1
|
Yuan K, Li X, Zeng Y, Liu C, Zhu Y, Hu J, Sun J, Bai W. Chemical stability of carboxylpyranocyanidin-3-O-glucoside under β-glucosidase treatment and description of their interaction. Food Chem 2024; 447:138840. [PMID: 38458128 DOI: 10.1016/j.foodchem.2024.138840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/19/2024] [Accepted: 02/21/2024] [Indexed: 03/10/2024]
Abstract
Anthocyanins are susceptible to degradation by β-glycosidase, resulting in color loss. This study analyzed the impact of β-glycosidase on carboxylpyranocyanidin-3-O-glucoside (Carboxyl-pycy-3-gluc) and its precursor cyanidin-3-O-glucoside (Cy-3-gluc). Carboxyl-pycy-3-gluc exhibited enhanced stability upon treatment with β-glucosidase. Ultraviolet-visible and circular dichroism spectroscopy revealed slight changes in the microenvironment and secondary structure of β-glycosidase when carboxyl-pycy-3-gluc was present. The fluorescence experiment indicated that anthocyanins quench the fluorescence of β-glycosidase through static quenching via hydrophobic interactions. Molecular docking of six types of carboxylpyranoanthocyanins and their precursors with β-glycosidase revealed that carboxylpyranoanthocyanins exhibited lower binding affinity than their precursors, consistent with the enzyme kinetic experiment results. The incorporation carboxyl-pycy-3-gluc into Sanhua Plum Juice and Wine endowed them with vivid and stable coloration. The study illustrated that carboxyl-pycy-3-gluc exhibits low binding affinity with β-glycosidase, thereby maintaining stability and confirming its potential as a colorant.
Collapse
Affiliation(s)
- Kailan Yuan
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, PR China
| | - Xusheng Li
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, PR China
| | - Yingyu Zeng
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, PR China
| | - Chuqi Liu
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, PR China
| | - Yuanqin Zhu
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, PR China
| | - Jun Hu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Jianxia Sun
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Weibin Bai
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, PR China.
| |
Collapse
|
2
|
Avula B, Katragunta K, Osman AG, Ali Z, John Adams S, Chittiboyina AG, Khan IA. Advances in the Chemistry, Analysis and Adulteration of Anthocyanin Rich-Berries and Fruits: 2000-2022. Molecules 2023; 28:560. [PMID: 36677615 PMCID: PMC9865467 DOI: 10.3390/molecules28020560] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 01/09/2023] Open
Abstract
Anthocyanins are reported to exhibit a wide variety of remedial qualities against many human disorders, including antioxidative stress, anti-inflammatory activity, amelioration of cardiovascular diseases, improvement of cognitive decline, and are touted to protect against neurodegenerative disorders. Anthocyanins are water soluble naturally occurring polyphenols containing sugar moiety and are found abundantly in colored fruits/berries. Various chromatographic (HPLC/HPTLC) and spectroscopic (IR, NMR) techniques as standalone or in hyphenated forms such as LC-MS/LC-NMR are routinely used to gauge the chemical composition and ensure the overall quality of anthocyanins in berries, fruits, and finished products. The major emphasis of the current review is to compile and disseminate various analytical methodologies on characterization, quantification, and chemical profiling of the whole array of anthocyanins in berries, and fruits within the last two decades. In addition, the factors affecting the stability of anthocyanins, including pH, light exposure, solvents, metal ions, and the presence of other substances, such as enzymes and proteins, were addressed. Several sources of anthocyanins, including berries and fruit with their botanical identity and respective yields of anthocyanins, were covered. In addition to chemical characterization, economically motivated adulteration of anthocyanin-rich fruits and berries due to increasing consumer demand will also be the subject of discussion. Finally, the health benefits and the medicinal utilities of anthocyanins were briefly discussed. A literature search was performed using electronic databases from PubMed, Science Direct, SciFinder, and Google Scholar, and the search was conducted covering the period from January 2000 to November 2022.
