - Chaoling Wei
- State Key Laboratory of Tea Plant Biology and Utilization , Anhui Agricultural University , Hefei , Anhui , China
| |
Collapse
|
13
|
Zeng L, Tan H, Liao Y, Jian G, Kang M, Dong F, Watanabe N, Yang Z. Increasing Temperature Changes Flux into Multiple Biosynthetic Pathways for 2-Phenylethanol in Model Systems of Tea ( Camellia sinensis) and Other Plants. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:10145-10154. [PMID: 31418564 DOI: 10.1021/acs.jafc.9b03749] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
2-Phenylethanol (2PE) is a representative aromatic aroma compound in tea (Camellia sinensis) leaves. However, its formation in tea remains unexplored. In our study, feeding experiments of [2H8]L-phenylalanine (Phe), [2H5]phenylpyruvic acid (PPA), or (E/Z)-phenylacetaldoxime (PAOx) showed that three biosynthesis pathways for 2PE derived from L-Phe occurred in tea leaves, namely, pathway I (via phenylacetaldehyde (PAld)), pathway II (via PPA and PAld), and pathway III (via (E/Z)-PAOx and PAld). Furthermore, increasing temperature resulted in increased flux into the pathway for 2PE from L-Phe via PPA and PAld. In addition, tomato fruits and petunia flowers also contained the 2PE biosynthetic pathway from L-Phe via PPA and PAld and increasing temperatures led to increased flux into this pathway, suggesting that such a phenomenon might be common among most plants containing 2PE. This represents a characteristic example of changes in flux into the biosynthesis pathways of volatile compounds in plants in response to stresses.
Collapse
Affiliation(s)
- Lanting Zeng
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany , South China Botanical Garden, Chinese Academy of Sciences , No. 723 Xingke Road , Tianhe District , Guangzhou 510650 , China
- Center of Economic Botany, Core Botanical Gardens , Chinese Academy of Sciences , No. 723 Xingke Road , Tianhe District , Guangzhou 510650 , China
| | - Haibo Tan
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany , South China Botanical Garden, Chinese Academy of Sciences , No. 723 Xingke Road , Tianhe District , Guangzhou 510650 , China
- Center of Economic Botany, Core Botanical Gardens , Chinese Academy of Sciences , No. 723 Xingke Road , Tianhe District , Guangzhou 510650 , China
| | - Yinyin Liao
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany , South China Botanical Garden, Chinese Academy of Sciences , No. 723 Xingke Road , Tianhe District , Guangzhou 510650 , China
- University of Chinese Academy of Sciences , No. 19A Yuquan Road , Beijing 100049 , China
| | - Guotai Jian
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany , South China Botanical Garden, Chinese Academy of Sciences , No. 723 Xingke Road , Tianhe District , Guangzhou 510650 , China
- University of Chinese Academy of Sciences , No. 19A Yuquan Road , Beijing 100049 , China
| | - Ming Kang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany , South China Botanical Garden, Chinese Academy of Sciences , No. 723 Xingke Road , Tianhe District , Guangzhou 510650 , China
| | - Fang Dong
- Guangdong Food and Drug Vocational College , No. 321 Longdongbei Road , Tianhe District , Guangzhou 510520 , China
| | - Naoharu Watanabe
- Graduate School of Science and Technology, Shizuoka University , No. 3-5-1 Johoku , Naka-ku, Hamamatsu 432-8561 , Japan
| | - Ziyin Yang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany , South China Botanical Garden, Chinese Academy of Sciences , No. 723 Xingke Road , Tianhe District , Guangzhou 510650 , China
- Center of Economic Botany, Core Botanical Gardens , Chinese Academy of Sciences , No. 723 Xingke Road , Tianhe District , Guangzhou 510650 , China
- University of Chinese Academy of Sciences , No. 19A Yuquan Road , Beijing 100049 , China
| |
Collapse
|
14
|
Wang X, Zeng L, Liao Y, Li J, Tang J, Yang Z. Formation of α-Farnesene in Tea ( Camellia sinensis) Leaves Induced by Herbivore-Derived Wounding and Its Effect on Neighboring Tea Plants. Int J Mol Sci 2019; 20:ijms20174151. [PMID: 31450700 PMCID: PMC6747315 DOI: 10.3390/ijms20174151] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 08/21/2019] [Accepted: 08/22/2019] [Indexed: 01/24/2023] Open
Abstract
Herbivore-induced plant volatiles (HIPVs) play important ecological roles in defense against stresses. In contrast to model plants, reports on HIPV formation and function in crops are limited. Tea (Camellia sinensis) is an important crop in China. α-Farnesene is a common HIPV produced in tea plants in response to different herbivore attacks. In this study, a C. sinensis α-farnesene synthase (CsAFS) was isolated, cloned, sequenced, and functionally characterized. The CsAFS recombinant protein produced in Escherichia coli was able to transform farnesyl diphosphate (FPP) into α-farnesene and also convert geranyl diphosphate (GPP) to β-ocimene in vitro. Furthermore, transient expression analysis in Nicotiana benthamiana plants indicated that CsAFS was located in the cytoplasm and could convert FPP to α-farnesene in plants. Wounding, to simulate herbivore damage, activated jasmonic acid (JA) formation, which significantly enhanced the CsAFS expression level and α-farnesene content. This suggested that herbivore-derived wounding induced α-farnesene formation in tea leaves. Furthermore, the emitted α-farnesene might act as a signal to activate antibacterial-related factors in neighboring undamaged tea leaves. This research advances our understanding of the formation and signaling roles of common HIPVs in crops such as tea plants.
