1
|
Proteomic and computational characterisation of 11S globulins from grape seed flour by-product and its interaction with malvidin 3-glucoside by molecular docking. Food Chem 2022; 386:132842. [PMID: 35366628 DOI: 10.1016/j.foodchem.2022.132842] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 03/25/2022] [Accepted: 03/26/2022] [Indexed: 11/23/2022]
Abstract
Grape seed flour by-product (GSBP) is an economic and renewable source of proteins, increasingly being explored due to interesting technological application such as colour protection in rich-anthocyanins beverages. Globulin-like proteins from GSBP were characterised by proteomic and computational studies. MALDI TOF/TOF analysis revealed the presence of two 11S globulins (acid and basic), whose 3D structures have been elucidated for the first time in Vitis vinifera L. grape seeds by using homology models and molecular dynamics. The secondary structure showed 11 α-helices and 25 β-sheets for acid and 12 α-helices and 24 β-sheets for basic 11S globulins. Molecular docking results indicate that both grape seed 11S globulins could establish different types of non-covalent interactions (π-π) with malvidin 3-O-glucoside (wine anthocyanin), which suggest a possible colour protection similar to that occurring in copigmentation phenomenon. These findings provide valuable information of globulin family proteins that could be relevant in food industry applications.
Collapse
|
2
|
Zhuang Y, Li X, Hu J, Xu R, Zhang D. Expanding the gene pool for soybean improvement with its wild relatives. ABIOTECH 2022; 3:115-125. [PMID: 36304518 PMCID: PMC9590452 DOI: 10.1007/s42994-022-00072-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 04/19/2022] [Indexed: 11/29/2022]
Abstract
Genetic diversity is a cornerstone of crop improvement, However, cultivated soybean (Glycine max) has undergone several genetic bottlenecks, including domestication in China, the introduction of landraces to other areas of the world and, latterly, selective breeding, leading to low genetic diversity the poses a major obstacle to soybean improvement. By contrast, there remains a relatively high level of genetic diversity in soybean's wild relatives, especially the perennial soybeans (Glycine subgenus Glycine), which could serve as potential gene pools for improving soybean cultivars. Wild soybeans are phylogenetically diversified and adapted to various habitats, harboring resistance to various biotic and abiotic stresses. Advances in genome and transcriptome sequencing enable alleles associated with desirable traits that were lost during domestication of soybean to be discovered in wild soybean. The collection and conservation of soybean wild relatives and the dissection of their genomic features will accelerate soybean breeding and facilitate sustainable agriculture and food production.
Collapse
Affiliation(s)
- Yongbin Zhuang
- College of Agriculture, and State Key Laboratory of Crop Biology, Shangdong Agricultural University, Tai'an, 271018 Shandong China
| | - Xiaoming Li
- College of Agriculture, and State Key Laboratory of Crop Biology, Shangdong Agricultural University, Tai'an, 271018 Shandong China
| | - Junmei Hu
- College of Agriculture, and State Key Laboratory of Crop Biology, Shangdong Agricultural University, Tai'an, 271018 Shandong China
| | - Ran Xu
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, 250131 Shandong China
| | - Dajian Zhang
- College of Agriculture, and State Key Laboratory of Crop Biology, Shangdong Agricultural University, Tai'an, 271018 Shandong China
| |
Collapse
|
3
|
Krishnan HB, Jurkevich A. Confocal Fluorescence Microscopy Investigation for the Existence of Subdomains within Protein Storage Vacuoles in Soybean Cotyledons. Int J Mol Sci 2022; 23:3664. [PMID: 35409024 PMCID: PMC8999119 DOI: 10.3390/ijms23073664] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/21/2022] [Accepted: 03/25/2022] [Indexed: 01/27/2023] Open
Abstract
In legumes, the seed storage proteins accumulate within specialized organelles called protein storage vacuoles (PSVs). In several plant species, PSVs are differentiated into subdomains that accumulate different kinds of proteins. Even though the existence of subdomains is common in cereals and legumes, it has not been reported in soybean PSVs. The two most abundant seed proteins of soybean, 7S and 11S globulins, have different temporal accumulation patterns and exhibit considerable solubility differences that could result in differential accretion of these proteins within the PSVs. Here, we employed confocal fluorescent microscopy to examine the presence or absence of subdomains within the soybean PSVs. Eosin-stained sections of FAA-fixed paraffin embedded soybean seeds, when viewed by confocal fluorescence microscopy, revealed the presence of intricate subdomains within the PSVs. However, fluorescence immunolabeling studies demonstrated that the 7S and 11S globulins were evenly distributed within the PSVs and failed to corroborate the existence of subdomains within the PSVs. Similarly, confocal scanning microscopy examination of free-hand, vibratome and cryostat sections also failed to demonstrate the existence of subdomains within PSVs. The subdomains, which were prominently seen in PSVs of FAA-fixed soybean seeds, were not observed when the seeds were fixed either in glutaraldehyde/paraformaldehyde or glutaraldehyde. Our studies demonstrate that the apparent subdomains observed in FAA-fixed seeds may be a fixation artifact.
