1
|
Vallejo-García LC, Espíritu-García A, Miranda-Molina A, Munguía AL. Characterization of oligosaccharides produced by a truncated dextransucrase from Weissella confusa Wcp3a isolated from pozol, a traditional fermented corn beverage. Int J Biol Macromol 2025:139891. [PMID: 39818401 DOI: 10.1016/j.ijbiomac.2025.139891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 12/13/2024] [Accepted: 01/13/2025] [Indexed: 01/18/2025]
Abstract
Glucansucrase Dsr_Wcp3a from a Weissella confusa strain discovered in fermented maize (pozol) was produced in E. coli BL21 resulting in three truncated forms of the native enzyme. An important modification of specificity is observed, as the truncated enzymes synthesize low molecular weight dextran from sucrose, probably due to the absence of domains IV and V, compared to the native enzyme which produces high molecular weight dextran. Low molecular weight dextran is obtained from the non-processive addition of glucose molecules to sucrose (FIMOS) and glucose (IMOS), resulting in two gluco-isomalto-oligosaccharide series. The exclusive synthesis of IMOS occurs in reactions where glucose is included as acceptor in reactions with sucrose as glucosyl donor substrate, due to a higher affinity for glucose as acceptor. The truncated forms also synthesize OS with maltose as acceptor.
Collapse
Affiliation(s)
- Luz Cristina Vallejo-García
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, UNAM, Av. Universidad, 2001, Chamilpa, Cuernavaca, Mor., Mexico.
| | - Andrés Espíritu-García
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, UNAM, Av. Universidad, 2001, Chamilpa, Cuernavaca, Mor., Mexico
| | - Alfonso Miranda-Molina
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, UNAM, Av. Universidad, 2001, Chamilpa, Cuernavaca, Mor., Mexico.
| | - Agustín López Munguía
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, UNAM, Av. Universidad, 2001, Chamilpa, Cuernavaca, Mor., Mexico.
| |
Collapse
|
2
|
Zeng M, van Pijkeren JP, Pan X. Gluco-oligosaccharides as potential prebiotics: Synthesis, purification, structural characterization, and evaluation of prebiotic effect. Compr Rev Food Sci Food Saf 2023; 22:2611-2651. [PMID: 37073416 DOI: 10.1111/1541-4337.13156] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 02/15/2023] [Accepted: 03/24/2023] [Indexed: 04/20/2023]
Abstract
Prebiotics have long been used to modulate the gut microbiota and improve host health. Most established prebiotics are nondigestible carbohydrates, especially short-chain oligosaccharides. Recently, gluco-oligosaccharides (GlcOS) with 2-10 glucose residues and one or more O-glycosidic linkage(s) have been found to exert prebiotic potentials (not fully established prebiotics) because of their selective fermentation by beneficial gut bacteria. However, the prebiotic effects (non-digestibility, selective fermentability, and potential health effects) of GlcOS are highly variable due to their complex structure originating from different synthesis processes. The relationship between GlcOS structure and their potential prebiotic effects has not been fully understood. To date, a comprehensive summary of the knowledge of GlcOS is still missing. Therefore, this review provides an overview of GlcOS as potential prebiotics, covering their synthesis, purification, structural characterization, and prebiotic effect evaluation. First, GlcOS with different structures are introduced. Then, the enzymatic and chemical processes for GlcOS synthesis are critically reviewed, including reaction mechanisms, substrates, catalysts, the structures of resultant GlcOS, and the synthetic performance (yield and selectivity). Industrial separation techniques for GlcOS purification and structural characterization methods are discussed in detail. Finally, in vitro and in vivo studies to evaluate the non-digestibility, selective fermentability, and associated health effects of different GlcOS are extensively reviewed with a special focus on the GlcOS structure-function relationship.