Collapse
Affiliation(s)
- Xuewen Wang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Tianhe District, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Yuquan Road 19A, Beijing 100049, China
| | - Lanting Zeng
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Tianhe District, Guangzhou 510650, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Xingke Road 723, Tianhe District, Guangzhou 510650, China
| | - Yinyin Liao
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Tianhe District, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Yuquan Road 19A, Beijing 100049, China
| | - Jianlong Li
- Tea Research Institute, Guangdong Academy of Agricultural Sciences & Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation and Utilization, Dafeng Road 6, Tianhe District, Guangzhou 510640, China
| | - Jinchi Tang
- Tea Research Institute, Guangdong Academy of Agricultural Sciences & Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation and Utilization, Dafeng Road 6, Tianhe District, Guangzhou 510640, China
| | - Ziyin Yang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Tianhe District, Guangzhou 510650, China.
- University of Chinese Academy of Sciences, Yuquan Road 19A, Beijing 100049, China.
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Xingke Road 723, Tianhe District, Guangzhou 510650, China.
| |
Collapse
|
15
|
Advances in research on functional genes of tea plant. Gene 2019; 711:143940. [PMID: 31226279 DOI: 10.1016/j.gene.2019.143940] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 05/31/2019] [Accepted: 06/17/2019] [Indexed: 12/12/2022]
Abstract
Tea plant (Camellia sinensis) is an important leaf-type woody crop used to produce non-alcoholic beverages all over the world. Tea is one of the oldest and most popular non-alcoholic beverages in the world, and long-term tea drinking has numerous healthful for humans due to many of the important secondary metabolites, such as polyphenols and theanine. Theanine and polyphenols are also closely related to tea flavor and tea aroma, which is usually as the standard for judging tea quality. The growth of tea plants and quality of teas are susceptible to adversity abiotic and biotic stresses, such as low temperatures and pests. Consequently, this review focus on the research progress of key genes related to the stress resistance and material metabolism of tea plants in recent years. We aim at comprehensively understanding the growth and metabolism of tea plants and their relationship with the external environment, so as to provide an in-depth and broad theoretical support for the breeding of excellent tea plant varieties.
Collapse
|
16
|
Influence of Chloroplast Defects on Formation of Jasmonic Acid and Characteristic Aroma Compounds in Tea ( Camellia sinensis) Leaves Exposed to Postharvest Stresses. Int J Mol Sci 2019; 20:ijms20051044. [PMID: 30818885 PMCID: PMC6429154 DOI: 10.3390/ijms20051044] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 02/21/2019] [Accepted: 02/22/2019] [Indexed: 01/30/2023] Open
Abstract
Characteristic aroma formation in tea (Camellia sinensis) leaves during the oolong tea manufacturing process might result from the defense responses of tea leaves against these various stresses, which involves upregulation of the upstream signal phytohormones related to leaf chloroplasts, such as jasmonic acid (JA). Whether chloroplast changes affect the formation of JA and characteristic aroma compounds in tea leaves exposed to stresses is unknown. In tea germplasms, albino-induced yellow tea leaves have defects in chloroplast ultrastructure and composition. Herein, we have compared the differential responses of phytohormone and characteristic aroma compound formation in normal green and albino-induced yellow tea leaves exposed to continuous wounding stress, which is the main stress in oolong tea manufacture. In contrast to single wounding stress (from picking, as a control), continuous wounding stress can upregulate the expression of CsMYC2, a key transcription factor of JA signaling, and activate the synthesis of JA and characteristic aroma compounds in both normal tea leaves (normal chloroplasts) and albino tea leaves (chloroplast defects). Chloroplast defects had no significant effect on the expression levels of CsMYC2 and JA synthesis-related genes in response to continuous wounding stress, but reduced the increase in JA content in response to continuous wounding stress. Furthermore, chloroplast defects reduced the increase in volatile fatty acid derivatives, including jasmine lactone and green leaf volatile contents, in response to continuous wounding stress. Overall, the formation of metabolites derived from fatty acids, such as JA, jasmine lactone, and green leaf volatiles in tea leaves, in response to continuous wounding stress, was affected by chloroplast defects. This information will improve understanding of the relationship of the stress responses of JA and aroma compound formation with chloroplast changes in tea.