Collapse
Affiliation(s)
- Bharathi Avula
- National Center for Natural Products Research, University, MS 38677, USA
| | - Kumar Katragunta
- National Center for Natural Products Research, University, MS 38677, USA
| | - Ahmed G. Osman
- National Center for Natural Products Research, University, MS 38677, USA
| | - Zulfiqar Ali
- National Center for Natural Products Research, University, MS 38677, USA
| | | | | | - Ikhlas A. Khan
- National Center for Natural Products Research, University, MS 38677, USA
- Division of Pharmacognosy, Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, MS 38677, USA
| |
Collapse
|
3
|
Effects of magnetization with neodymium magnets treatment on blueberry wine ageing. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
4
|
Cui G, Zhang L, Zaky AA, Liu R, Wang H, EL-ATY A, Tan M. Protein coronas formed by three blood proteins and food-borne carbon dots from roast mackerel: Effects on cytotoxicity and cellular metabolites. Int J Biol Macromol 2022; 216:799-809. [DOI: 10.1016/j.ijbiomac.2022.07.196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/12/2022] [Accepted: 07/24/2022] [Indexed: 11/27/2022]
|
5
|
Cui G, Su W, Tan M. Formation and biological effects of protein corona for food-related nanoparticles. Compr Rev Food Sci Food Saf 2021; 21:2002-2031. [PMID: 34716644 DOI: 10.1111/1541-4337.12838] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 08/03/2021] [Accepted: 08/23/2021] [Indexed: 01/04/2023]
Abstract
The rapid development of nanoscience and nanoengineering provides new perspectives on the composition of food materials, and has great potential for food biology research and applications. The use of nanoparticle additives and the discovery of endogenous nanoparticles in food make it important to elucidate in vivo safety of nanomaterials. Nanoparticles will spontaneously adsorb proteins during transporting in blood and a protein corona can be formed on the nanoparticle surface inside the human body. Protein corona affects the physicochemical properties of nanoparticles and the structure and function of proteins, which in turn affects a series of biological reactions. This article reviewed basic information about protein corona of food-related nanoparticles, elucidated the influence of protein corona on nanoparticles properties and protein structure and function, and discussed the effect of protein corona on nanoparticles in vivo. The effects of protein corona on nanoparticles transport, cellular uptake, cytotoxicity, and immune response were reviewed, and the reasons for these effects were also discussed. Finally, future research perspectives for food protein corona were proposed. Protein corona gives food nanoparticles a new identity, which makes proteins bound to nanoparticles undergo structural transformations that affect their recognition by receptors in vivo. It can have positive or negative impacts on cellular uptake and toxicity of nanoparticles and even trigger immune responses. Understanding the effects of protein corona have potential in evaluating the fate of the food-related nanoparticles, providing physicochemical and biological information about the interaction between proteins and foodborne nanoparticles. The review article will help to evaluate the safety of protein coronas formed on nanoparticles in food, and may provide fundamental information for understanding and controlling nanotoxicity.
Collapse
Affiliation(s)
- Guoxin Cui
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning, China.,National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, Liaoning, China.,Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, Liaoning, China
| | - Wentao Su
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning, China.,National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, Liaoning, China.,Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, Liaoning, China
| | - Mingqian Tan
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning, China.,National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, Liaoning, China.,Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, Liaoning, China
| |
Collapse
|
6
|
Qiao F, Yu X, Tie S, Chen Y, Hou S, Tan M. Zinc delivery system constructed from food-borne nanoparticles derived from Undaria pinnatifida. Food Funct 2021; 12:8626-8634. [PMID: 34346455 DOI: 10.1039/d1fo01852c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Food-borne nanoparticles from Undaria pinnatifida (UPFNs) were prepared and successfully applied as nanocarriers for microelement zinc delivery. UPFNs were spherical nanoparticles with average sizes of about 4.07 ± 1.09 nm, which chelated with zinc ions through amino nitrogen and carboxyl oxygen atoms as characterized by X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, and 1H nuclear magnetic resonance spectroscopy. Thermodynamic analysis revealed that the overall chelation process between UPFNs and zinc ions was a spontaneous enthalpy-driven endothermic reaction. Compared to zinc sulfate, UPFN-Zn2+ showed higher solubility both in phytic acid solution and the process of gastrointestinal digestion. Meanwhile, no obvious cytotoxicity was found in UPFNs and UPFN-Zn2+. Specifically, UPFN-Zn2+ could successfully rescue cell viability, DNA replication activity and restore cell proliferation ability in zinc-deficient cells induced by a specific zinc chelator TPEN. Overall, UPFNs might serve as efficient, stable, and safe nanocarriers for zinc delivery.