Collapse
Affiliation(s)
- Hari B. Krishnan
- Plant Genetics Research Unit, US Department of Agriculture-Agricultural Research Service, Columbia, MO 65211, USA
- Division of Plant Science and Technology, University of Missouri, Columbia, MO 65211, USA
| | - Alexander Jurkevich
- Advanced Light Microscopy Core, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA;
| |
Collapse
|
4
|
Kim WS, Sun-Hyung J, Oehrle NW, Jez JM, Krishnan HB. Overexpression of ATP sulfurylase improves the sulfur amino acid content, enhances the accumulation of Bowman-Birk protease inhibitor and suppresses the accumulation of the β-subunit of β-conglycinin in soybean seeds. Sci Rep 2020; 10:14989. [PMID: 32929147 PMCID: PMC7490426 DOI: 10.1038/s41598-020-72134-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 08/26/2020] [Indexed: 01/18/2023] Open
Abstract
ATP sulfurylase, an enzyme which catalyzes the conversion of sulfate to adenosine 5'-phosphosulfate (APS), plays a significant role in controlling sulfur metabolism in plants. In this study, we have expressed soybean plastid ATP sulfurylase isoform 1 in transgenic soybean without its transit peptide under the control of the 35S CaMV promoter. Subcellular fractionation and immunoblot analysis revealed that ATP sulfurylase isoform 1 was predominantly expressed in the cell cytoplasm. Compared with that of untransformed plants, the ATP sulfurylase activity was about 2.5-fold higher in developing seeds. High-resolution 2-D gel electrophoresis and immunoblot analyses revealed that transgenic soybean seeds overexpressing ATP sulfurylase accumulated very low levels of the β-subunit of β-conglycinin. In contrast, the accumulation of the cysteine-rich Bowman-Birk protease inhibitor was several fold higher in transgenic soybean plants when compared to the non-transgenic wild-type seeds. The overall protein content of the transgenic seeds was lowered by about 3% when compared to the wild-type seeds. Metabolite profiling by LC-MS and GC-MS quantified 124 seed metabolites out of which 84 were present in higher amounts and 40 were present in lower amounts in ATP sulfurylase overexpressing seeds compared to the wild-type seeds. Sulfate, cysteine, and some sulfur-containing secondary metabolites accumulated in higher amounts in ATP sulfurylase transgenic seeds. Additionally, ATP sulfurylase overexpressing seeds contained significantly higher amounts of phospholipids, lysophospholipids, diacylglycerols, sterols, and sulfolipids. Importantly, over expression of ATP sulfurylase resulted in 37-52% and 15-19% increases in the protein-bound cysteine and methionine content of transgenic seeds, respectively. Our results demonstrate that manipulating the expression levels of key sulfur assimilatory enzymes could be exploited to improve the nutritive value of soybean seeds.
Collapse
Affiliation(s)
- Won-Seok Kim
- Plant Science Division, University of Missouri, Columbia, MO, 65211, USA
| | - Jeong Sun-Hyung
- Plant Genetics Research, USDA-Agricultural Research Service, University of Missouri, 108 Curtis Hall, Columbia, MO, 65211, USA
| | - Nathan W Oehrle
- Plant Genetics Research, USDA-Agricultural Research Service, University of Missouri, 108 Curtis Hall, Columbia, MO, 65211, USA
| | - Joseph M Jez
- Department of Biology, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Hari B Krishnan
- Plant Science Division, University of Missouri, Columbia, MO, 65211, USA.