Collapse
|
17
|
Zhou Q, Cheng X, Wang S, Liu S, Wei C. Effects of Chemical Insecticide Imidacloprid on the Release of C 6 Green Leaf Volatiles in Tea Plants (Camellia sinensis). Sci Rep 2019; 9:625. [PMID: 30679494 PMCID: PMC6345918 DOI: 10.1038/s41598-018-36556-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 11/23/2018] [Indexed: 11/27/2022] Open
Abstract
Chemical insecticides are widely used for pest control worldwide. However, the impact of insecticides on indirect plant defense is seldom reported. Here, using tea plants and the pesticide imidacloprid, effects of chemical insecticides on C6-green leaf volatiles (GLVs) anabolism and release were investigated first time. Compared with the non-treated control plants, the treatment of imidacloprid resulted in the lower release amount of key GLVs: (Z)-3-hexenal, n-hexenal, (Z)-3-hexene-1-ol and (Z)-3-Hexenyl acetate. The qPCR analysis revealed a slight higher transcript level of the CsLOX3 gene but a significantly lower transcript level of CsHPL gene. Our results suggest that imidacloprid treatment can have a negative effect on the emission of GLVs due to suppressing the critical GLVs synthesis-related gene, consequently affecting plant indirect defense.
Collapse
Affiliation(s)
- Qiying Zhou
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui, 230036, China.,Henan Key Laboratory of Tea Plant Biology, Xinyang Normal University, 237 Nanhu Road, Xinyang, 464000, Henan, China.,Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang Normal University, 237 Nanhu Road, Xinyang, 464000, Henan, China
| | - Xi Cheng
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui, 230036, China
| | - Shuangshuang Wang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui, 230036, China
| | - Shengrui Liu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui, 230036, China
| | - Chaoling Wei
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui, 230036, China.
| |
Collapse
|
18
|
Zeng L, Watanabe N, Yang Z. Understanding the biosyntheses and stress response mechanisms of aroma compounds in tea ( Camellia sinensis) to safely and effectively improve tea aroma. Crit Rev Food Sci Nutr 2018; 59:2321-2334. [PMID: 30277806 DOI: 10.1080/10408398.2018.1506907] [Citation(s) in RCA: 144] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Metabolite formation is a biochemical and physiological feature of plants developed as an environmental response during the evolutionary process. These metabolites help defend plants against environmental stresses, but are also important quality components in crops. Utilizing the stress response to improve natural quality components in plants has attracted increasing research interest. Tea, which is processed by the tender shoots or leaves of tea plant (Camellia sinensis (L.) O. Kuntze), is the second most popular beverage worldwide after water. Aroma is an important factor affecting tea character and quality. The defense responses of tea leaves against various stresses during preharvest (tea growth process) and postharvest (tea manufacturing) processing can result in aroma formation. Herein, we summarize recent investigations into the biosyntheses of several characteristic aroma compounds prevalent in teas and derived from volatile fatty acid derivatives, terpenes, and phenylpropanoids/benzenoids. Several key aroma synthetic genes from tea leaves have been isolated, cloned, sequenced, and functionally characterized. Biotic stress (such as tea green leafhopper attack) and abiotic stress (such as light, temperature, and wounding) could enhance the expression of aroma synthetic genes, resulting in the abundant accumulation of characteristic aroma compounds in tea leaves. Understanding the specific relationships between characteristic aroma compounds and stresses is key to improving tea quality safely and effectively.