Collapse
Affiliation(s)
- Fengzhi Qiao
- Academy of Food Interdisciplinary Science, Food Science and Technology, Dalian Polytechnic University, Qinggongyuan1, Ganjingzi District, Dalian 116034, Liaoning, China.
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Xiaoting Yu
- Academy of Food Interdisciplinary Science, Food Science and Technology, Dalian Polytechnic University, Qinggongyuan1, Ganjingzi District, Dalian 116034, Liaoning, China.
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Shanshan Tie
- Academy of Food Interdisciplinary Science, Food Science and Technology, Dalian Polytechnic University, Qinggongyuan1, Ganjingzi District, Dalian 116034, Liaoning, China.
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Yannan Chen
- Academy of Food Interdisciplinary Science, Food Science and Technology, Dalian Polytechnic University, Qinggongyuan1, Ganjingzi District, Dalian 116034, Liaoning, China.
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Shuai Hou
- Academy of Food Interdisciplinary Science, Food Science and Technology, Dalian Polytechnic University, Qinggongyuan1, Ganjingzi District, Dalian 116034, Liaoning, China.
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Mingqian Tan
- Academy of Food Interdisciplinary Science, Food Science and Technology, Dalian Polytechnic University, Qinggongyuan1, Ganjingzi District, Dalian 116034, Liaoning, China.
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| |
Collapse
|
7
|
Eze FN, Jayeoye TJ, Singh S. Fabrication of intelligent pH-sensing films with antioxidant potential for monitoring shrimp freshness via the fortification of chitosan matrix with broken Riceberry phenolic extract. Food Chem 2021; 366:130574. [PMID: 34303209 DOI: 10.1016/j.foodchem.2021.130574] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 07/08/2021] [Accepted: 07/08/2021] [Indexed: 01/09/2023]
Abstract
There is growing interest in chitosan-based intelligent packaging films for monitoring food quality. However, practical application of these biopolymeric films has been limited by their poor physical and mechanical attributes. Herein, a versatile colorimetric indicator film was developed based on chitosan (CHI) and broken Riceberry phenolic extract (RPE). The effects of RPE fortification on the microstructure, physical, and functional attributes of the CHI films were comprehensively evaluated. The results revealed that CHI-RPE films exhibited increased hydrophobicity, mechanical resistance, thermal stability, barrier properties, and antioxidant activity compared to plain CHI film. The CHI-RPE films were cytocompatible. Notably, CHI-RPE film also produced intense naked-eye detectable colorimetric response to pH (2-12) variation and volatile ammonia. When enclosed with fresh shrimp, CHI-RPE film changed from orange-red to yellow in response to shrimp spoilage. Thus, CHI-RPE film has high potential for fabricating pragmatic, smart packaging labels for on-site visual detection of freshness in seafood products.