Collapse
Affiliation(s)
- Meijun Zeng
- Department of Biological Systems Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | | | - Xuejun Pan
- Department of Biological Systems Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
3
|
Shinde VK, Vamkudoth KR. Maltooligosaccharide forming amylases and their applications in food and pharma industry. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2022; 59:3733-3744. [PMID: 36193376 PMCID: PMC9525542 DOI: 10.1007/s13197-021-05262-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 07/28/2021] [Accepted: 09/04/2021] [Indexed: 06/16/2023]
Abstract
Oligosaccharides are low molecular weight carbohydrates with a wide range of health benefits due to their excellent bio-preservative and prebiotic properties. The popularity of functional oligosaccharides among modern consumers has resulted in impressive market demand. Organoleptic and prebiotic properties of starch-derived oligosaccharides are advantageous to food quality and health. The extensive health benefits of oligosaccharides offered their applications in the food, pharmaceuticals, and cosmetic industry. Maltooligosaccharides and isomaltooligosaccharides comprise 2-10 glucose units linked by α-1-4 and α-1-6 glycoside bonds, respectively. Conventional biocatalyst-based oligosaccharides processes are often multi-steps, consisting of starch gelatinization, hydrolysis and transglycosylation. With higher production costs and processing times, the current demand cannot meet on a large-scale production. As a result, innovative and efficient production technology for oligosaccharides synthesis holds paramount importance. Malto-oligosaccharide forming amylase (EC 3.2.1.133) is one of the key enzymes with a dual catalytic function used to produce oligosaccharides. Interestingly, Malto-oligosaccharide forming amylase catalyzes glycosidic bond for its transglycosylation to its inheritance hydrolysis and alternative biocatalyst to the multistep technology. Genetic engineering and reaction optimization enhances the production of oligosaccharides. The development of innovative and cost-effective technologies at competitive prices becomes a national priority.
Collapse
Affiliation(s)
- Vidhya K. Shinde
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune, 411008 India
- Academy of Scientific and Innovative Research AcSIR), Anusandhanbhavan, New Delhi, India
| | - Koteswara Rao Vamkudoth
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune, 411008 India
- Academy of Scientific and Innovative Research AcSIR), Anusandhanbhavan, New Delhi, India
| |
Collapse
|
4
|
Heterologous Expression of Thermotolerant α-Glucosidase in Bacillus subtilis 168 and Improving Its Thermal Stability by Constructing Cyclized Proteins. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8100498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
α-glucosidase is an essential enzyme for the production of isomaltooligosaccharides (IMOs). Allowing α-glucosidase to operate at higher temperatures (above 60 °C) has many advantages, including reducing the viscosity of the reaction solution, enhancing the catalytic reaction rate, and achieving continuous production of IMOs. In the present study, the thermal stability of α-glucosidase was significantly improved by constructing cyclized proteins. We screened a thermotolerant α-glucosidase (AGL) with high transglycosylation activity from Thermoanaerobacter ethanolicus JW200 and heterologously expressed it in Bacillus subtilis 168. After forming the cyclized α-glucosidase by different isopeptide bonds (SpyTag/SpyCatcher, SnoopTag/SnoopCatcher, SdyTag/SdyCatcher, RIAD/RIDD), we determined the enzymatic properties of cyclized AGL. The optimal temperature of all cyclized AGL was increased by 5 °C, and their thermal stability was generally improved, with SpyTag-AGL-SpyCatcher having a 1.74-fold increase compared to the wild-type. The results of molecular dynamics simulations showed that the RMSF values of cyclized AGL decreased, indicating that the rigidity of the cyclized protein increased. This study provides an efficient method for improving the thermal stability of α-glucosidase.
Collapse
|
5
|
Ni D, Chen Z, Tian Y, Xu W, Zhang W, Kim BG, Mu W. Comprehensive utilization of sucrose resources via chemical and biotechnological processes: A review. Biotechnol Adv 2022; 60:107990. [PMID: 35640819 DOI: 10.1016/j.biotechadv.2022.107990] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/20/2022] [Accepted: 05/24/2022] [Indexed: 11/30/2022]
Abstract
Sucrose, one of the most widespread disaccharides in nature, has been available in daily human life for many centuries. As an abundant and cheap sweetener, sucrose plays an essential role in our diet and the food industry. However, it has been determined that many diseases, such as obesity, diabetes, hyperlipidemia, etc., directly relate to the overconsumption of sucrose. It arouses many explorations for the conversion of sucrose to high-value chemicals. Production of valuable substances from sucrose by chemical methods has been studied since a half-century ago. Compared to chemical processes, biotechnological conversion approaches of sucrose are more environmentally friendly. Many enzymes can use sucrose as the substrate to generate functional sugars, especially those from GH68, GH70, GH13, and GH32 families. In this review, enzymatic catalysis and whole-cell fermentation of sucrose for the production of valuable chemicals were reviewed. The multienzyme cascade catalysis and metabolic engineering strategies were addressed.