Collapse
Affiliation(s)
- Lanting Zeng
- a Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences , Guangzhou , China.,b College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences , Beijing , China
| | - Naoharu Watanabe
- c Graduate School of Science and Technology, Shizuoka University , Naka-ku, Hamamatsu , Japan
| | - Ziyin Yang
- a Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences , Guangzhou , China.,b College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences , Beijing , China
| |
Collapse
|
19
|
Deng WW, Wang R, Yang T, Jiang L, Zhang ZZ. Functional Characterization of Salicylic Acid Carboxyl Methyltransferase from Camellia sinensis, Providing the Aroma Compound of Methyl Salicylate during the Withering Process of White Tea. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:11036-11045. [PMID: 29160698 DOI: 10.1021/acs.jafc.7b04575] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Methyl salicylate (MeSA) is one of the volatile organic compounds (VOCs) that releases floral scent and plays an important role in the sweet flowery aroma of tea. During the withering process for white tea producing, MeSA was generated by salicylic acid carboxyl methyltransferase (SAMT) with salicylic acid (SA), and the specific floral scent was formed. In this study, we first cloned a CsSAMT from tea leaves (GenBank accession no. MG459470) and used Escherichia coli and Saccharomyces cerevisiae to express the recombinant CsSAMT. The enzyme activity in prokaryotic and eukaryotic expression systems was identified, and the protein purification, substrate specificity, pH, and temperature optima were investigated. It was shown that CsSAMT located in the chloroplast, and the gene expression profiles were quite different in tea organs. The obtained results might give a new understanding for tea aroma formation, optimization, and regulation and have great significance for improving the specific quality of white tea.
Collapse
Affiliation(s)
- Wei-Wei Deng
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University , 130 Changjiang West Road, Hefei, Anhui 230036, China
| | - Rongxiu Wang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University , 130 Changjiang West Road, Hefei, Anhui 230036, China
| | - Tianyuan Yang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University , 130 Changjiang West Road, Hefei, Anhui 230036, China
| | - Li'na Jiang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University , 130 Changjiang West Road, Hefei, Anhui 230036, China
| | - Zheng-Zhu Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University , 130 Changjiang West Road, Hefei, Anhui 230036, China
| |
Collapse
|
20
|
Zhou Y, Liu Y, Wang S, Shi C, Zhang R, Rao J, Wang X, Gu X, Wang Y, Li D, Wei C. Molecular Cloning and Characterization of Galactinol Synthases in Camellia sinensis with Different Responses to Biotic and Abiotic Stressors. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:2751-2759. [PMID: 28271712 DOI: 10.1021/acs.jafc.7b00377] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Galactinol synthase (GolS) is a key biocatalyst for the synthesis of raffinose family oligosaccharides (RFOs). RFOs accumulation plays a critical role in abiotic stress adaptation, but the relationship between expression of GolS genes and biotic stress adaptation remains unclear. In this study, two CsGolS genes were found to be highly up-regulated in a transcriptome library of Ectropic oblique-attacked Camellia sinensis. Three complete CsGolS genes were then cloned and characterized. Gene transcriptional analyses under biotic and abiotic stress conditions indicated that the CsGolS1 gene was sensitive to water deficit, low temperature, and abscisic acid, while CsGolS2 and CsGolS3 genes were sensitive to pest attack and phytohormones. The gene regulation and RFOs determination results indicated that CsGolS1 was primarily related to abiotic stress and CsGolS2 and CsGolS3 were related to biotic stress. GolS-mediated biotic stress adaptations have not been studied in depth, so further analysis of this new biological function is required.
Collapse
Affiliation(s)
- Yu Zhou
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University , 130 Changjiang Road West, Hefei, Anhui 230036, China
| | - Yan Liu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University , 130 Changjiang Road West, Hefei, Anhui 230036, China
| | - Shuangshuang Wang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University , 130 Changjiang Road West, Hefei, Anhui 230036, China
| | - Cong Shi
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University , 130 Changjiang Road West, Hefei, Anhui 230036, China
| | - Ran Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University , 130 Changjiang Road West, Hefei, Anhui 230036, China
| | - Jia Rao
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University , 130 Changjiang Road West, Hefei, Anhui 230036, China
| | - Xu Wang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University , 130 Changjiang Road West, Hefei, Anhui 230036, China
| | - Xungang Gu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University , 130 Changjiang Road West, Hefei, Anhui 230036, China
| | - Yunsheng Wang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University , 130 Changjiang Road West, Hefei, Anhui 230036, China
| | - Daxiang Li
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University , 130 Changjiang Road West, Hefei, Anhui 230036, China
| | - Chaoling Wei
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University , 130 Changjiang Road West, Hefei, Anhui 230036, China
| |
Collapse
|
21
|
Differential transcriptome analysis of leaves of tea plant (Camellia sinensis) provides comprehensive insights into the defense responses to Ectropis oblique attack using RNA-Seq. Funct Integr Genomics 2016; 16:383-98. [DOI: 10.1007/s10142-016-0491-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Revised: 03/05/2016] [Accepted: 03/29/2016] [Indexed: 12/31/2022]
|