Collapse
Affiliation(s)
- Fredrick Nwude Eze
- Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand; Drug Delivery Excellence Center, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand.
| | - Titilope John Jayeoye
- Department of Chemistry, Faculty of Physical Sciences, Alex-Ekwueme Federal University, Ndufu-Alike, Ikwo, Ebonyi State, Nigeria.
| | - Sudarshan Singh
- Food Technology and Innovation Center of Excellence, Institute of Research and Innovation, Walailak University, Nakhon Si Thammarat 80160, Thailand.
| |
Collapse
|
8
|
Wu Q, Chen Y, Ouyang Y, He Y, Xiao J, Zhang L, Feng N. Effect of catechin on dietary AGEs absorption and cytotoxicity in Caco-2 cells. Food Chem 2021; 355:129574. [PMID: 33799251 DOI: 10.1016/j.foodchem.2021.129574] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 02/03/2021] [Accepted: 03/07/2021] [Indexed: 12/17/2022]
Abstract
Maillard reaction produces advanced glycation end products (AGEs) that endanger human health. This study investigated the protective effect of (+)-catechin (CC) on different types of dietary AGEs absorption and cytotoxicity in Caco-2 cells. Our results showed that CC had higher inhibitory rate on peptide bound-AGEs absorption than free Nɛ-carboxymethyl lysine (CML), which dropped to 36.24% and 32.21% when treated with 20 and 50 μM CC. The reasons might be that CC could repair the loose tight junction (ZO-1) and down-regulation of protein-coupling peptide carrier 1 (PEPT-1) expression in Caco-2 cells which were in accordance with molecular docking results. Additionally, CC could remarkably decreased the protein levels of receptor of AGEs (RAGE), mitogen-activated protein kinases (MAPK) and nuclear factor-kappa B (NF-κB) that detected by western blotting and immunohistochemical staining method. Taken together, these findings demonstrated that CC may inhibit AGEs absorption and protected Caco-2 cells against RAGE-MAPK-NF-κB signaling suppression.
Collapse
Affiliation(s)
- Qian Wu
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratoy of Industrial Microbiology, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Research Center of Food Fermentation Engineering and Technology, Hubei University of Technology, Wuhan, Hubei 430068, China; State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Chang jiang West Road, Hefei, 230036 Anhui, China.
| | - Yuanyuan Chen
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratoy of Industrial Microbiology, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Research Center of Food Fermentation Engineering and Technology, Hubei University of Technology, Wuhan, Hubei 430068, China.
| | - Yu Ouyang
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratoy of Industrial Microbiology, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Research Center of Food Fermentation Engineering and Technology, Hubei University of Technology, Wuhan, Hubei 430068, China.
| | - Yi He
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, Hubei 430023, China.
| | - Juan Xiao
- College of Food Science and Engineering, Hainan University Engineering Research Center of Utilization of Tropical Polysaccharide Resources, Ministry of Education Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou 570228, China.
| | - Liang Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Chang jiang West Road, Hefei, 230036 Anhui, China.
| | - Nianjie Feng
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratoy of Industrial Microbiology, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Research Center of Food Fermentation Engineering and Technology, Hubei University of Technology, Wuhan, Hubei 430068, China; School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan, Hubei 430068, China.
| |
Collapse
|
9
|
Liu X, Li Y, Yu Z, Liu X, Hardie WJ, Huang M. Screening and characterisation of β-glucosidase production strains from Rosa roxburghii Tratt. INTERNATIONAL JOURNAL OF FOOD ENGINEERING 2020. [DOI: 10.1515/ijfe-2020-0152] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
The β-glucosidase properties from one yeast isolate identified as Wickerhamomyces anomalus C4 were characterised. The β-glucosidase activity of W. anomalus C4 was 41.83 ± 0.25 mU/mL, and the optimum temperature and pH were 40 °C and 5.0, respectively. The glucose, 10% v/v of ethanol and 10 mmol/L of Cu2+ inhibited the β-glycosidases activities. The isolate W. anomalus C4 had a stronger alcohol metabolism capacity than commercial Saccharomyces cerevisiae X16. Besides, fermentation with W. anomalus C4 alone and co-fermentations with S. cerevisiae X16 and W. anomalus C4 reduced the volatile acids content and the sourness value compared to S. cerevisiae X16 control. Moreover, inoculation with W. anomalus C4 could enhance volatile aroma richness and complexity of Rosa roxburghii wines, regardless of type or amount thereof. Therefore, the R. roxburghii native yeast isolate W. anomalus C4 may have some application potentials for R. roxburghii wine-making.