Collapse
Affiliation(s)
- Dawei Ni
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Ziwei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yuqing Tian
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wei Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wenli Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Byung-Gee Kim
- School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
6
|
Xylooligosaccharides: prebiotic potential from agro-industrial residue, production strategies and prospects. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102190] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
7
|
Wang Y, Maina NH, Coda R, Katina K. Challenges and opportunities for wheat alternative grains in breadmaking: Ex-situ- versus in-situ-produced dextran. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.05.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
8
|
Park BR, Park JY, Lee SH, Hong SJ, Jeong JH, Choi JH, Park SY, Park CS, Lee HN, Kim YM. Synthesis of improved long-chain isomaltooligosaccharide, using a novel glucosyltransferase derived from Thermoanaerobacter thermocopriae, with maltodextrin. Enzyme Microb Technol 2021; 147:109788. [PMID: 33992410 DOI: 10.1016/j.enzmictec.2021.109788] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 03/19/2021] [Accepted: 03/19/2021] [Indexed: 11/19/2022]
Abstract
Isomaltooligosaccharide (IMO), considered to be a prebiotic, reportedly has health effects, particularly in terms of digestion; however, the prebiotic effects of IMOs depend largely on the degree of polymerization. Currently, IMOs are commercially produced using transglucosidase (TG) derived from Aspergillus niger. Here, we report a novel Thermoanaerobacter thermocopriae-derived TG (TtTG) that can produce long-chain IMOs (L-IMOs) using maltodextrin as the main substrate. A putative carbohydrate-binding gene comprising carbohydrate-binding module 35 and glycoside hydrolase family 15 domain was cloned and successfully overexpressed in Escherichia coli BL21 (DE3) cells. The resulting purified recombinant enzyme (TtTG) had a molecular mass of 94 kDa. TtTG displayed an optimal pH of 4.0 (higher than that of commercial TG) and an optimal temperature of 60 °C (same as that of commercial TG). TtTG also enabled the synthesis of oligosaccharides using various saccharides, such as palatinose, kojibiose, sophorose, maltose, cellobiose, isomaltose, gentiobiose, and trehalose, which acted as specific acceptors. TtTG could also produce a medium-sized L-IMO, different from that by dextran-dextrinase and TG, from maltodextrin, as the sole substrate. Thus, the novel combination of maltodextrin and TtTG shows potential as an effective method for commercially producing L-IMOs with improved prebiotic effects.
Collapse
Affiliation(s)
- Bo-Ram Park
- Department of Agro-Food Resources, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, 55365, Republic of Korea.
| | - Ji Yeong Park
- Department of Agro-Food Resources, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, 55365, Republic of Korea
| | - So Hee Lee
- Department of Agro-Food Resources, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, 55365, Republic of Korea
| | - Seong-Jin Hong
- Department of Food Science and Technology, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Ji Hye Jeong
- Department of Agro-Food Resources, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, 55365, Republic of Korea
| | - Ji-Ho Choi
- Department of Agro-Food Resources, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, 55365, Republic of Korea
| | - Shin-Yong Park
- Department of Agro-Food Resources, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, 55365, Republic of Korea
| | - Chan Soon Park
- Department of Agro-Food Resources, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, 55365, Republic of Korea
| | - Ha-Nul Lee
- Department of Food Science and Technology, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Young-Min Kim
- Department of Food Science and Technology, Chonnam National University, Gwangju, 61186, Republic of Korea.
| |
Collapse
|
9
|
Lan W, Chen S. Chemical kinetics, thermodynamics and inactivation kinetics of dextransucrase activity by ultrasound treatment. REACTION KINETICS MECHANISMS AND CATALYSIS 2020. [DOI: 10.1007/s11144-020-01728-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
10
|
Heterologous Expression of a Thermostable α-Glucosidase from Geobacillus sp. Strain HTA-462 by Escherichia coli and Its Potential Application for Isomaltose⁻Oligosaccharide Synthesis. Molecules 2019; 24:molecules24071413. [PMID: 30974879 PMCID: PMC6479687 DOI: 10.3390/molecules24071413] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 04/01/2019] [Accepted: 04/07/2019] [Indexed: 01/09/2023] Open
Abstract
Isomaltose-oligosaccharides (IMOs), as food ingredients with prebiotic functionality, can be prepared via enzymatic synthesis using α-glucosidase. In the present study, the α-glucosidase (GSJ) from Geobacillus sp. strain HTA-462 was cloned and expressed in Escherichia coli BL21 (DE3). Recombinant GSJ was purified and biochemically characterized. The optimum temperature condition of the recombinant enzyme was 65 °C, and the half-life was 84 h at 60 °C, whereas the enzyme was active over the range of pH 6.0-10.0 with maximal activity at pH 7.0. The α-glucosidase activity in shake flasks reached 107.9 U/mL and using 4-Nitrophenyl β-D-glucopyranoside (pNPG) as substrate, the Km and Vmax values were 2.321 mM and 306.3 U/mg, respectively. The divalent ions Mn2+ and Ca2+ could improve GSJ activity by 32.1% and 13.8%. Moreover, the hydrolysis ability of recombinant α-glucosidase was almost the same as that of the commercial α-glucosidase (Bacillus stearothermophilus). In terms of the transglycosylation reaction, with 30% maltose syrup under the condition of 60 °C and pH 7.0, IMOs were synthesized with a conversion rate of 37%. These studies lay the basis for the industrial application of recombinant α-glucosidase.