- Plant Genetics Research, USDA-Agricultural Research Service, University of Missouri, 108 Curtis Hall, Columbia, MO, 65211, USA.
| |
Collapse
|
5
|
Xu Q, Qu J, Song B, Liu F, Chen P, Krishnan HB. Lathyrus sativus Originating from Different Geographical Regions Reveals Striking Differences in Kunitz and Bowman-Birk Inhibitor Activities. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:8119-8129. [PMID: 31265283 DOI: 10.1021/acs.jafc.9b02604] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Grass pea (Lathyrus sativus L.) is an important legume commonly grown in arid and semi-arid regions. This protein-rich legume performs well even under harsh environmental conditions and is considered to be a strategic famine food in developing countries. Unfortunately, its potential usage is greatly limited as a result of the presence of antinutritional factors, including the neuroexcitatory amino acid β-N-oxalyl-l-α,β-diaminopropionic acid (β-ODAP) and protease inhibitors. β-ODAP is responsible for a neurodegenerative syndrome that results in the paralysis of lower limbs, while protease inhibitors affect protein digestibility, resulting in reduced growth. Concerted research efforts have led to development of grass pea cultivars with reduced β-ODAP content. In contrast, very little information is available on the protease inhibitors of L. sativus. In this study, we have conducted biochemical characterization of 51 L. sativus accessions originating from different geographical regions. Sodium dodecyl sulfate polyacrylamide gel electrophoresis analyses of seed globulins and prolamins revealed striking similarity in their protein profile, although geographic-specific variations in profiles was also evident. Measurement of Bowman-Birk chymotrypsin inhibitor (BBi) and Kunitz trypsin inhibitor (KTi) activities in accessions revealed striking differences among them. Amino acid sequence alignment of grass pea BBi and KTi revealed significant homology to protease inhibitors from several legumes. Real-time polymerase chain reaction analysis demonstrated high-level expression of BBi and KTi in dry seeds and weak expression in other organs. Our study demonstrates substantial variation in BBi and KTi among grass pea accessions that could be exploited in breeding programs for the development of grass pea lines that are devoid of these antinutritional factors.
Collapse
Affiliation(s)
- Quanle Xu
- College of Life Sciences , Northwest A&F University , Yangling , Shaanxi 712100 , People's Republic of China
- Plant Genetics Research, United States Department of Agriculture's Agricultural Research Service (USDA-ARS) , University of Missouri , Columbia , Missouri 65211 , United States
| | - Jinmiao Qu
- College of Life Sciences , Northwest A&F University , Yangling , Shaanxi 712100 , People's Republic of China
| | - Bo Song
- Plant Genetics Research, United States Department of Agriculture's Agricultural Research Service (USDA-ARS) , University of Missouri , Columbia , Missouri 65211 , United States
- Key Laboratory of Soybean Biology at the Chinese Ministry of Education , Northeast Agricultural University , Harbin , Heilongjiang 150030 , People's Republic of China
| | - Fengjuan Liu
- College of Life Sciences , Northwest A&F University , Yangling , Shaanxi 712100 , People's Republic of China
| | - Peng Chen
- College of Life Sciences , Northwest A&F University , Yangling , Shaanxi 712100 , People's Republic of China
| | - Hari B Krishnan
- Plant Genetics Research, United States Department of Agriculture's Agricultural Research Service (USDA-ARS) , University of Missouri , Columbia , Missouri 65211 , United States
| |
Collapse
|
6
|
Zhang H, Yasmin F, Song BH. Neglected treasures in the wild - legume wild relatives in food security and human health. CURRENT OPINION IN PLANT BIOLOGY 2019; 49:17-26. [PMID: 31085425 PMCID: PMC6817337 DOI: 10.1016/j.pbi.2019.04.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 04/04/2019] [Accepted: 04/09/2019] [Indexed: 05/08/2023]
Abstract
The legume family (Fabaceae) is the third-largest flowering family with over 18 000 species worldwide that are rich in proteins, oils, and nutrients. However, the production potential of legume-derived food cannot meet increasing global demand. Wild legumes represent a large group of wild species adaptive to diverse habitats and harbor rich genetic diversity for the improvement of the agronomic, nutritional, and medicinal values of the domesticated legumes. Accumulating evidence suggests that the genetic variation retained in these under-exploited leguminous wild relatives can be used to improve crop yield, nutrient contents, and resistance/tolerance to environmental stresses via the integration of omics, genetics, and genome-editing technologies.
Collapse
Affiliation(s)
- Hengyou Zhang
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Farida Yasmin
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Bao-Hua Song
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223, USA.