Collapse
Affiliation(s)
- Xiaozhu Liu
- Guizhou Institute of Technology , Guiyang 550003 , Guizhou , China
| | - Yinfeng Li
- Guizhou Institute of Technology , Guiyang 550003 , Guizhou , China
| | - Zhihai Yu
- Guizhou Institute of Technology , Guiyang 550003 , Guizhou , China
| | - Xiaohui Liu
- Guizhou Institute of Technology , Guiyang 550003 , Guizhou , China
| | - William James Hardie
- Guizhou Institute of Technology , Guiyang 550003 , Guizhou , China
- Changzhou University , Changzhou 213000 , Jiangsu , China
| | - Mingzheng Huang
- Guizhou Institute of Technology , Guiyang 550003 , Guizhou , China
| |
Collapse
|
10
|
Meng X, Li Y, Lu C, Zhao M, Li M, Wang S, Zhao C, Lin B, Shang L, Chu Z, Ding X. Purification and antioxidant capacity analysis of anthocyanin glucoside cinnamic ester isomers from
Solanum nigrum
fruits. J Sep Sci 2020; 43:2311-2320. [DOI: 10.1002/jssc.201901289] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 03/10/2020] [Accepted: 03/14/2020] [Indexed: 01/30/2023]
Affiliation(s)
- XuanLin Meng
- State Key Laboratory of Crop BiologyCollege of Plant ProtectionShandong Agricultural University Taian Shandong 271018 P.R. China
| | - Yang Li
- State Key Laboratory of Crop BiologyCollege of Plant ProtectionShandong Agricultural University Taian Shandong 271018 P.R. China
| | - Chongchong Lu
- State Key Laboratory of Crop BiologyCollege of Plant ProtectionShandong Agricultural University Taian Shandong 271018 P.R. China
| | - Man Zhao
- State Key Laboratory of Crop BiologyCollege of Plant ProtectionShandong Agricultural University Taian Shandong 271018 P.R. China
| | - Ming Li
- State Key Laboratory of Crop BiologyCollege of Plant ProtectionShandong Agricultural University Taian Shandong 271018 P.R. China
| | - ShaoLi Wang
- State Key Laboratory of Crop BiologyCollege of Plant ProtectionShandong Agricultural University Taian Shandong 271018 P.R. China
| | - ChangBao Zhao
- State Key Laboratory of Crop BiologyCollege of Plant ProtectionShandong Agricultural University Taian Shandong 271018 P.R. China
| | - Bao Lin
- State Key Laboratory of Crop BiologyCollege of Plant ProtectionShandong Agricultural University Taian Shandong 271018 P.R. China
| | - LuYue Shang
- State Key Laboratory of Crop BiologyCollege of Plant ProtectionShandong Agricultural University Taian Shandong 271018 P.R. China
| | - Zhaohui Chu
- State Key Laboratory of Crop BiologyCollege of Plant ProtectionShandong Agricultural University Taian Shandong 271018 P.R. China
| | - Xinhua Ding
- State Key Laboratory of Crop BiologyCollege of Plant ProtectionShandong Agricultural University Taian Shandong 271018 P.R. China
| |
Collapse
|
11
|
Zhang J, Kilmartin PA, Peng Y, Chen X, Quek SY. Identification of Key Aroma Compounds in Cranberry Juices as Influenced by Vinification. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:279-291. [PMID: 31802659 DOI: 10.1021/acs.jafc.9b07165] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
This study aimed to identify the key aroma-active volatiles in cranberry wines through three vinification methods (White, Red and Thermo) using GC-MS/O to identify the important aroma compounds. A total of 70 compounds were detected, with 67 in wines and 61 in juices. The esters was the most diversified class, while alcohols and acids were the most abundant, especially 3-methylbutanol, methylbutyric acid, and benzoic acid. The volatile profiles of cranberry wines are distinctive from their source juices. Most alcohols, esters, and acids are fermentation-derived, while terpenes, phenols, aldehydes and ketones are varietal. The Red vinification retained the most varietal volatiles from the must, while the White and Thermo vinifications produced more volatiles during fermentation. Thermovinification reduced the yield of benzoic acid and its derivatives after fermentation. Olfactory analysis identified 47 aroma-active compounds, among which 41 were considered as the major aroma contributors (ethyl benzoate had the highest modified detection frequency).