Collapse
|
11
|
Casa-Villegas M, Marín-Navarro J, Polaina J. Synthesis of Isomaltooligosaccharides by Saccharomyces cerevisiae Cells Expressing Aspergillus niger α-Glucosidase. ACS OMEGA 2017; 2:8062-8068. [PMID: 30023572 PMCID: PMC6045415 DOI: 10.1021/acsomega.7b01189] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 11/06/2017] [Indexed: 06/08/2023]
Abstract
The α-glucosidase encoded by the aglA gene of Aspergillus niger is a secreted enzyme belonging to family 31 of glycoside hydrolases. This enzyme has a retaining mechanism of action and displays transglycosylating activity that makes it amenable to be used for the synthesis of isomaltooligosaccharides (IMOs). We have expressed the aglA gene in Saccharomyces cerevisiae under control of a galactose-inducible promoter. Recombinant yeast cells expressing the aglA gene produced extracellular α-glucosidase activity about half of which appeared cell bound whereas the other half was released into the culture medium. With maltose as the substrate, panose is the main transglycosylation product after 8 h of incubation, whereas isomaltose is predominant after 24 h. Isomaltose also becomes predominant at shorter times if a mixture of maltose and glucose is used instead of maltose. To facilitate IMO production, we have designed a procedure by which yeast cells can be used directly as the catalytic agent. For this purpose, we expressed in S. cerevisiae gene constructs in which the aglA gene is fused to glycosylphosphatidylinositol anchor sequences, from the yeast SED1 gene, that determine the covalent binding of the hybrid protein to the cell membrane. The resulting hybrid enzymes were stably attached to the cell surface. The cells from cultures of recombinant yeast strains expressing aglA-SED1 constructions can be used to produce IMOs in successive batches.
Collapse
Affiliation(s)
- Mary Casa-Villegas
- Instituto
de Agroquímica y Tecnología de Alimentos, CSIC, 46980-Paterna, Valencia, Spain
| | - Julia Marín-Navarro
- Instituto
de Agroquímica y Tecnología de Alimentos, CSIC, 46980-Paterna, Valencia, Spain
- Departamento
de Bioquímica y Biología Molecular, Universidad de Valencia, 46100-Burjassot, Valencia, Spain
| | - Julio Polaina
- Instituto
de Agroquímica y Tecnología de Alimentos, CSIC, 46980-Paterna, Valencia, Spain
| |
Collapse
|
12
|
Hu Y, Winter V, Chen XY, Gänzle MG. Effect of acceptor carbohydrates on oligosaccharide and polysaccharide synthesis by dextransucrase DsrM from Weissella cibaria. Food Res Int 2017; 99:603-611. [DOI: 10.1016/j.foodres.2017.06.026] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Revised: 06/08/2017] [Accepted: 06/17/2017] [Indexed: 01/10/2023]
|
13
|
Madsen LR, Stanley S, Swann P, Oswald J. A Survey of Commercially Available Isomaltooligosaccharide-Based Food Ingredients. J Food Sci 2017; 82:401-408. [DOI: 10.1111/1750-3841.13623] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 12/16/2016] [Accepted: 12/19/2016] [Indexed: 12/20/2022]
Affiliation(s)
- Lee R. Madsen
- Authors are with ISOThrive; LLC, 9385 Discovery Blvd. Suite 133 Manassas VA 20109 U.S.A
| | - Sarah Stanley
- Authors are with ISOThrive; LLC, 9385 Discovery Blvd. Suite 133 Manassas VA 20109 U.S.A
| | - Peter Swann
- Authors are with ISOThrive; LLC, 9385 Discovery Blvd. Suite 133 Manassas VA 20109 U.S.A
| | - Jack Oswald
- Authors are with ISOThrive; LLC, 9385 Discovery Blvd. Suite 133 Manassas VA 20109 U.S.A
| |
Collapse
|
14
|
Sharma M, Patel SN, Lata K, Singh U, Krishania M, Sangwan RS, Singh SP. A novel approach of integrated bioprocessing of cane molasses for production of prebiotic and functional bioproducts. BIORESOURCE TECHNOLOGY 2016; 219:311-318. [PMID: 27498012 DOI: 10.1016/j.biortech.2016.07.131] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 07/28/2016] [Accepted: 07/29/2016] [Indexed: 06/06/2023]