| |
Collapse
|
7
|
Huang S, Yu J, Li Y, Wang J, Wang X, Qi H, Xu M, Qin H, Yin Z, Mei H, Chang H, Gao H, Liu S, Zhang Z, Zhang S, Zhu R, Liu C, Wu X, Jiang H, Hu Z, Xin D, Chen Q, Qi Z. Identification of Soybean Genes Related to Soybean Seed Protein Content Based on Quantitative Trait Loci Collinearity Analysis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:258-274. [PMID: 30525587 DOI: 10.1021/acs.jafc.8b04602] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Increasing the protein content of soybean seeds through a higher ratio of glycinin is important for soybean breeding and food processing; therefore, the integration of different quantitative trait loci (QTLs) is of great significance. In this study, we investigated the collinearity of seed protein QTLs. We identified 192 collinear protein QTLs that formed six hotspot regions. The two most important regions had seed protein 36-10 and seed protein 36-20 as hub nodes. We used a chromosome segment substitution line (CSSL) population for QTL validation and identified six CSSL materials with collinear QTLs. Five materials with higher protein and glycinin contents in comparison to the recurrent parent were analyzed. A total of 13 candidate genes related to seed protein from the QTL hotspot intervals were detected, 8 of which had high expression in mature soybean seeds. These results offer a new analysis method for molecular-assisted selection (MAS) and improvement of soybean product quality.
Collapse
Affiliation(s)
- Shiyu Huang
- College of Agriculture , Northeast Agricultural University , Harbin 150030 , Heilongjiang , People's Republic of China
| | - Jingyao Yu
- College of Agriculture , Northeast Agricultural University , Harbin 150030 , Heilongjiang , People's Republic of China
| | - Yingying Li
- College of Agriculture , Northeast Agricultural University , Harbin 150030 , Heilongjiang , People's Republic of China
| | - Jingxin Wang
- College of Agriculture , Northeast Agricultural University , Harbin 150030 , Heilongjiang , People's Republic of China
| | - Xinyu Wang
- College of Agriculture , Northeast Agricultural University , Harbin 150030 , Heilongjiang , People's Republic of China
| | - Huidong Qi
- College of Agriculture , Northeast Agricultural University , Harbin 150030 , Heilongjiang , People's Republic of China
| | - Mingyue Xu
- College of Agriculture , Northeast Agricultural University , Harbin 150030 , Heilongjiang , People's Republic of China
| | - Hongtao Qin
- College of Agriculture , Northeast Agricultural University , Harbin 150030 , Heilongjiang , People's Republic of China
| | - Zhengong Yin
- College of Agriculture , Northeast Agricultural University , Harbin 150030 , Heilongjiang , People's Republic of China
| | - Hongyao Mei
- College of Agriculture , Northeast Agricultural University , Harbin 150030 , Heilongjiang , People's Republic of China
| | | | - Hongxiu Gao
- College of Agriculture , Northeast Agricultural University , Harbin 150030 , Heilongjiang , People's Republic of China
| | - Shanshan Liu
- College of Agriculture , Northeast Agricultural University , Harbin 150030 , Heilongjiang , People's Republic of China
| | - Zhenguo Zhang
- College of Agriculture , Northeast Agricultural University , Harbin 150030 , Heilongjiang , People's Republic of China
| | - Shuli Zhang
- Institute of Wuchang Rice Research , Heilongjiang Academy of Agricultural Sciences , Wuchang , Heilongjiang 150229 , People's Republic of China
| | - Rongsheng Zhu
- College of Agriculture , Northeast Agricultural University , Harbin 150030 , Heilongjiang , People's Republic of China
| | - Chunyan Liu
- College of Agriculture , Northeast Agricultural University , Harbin 150030 , Heilongjiang , People's Republic of China
| | - Xiaoxia Wu
- College of Agriculture , Northeast Agricultural University , Harbin 150030 , Heilongjiang , People's Republic of China
| | - Hongwei Jiang
- College of Agriculture , Northeast Agricultural University , Harbin 150030 , Heilongjiang , People's Republic of China
| | - Zhenbang Hu
- College of Agriculture , Northeast Agricultural University , Harbin 150030 , Heilongjiang , People's Republic of China
| | - Dawei Xin
- College of Agriculture , Northeast Agricultural University , Harbin 150030 , Heilongjiang , People's Republic of China
| | - Qingshan Chen
- College of Agriculture , Northeast Agricultural University , Harbin 150030 , Heilongjiang , People's Republic of China
| | - Zhaoming Qi
- College of Agriculture , Northeast Agricultural University , Harbin 150030 , Heilongjiang , People's Republic of China
| |
Collapse
|
8
|
Singh A, Raina SN, Rajpal VR, Singh AK. Seed protein fraction electrophoresis in peanut ( Arachis hypogaea L.) accessions and wild species. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2018; 24:465-481. [PMID: 29692554 PMCID: PMC5911266 DOI: 10.1007/s12298-018-0521-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 01/12/2018] [Accepted: 02/14/2018] [Indexed: 06/08/2023]