Collapse
Affiliation(s)
- Jingying Zhang
- School of Chemical Sciences , The University of Auckland , Auckland 1010 , New Zealand
| | - Paul A Kilmartin
- School of Chemical Sciences , The University of Auckland , Auckland 1010 , New Zealand
| | - Yaoyao Peng
- School of Chemical Sciences , The University of Auckland , Auckland 1010 , New Zealand
| | - Xiao Chen
- School of Chemical Sciences , The University of Auckland , Auckland 1010 , New Zealand
| | - Siew-Young Quek
- School of Chemical Sciences , The University of Auckland , Auckland 1010 , New Zealand
- Riddet Institute , New Zealand Centre of Research Excellence in Food Research , Palmerston North 4474 , New Zealand
| |
Collapse
|
12
|
Wu Q, Tang S, Zhang L, Xiao J, Luo Q, Chen Y, Zhou M, Feng N, Wang C. The inhibitory effect of the catechin structure on advanced glycation end product formation in alcoholic media. Food Funct 2020; 11:5396-5408. [DOI: 10.1039/c9fo02887k] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Catechin has a good inhibitory effect on advanced glycation end product (AGE) formation in alcoholic media, which is generated by Maillard reaction is closely related to diabetes.
Collapse
Affiliation(s)
- Qian Wu
- Key Laboratory of Fermentation Engineering (Ministry of Education)
- Hubei Key Laboratory of Industrial Microbiology
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics
- Hubei Research Center of Food Fermentation Engineering and Technology
- Hubei University of Technology
| | - Shimiao Tang
- Key Laboratory of Fermentation Engineering (Ministry of Education)
- Hubei Key Laboratory of Industrial Microbiology
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics
- Hubei Research Center of Food Fermentation Engineering and Technology
- Hubei University of Technology
| | - Liang Zhang
- State Key Laboratory of Tea Plant Biology and Utilization
- Anhui Agricultural University
- Hefei
- P.R. China
| | - Jinsong Xiao
- Beijing Engineering and Technology Research Center of Food Additives
- Beijing Technology & Business University (BTBU)
- Beijing 100048
- China
| | - Qing Luo
- Key Laboratory of Fermentation Engineering (Ministry of Education)
- Hubei Key Laboratory of Industrial Microbiology
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics
- Hubei Research Center of Food Fermentation Engineering and Technology
- Hubei University of Technology
| | - Yuanyuan Chen
- Key Laboratory of Fermentation Engineering (Ministry of Education)
- Hubei Key Laboratory of Industrial Microbiology
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics
- Hubei Research Center of Food Fermentation Engineering and Technology
- Hubei University of Technology
| | - Mengzhou Zhou
- Key Laboratory of Fermentation Engineering (Ministry of Education)
- Hubei Key Laboratory of Industrial Microbiology
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics
- Hubei Research Center of Food Fermentation Engineering and Technology
- Hubei University of Technology
| | - Nianjie Feng
- Key Laboratory of Fermentation Engineering (Ministry of Education)
- Hubei Key Laboratory of Industrial Microbiology
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics
- Hubei Research Center of Food Fermentation Engineering and Technology
- Hubei University of Technology
| | - Chao Wang
- Key Laboratory of Fermentation Engineering (Ministry of Education)
- Hubei Key Laboratory of Industrial Microbiology
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics
- Hubei Research Center of Food Fermentation Engineering and Technology
- Hubei University of Technology
| |
Collapse
|
13
|
Song Y, Cao L, Li J, Cong S, Li D, Bao Z, Tan M. Interactions of carbon quantum dots from roasted fish with digestive protease and dopamine. Food Funct 2019; 10:3706-3716. [DOI: 10.1039/c9fo00655a] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The carbon quantum dots from roasted fish interacted with digestive protease and dopamine.