Abstract
In this work, the sugar industry by-product cane molasses was investigated as feedstock for acceptor reactions by dextransucrase from Leuconostoc mesenteroides MTCC 10508, leading to the biosynthesis of oligosaccharides. The starch industry corn fiber residue was used as a source for acceptor molecules, maltose, in the reaction. Production of approximately 124g oligosaccharides (DP3-DP6) per kg of fresh molasses was achieved. Further, cane molasses based medium was demonstrated as a sole carbon source for L. mesenteroides growth and dextransucrase production. d-Fructose released by dextransucrase activity as processing by-product was transformed into the functional monosaccharide with zero caloric value, d-psicose, by inducing its epimerization. Quantitative analysis approximated 37g d-psicose per kg of fresh molasses. Thus, the study established a novel approach of integrated bioprocessing of cane molasses into prebiotic and functional food additives.
Collapse
Affiliation(s)
- Manisha Sharma
- Center of Innovative and Applied Bioprocessing (CIAB), Department of Biotechnology (DBT), Mohali, India
| | - Satya Narayan Patel
- Center of Innovative and Applied Bioprocessing (CIAB), Department of Biotechnology (DBT), Mohali, India
| | - Kusum Lata
- Center of Innovative and Applied Bioprocessing (CIAB), Department of Biotechnology (DBT), Mohali, India
| | - Umesh Singh
- Center of Innovative and Applied Bioprocessing (CIAB), Department of Biotechnology (DBT), Mohali, India
| | - Meena Krishania
- Center of Innovative and Applied Bioprocessing (CIAB), Department of Biotechnology (DBT), Mohali, India
| | - Rajender S Sangwan
- Center of Innovative and Applied Bioprocessing (CIAB), Department of Biotechnology (DBT), Mohali, India
| | - Sudhir P Singh
- Center of Innovative and Applied Bioprocessing (CIAB), Department of Biotechnology (DBT), Mohali, India.
| |
Collapse
|
15
|
Chen XY, Gänzle MG. Site Directed Mutagenesis of Dextransucrase DsrM from Weissella cibaria: Transformation to a Reuteransucrase. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:6848-6855. [PMID: 27550198 DOI: 10.1021/acs.jafc.6b02751] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Glucansucrases produce α-glucans and gluco-oligosaccharides; the linkage type and molecular weight of glucans impacts their functionality. This study compared the catalytic specificities of dextransucrase DsrM from Weissella cibaria 10M and derivatives of this enzymes with GtfA from Lactobacillus reuteri TMW1.656. The N-variable region, which is dispensable for GtfA activity, was essential for DsrM activity. Parallel amino acid substitutions in DsrM-ΔS and GtfA-ΔN indicated that the acceptor binding site residues determining the linkage type differ in these enzymes. DsrM-V583P:V586I had comparable enzyme activity as the respective GtfA derivative but did not increase the proportion of α-(1→4) linkages. DsrM-S622N had low enzyme activity and an unaltered proportion of α-(1→4) linkages while the analogous GtfA-S1062N maintained enzyme activity but increased the proportion of α-(1→4) linkages. This study of dextransucrase from Weissella spp. thus elucidated differences between glucansucrases and will facilitate study of the structure-function relationships of dextran and isomalto-oligosaccharides.
Collapse
Affiliation(s)
- Xiao Yan Chen
- Department of Agricultural, Food and Nutritional Science, University of Alberta , Edmonton AB T6G 2R3, Canada
| | - Michael G Gänzle
- Department of Agricultural, Food and Nutritional Science, University of Alberta , Edmonton AB T6G 2R3, Canada
- College of Bioengineering and Food Science, Hubei University of Technology , Wuhan 430068, P.R. China
| |
Collapse
|