Abstract
Total seed storage proteins were studied in 50 accessions of A. hypogaea (11 A. hypogaea ssp. hypogaea var hypogaea, 13 A. hypogaea ssp. hypogaea var hirsuta, 11 A. hypogaea ssp. fastigiata var fastigiata and 15 A. hypogaea ssp. fastigiata var. vulgaris accessions) in SDS PAGE. These accessions were also analysed for albumin and globulin seed protein fractions. Among the six seed protein markers presently used, it was found that globulin fraction showed maximum diversity (77.2%) in A. hypogaea accessions followed by albumin (52.3%), denatured total soluble protein fraction in embryo (33.3%) and cotyledon (28.5%). The cluster analysis based on combined data of cotyledons, embryos, albumins and globulins seed protein fractions demarcated the accessions of two subspecies hypogaea and fastigiata into two separate clusters supported by 51% bootstrap value, with few exceptions, suggesting the genotypes to be moderately diverse. Native and denatured total soluble seed storage proteins were also electrophoretically analysed in 27 wild Arachis species belonging to six sections of the genus. Cluster analysis using different methods were performed for different seed proteins data alone and also in combination. Section Caulorrhizae (C genome) and Triseminatae (T genome) formed one, distantly related group to A. hypogaea and other section Arachis species in the dendrogram based on denatured seed storage proteins data. The present analysis has maintained that the section Arachis species belong to primary and secondary genepools and, sections Procumbenetes and Erectoides belong to tertiary gene pools.
Collapse
Affiliation(s)
- Apekshita Singh
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Sector-125, Noida, Uttar Pradesh 201313 India
| | - Soom Nath Raina
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Sector-125, Noida, Uttar Pradesh 201313 India
| | - Vijay Rani Rajpal
- Department of Botany, Hans Raj College, University of Delhi, Delhi, 110007 India
| | | |
Collapse
|
9
|
Song B, Oehrle NW, Liu S, Krishnan HB. Development and Characterization of a Soybean Experimental Line Lacking the α' Subunit of β-Conglycinin and G1, G2, and G4 Glycinin. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:432-439. [PMID: 29227096 DOI: 10.1021/acs.jafc.7b05011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A soybean experimental line (BSH-3) devoid of a subset of seed storage proteins was developed by crossing a mutant donor line "HS99B" with a Chinese cultivar "Dongnong47" (DN47). One-dimensional and high-resolution 2-D gel electrophoresis revealed the absence of G1 (A1aB2), G2 (A2B1a), and G4 (A5A4B3) glycinin and the α' subunit of β-conglycinin in BSH-3 seeds. Despite the lack of these abundant seed proteins, BSH-3 seeds still accumulated 38% protein. BSH-3 seeds also accumulated high levels of free amino acids as compared with DN47 seeds, particularly arginine, and the amount of several essential amino acids were significantly elevated in BSH-3 seeds. Elevated accumulation of α and β-subunit of β-conglycinin, G5 glycinin, Kunitz trypsin inhibitor, and Bowman-Birk protease inhibitor indicates seed proteome rebalancing in BSH-3 seeds. Immunoblot analysis using sera from soybean allergic patients demonstrated the complete lack of a major allergen (α' subunit of β-conglycinin) in BSH-3 seeds. However, elevated levels of other allergens were found in BSH-3 seeds due to proteome rebalancing. Transmission electron microscopy observation of mature seeds of BSH-3 revealed striking differences in the appearance of the protein storage vacuoles when compared with DN47.
Collapse
Affiliation(s)
- Bo Song
- Key Laboratory of Soybean Biology at the Chinese Ministry of Education, Northeast Agricultural University , Harbin 150030, China
- Plant Genetics Research Unit, Agricultural Research Service, U.S. Department of Agriculture, University of Missouri , Columbia, Missouri 65211, United States
| | - Nathan W Oehrle
- Plant Genetics Research Unit, Agricultural Research Service, U.S. Department of Agriculture, University of Missouri , Columbia, Missouri 65211, United States
| | - Shanshan Liu
- Key Laboratory of Soybean Biology at the Chinese Ministry of Education, Northeast Agricultural University , Harbin 150030, China
| | - Hari B Krishnan
- Plant Genetics Research Unit, Agricultural Research Service, U.S. Department of Agriculture, University of Missouri , Columbia, Missouri 65211, United States
- Plant Science Division, University of Missouri , Columbia, Missouri 65211, United States
| |
Collapse
|
10
|
Structural and functional properties of Buchholzia coriacea seed flour and protein concentrate at different pH and protein concentrations. Food Hydrocoll 2018. [DOI: 10.1016/j.foodhyd.2017.08.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|