Collapse
Affiliation(s)
- Yukun Song
- School of Food Science and Technology
- Dalian Polytechnic University
- National Engineering Research Center of Seafood
- Dalian 116034
- China
| | - Lin Cao
- School of Food Science and Technology
- Dalian Polytechnic University
- National Engineering Research Center of Seafood
- Dalian 116034
- China
| | - Jiaqi Li
- School of Food Science and Technology
- Dalian Polytechnic University
- National Engineering Research Center of Seafood
- Dalian 116034
- China
| | - Shuang Cong
- School of Food Science and Technology
- Dalian Polytechnic University
- National Engineering Research Center of Seafood
- Dalian 116034
- China
| | - Dongmei Li
- School of Food Science and Technology
- Dalian Polytechnic University
- National Engineering Research Center of Seafood
- Dalian 116034
- China
| | - Zhijie Bao
- School of Food Science and Technology
- Dalian Polytechnic University
- National Engineering Research Center of Seafood
- Dalian 116034
- China
| | - Mingqian Tan
- School of Food Science and Technology
- Dalian Polytechnic University
- National Engineering Research Center of Seafood
- Dalian 116034
- China
| |
Collapse
|
14
|
Farooque S, Rose PM, Benohoud M, Blackburn RS, Rayner CM. Enhancing the Potential Exploitation of Food Waste: Extraction, Purification, and Characterization of Renewable Specialty Chemicals from Blackcurrants ( Ribes nigrum L.). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:12265-12273. [PMID: 30412401 DOI: 10.1021/acs.jafc.8b04373] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Natural colorants were extracted from renewable botanical sources, specifically waste epicarp from the blackcurrant fruit pressing industry. A process was developed which used acidified water extraction followed by a solid-phase extraction (SPE) purification stage which allowed the production of an anthocyanin-rich extract in good yields (ca. 2% w/ w based on dry weight of raw material). The components in the extracts were extensively characterized by HPLC, mass spectrometry, IR, NMR, and UV-vis spectroscopy. HPLC confirmed presence of four anthocyanins: delphinidin-3- O-rutinoside (45%), cyanidin-3- O-rutinoside (31%), and the corresponding glucosides at 16% and 8%, respectively. On sequential liquid-liquid aqueous-organic partitioning of the post-SPE sample, monomeric anthocyanins (54.7%) and polymeric anthocyanins (18%) were found in the aqueous layer with 3- O-rutinosides of myricetin (3.1%) and quercetin (3.2%), while isopropylacetate achieved selective extraction of caffeic acid (3%), p-coumaric acid (5%), and myricetin (2.5%) and quercetin (3.2%) aglycons. 3- O-Glucosides of myricetin (3.1%) and quercetin (2%), along with nigrumin- p-coumarate (1%) and nigrumin ferulate (0.5%) were selectively extracted from the remaining aqueous fraction using ethyl acetate. This allowed for near total quantification of the blackcurrant extract composition.
Collapse
Affiliation(s)
- Sannia Farooque
- School of Chemistry , University of Leeds , Leeds , LS2 9JT , United Kingdom
| | - Paul M Rose
- School of Chemistry , University of Leeds , Leeds , LS2 9JT , United Kingdom
- Sustainable Materials Research Group, School of Design , University of Leeds , Leeds , LS2 9JT , United Kingdom
| | - Meryem Benohoud
- Keracol Limited , University of Leeds , Leeds , LS2 9JT , United Kingdom
| | - Richard S Blackburn
- Sustainable Materials Research Group, School of Design , University of Leeds , Leeds , LS2 9JT , United Kingdom
- Keracol Limited , University of Leeds , Leeds , LS2 9JT , United Kingdom
| | - Christopher M Rayner
- School of Chemistry , University of Leeds , Leeds , LS2 9JT , United Kingdom
- Keracol Limited , University of Leeds , Leeds , LS2 9JT , United Kingdom
| |
Collapse
|
15
|
Fan L, Xie P, Wang Y, Huang Z, Zhou J. Biosurfactant-Protein Interaction: Influences of Mannosylerythritol Lipids-A on β-Glucosidase. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:238-246. [PMID: 29239606 DOI: 10.1021/acs.jafc.7b04469] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In this work, the influences of a biosurfactant, mannosylerythritol lipids-A (MEL-A) toward β-glucosidase activity and their molecular interactions were studied by using differential scanning calorimetry (DSC), circular dichroism spectroscopy (CD), isothermal titration calorimetry (ITC), and docking simulation. The enzyme inhibition kinetics data showed that MEL-A at a low concentration (< critical micelle concentration (CMC), 20.0 ± 5.0 μM) enhanced β-glucosidase activity, whereas it inhibited the enzyme activity at higher concentrations more than 20.0 μM, followed by a decreased Vmax and Km of β-glucosidase. The thermodynamics and structural data demonstrated that the midpoint temperature (Tm) and unfolding enthalpy (ΔH) of β-glucosidase was shifted to high values (76.6 °C, 126.3 J/g) in the presence of MEL-A, and the secondary structure changes of β-glucosidase, including the increased α-helix, β-turn, or random coil contents, and a decreased β-sheet content were caused by MEL-A at a CMC concentration. The further ITC and docking simulations suggested the bindings of MEL-A toward β-glucosidase were driven by weak hydrophobic interactions happened between the amino acid residues of β-glucosidase and the fatty acid residues of MEL-A, in addition to hydrogen bonds between amino acids and hydroxyl in glycosyl residues of this biosurfactant.
Collapse
Affiliation(s)
- Linlin Fan
- Institute of Agro-product Processing , Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China
| | - Pujun Xie
- Institute of Chemical Industry of Forest Products, CAF , Key Laboratory of Biomass Energy and Material, Nanjing, Jiangsu 210042, China
| | - Ying Wang
- Institute of Agro-product Processing , Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China
| | - Zisu Huang
- Institute of Agro-product Processing , Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China
| | - Jianzhong Zhou
- Institute of Agro-product Processing , Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China
| |
Collapse
|
16
|
Cong S, Bi J, Song X, Yu C, Tan M. Ultrasmall fluorescent nanoparticles derived from roast duck: their physicochemical characteristics and interaction with human serum albumin. Food Funct 2018; 9:2490-2495. [DOI: 10.1039/c8fo00178b] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Fluorescent nanoparticles (FNPs) produced from roast meat have drawn widespread attention due to their potential hazards to human health.
Collapse
Affiliation(s)
- Shuang Cong
- School of Food Science and Technology
- National Engineering Research Center of Seafood
- Dalian Polytechnic University
- Dalian 116034
- China
| | - Jingran Bi
- School of Food Science and Technology
- National Engineering Research Center of Seafood
- Dalian Polytechnic University
- Dalian 116034
- China
| | - Xunyu Song
- School of Food Science and Technology
- National Engineering Research Center of Seafood
- Dalian Polytechnic University
- Dalian 116034
- China
| | - Chenxu Yu
- School of Food Science and Technology
- National Engineering Research Center of Seafood
- Dalian Polytechnic University
- Dalian 116034
- China
| | - Mingqian Tan
- School of Food Science and Technology
- National Engineering Research Center of Seafood
- Dalian Polytechnic University
- Dalian 116034
- China
| |
Collapse
|