1
|
Li Y, Fan Y, Gao J, Zheng S, Xing Y, He C, Ye S, Xia H, Wang G, Pan H, Xia W, Sui M, Wang H, Liu J, Xie M, Xu K, Zhang Y. Engineered cyanobacteria-Fe 3O 4 hybrid system as oxygen generator and photosensitizer production factory for synergistic cancer PDT-immunotherapy. Mater Today Bio 2024; 28:101192. [PMID: 39221208 PMCID: PMC11364136 DOI: 10.1016/j.mtbio.2024.101192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 08/04/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
The combination of photodynamic therapy (PDT)-immunotherapy has brought much hope for cancer patients. However, the hypoxia tumor microenvironment (TME) can regulate tumor angiogenesis and inhibit immune response, thus limiting the therapeutic effects. In this paper, engineered cyanobacteria-M2-like tumor-associated macrophages (TAMs) targeting peptide modified Fe3O4 nanoparticles hybrid system (ECyano@Fe3O4-M2pep) was constructed for alleviating hypoxia and relieving immune suppression to achieve synergistic cancer PDT-immunotherapy. With the irradiation of red laser, oxygen was produced by the photosynthesis of ECyano to alleviate the hypoxia TME. Then, ECyano could secret 5-aminolevulinic acid (5-ALA) under the induction of theophylline for controllable PDT. In the process of PDT, the disulfide bond between ECyano and Fe3O4-M2pep was broken in response to reactive oxygen species (ROS), and then Fe3O4-M2pep was released to target M2-like TAMs, corresponding by the polarization of M2-like TAMs to M1-like TAMs for the killing of tumor cells. Compared with other groups, ECyano@Fe3O4-M2pep + theophylline + laser (ECyano@Fe3O4-M2pep + T + L) group displayed the lowest tumor volume (159.3 mm3) and the highest M1/M2 ratio (1.25- fold). We believe that this hybrid system will offer a promising way for the biomedical application of bacterial therapy.
Collapse
Affiliation(s)
- Yize Li
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221004, China
| | - Yali Fan
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221004, China
| | - Jin Gao
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221004, China
- Department of Radiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221006, China
| | - Shaohui Zheng
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221004, China
| | - Yujuan Xing
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221004, China
| | - Chunyan He
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221004, China
- Department of Radiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221006, China
| | - Shuo Ye
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221004, China
| | - Hongfei Xia
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221004, China
| | - Gezhen Wang
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221004, China
| | - Hui Pan
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221004, China
| | - Wei Xia
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221004, China
| | - Meirong Sui
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221004, China
| | - Hanjie Wang
- School of Life Sciences, Faculty of Medicine, Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology, Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, Tianjin University, Tianjin, 300072, China
| | - Jing Liu
- School of Life Sciences, Faculty of Medicine, Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology, Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, Tianjin University, Tianjin, 300072, China
| | - Manman Xie
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221004, China
| | - Kai Xu
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221004, China
- Department of Radiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221006, China
| | - Yingying Zhang
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221004, China
| |
Collapse
|
2
|
Kugler A, Stensjö K. Machine learning predicts system-wide metabolic flux control in cyanobacteria. Metab Eng 2024; 82:171-182. [PMID: 38395194 DOI: 10.1016/j.ymben.2024.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 02/14/2024] [Accepted: 02/20/2024] [Indexed: 02/25/2024]
Abstract
Metabolic fluxes and their control mechanisms are fundamental in cellular metabolism, offering insights for the study of biological systems and biotechnological applications. However, quantitative and predictive understanding of controlling biochemical reactions in microbial cell factories, especially at the system level, is limited. In this work, we present ARCTICA, a computational framework that integrates constraint-based modelling with machine learning tools to address this challenge. Using the model cyanobacterium Synechocystis sp. PCC 6803 as chassis, we demonstrate that ARCTICA effectively simulates global-scale metabolic flux control. Key findings are that (i) the photosynthetic bioproduction is mainly governed by enzymes within the Calvin-Benson-Bassham (CBB) cycle, rather than by those involve in the biosynthesis of the end-product, (ii) the catalytic capacity of the CBB cycle limits the photosynthetic activity and downstream pathways and (iii) ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) is a major, but not the most, limiting step within the CBB cycle. Predicted metabolic reactions qualitatively align with prior experimental observations, validating our modelling approach. ARCTICA serves as a valuable pipeline for understanding cellular physiology and predicting rate-limiting steps in genome-scale metabolic networks, and thus provides guidance for bioengineering of cyanobacteria.
Collapse
Affiliation(s)
- Amit Kugler
- Microbial Chemistry, Department of Chemistry-Ångström Laboratory, Uppsala University, Box 523, SE-751 20, Uppsala, Sweden
| | - Karin Stensjö
- Microbial Chemistry, Department of Chemistry-Ångström Laboratory, Uppsala University, Box 523, SE-751 20, Uppsala, Sweden.
| |
Collapse
|
3
|
Wei F, Qiu J, Zeng Y, Liu Z, Wang X, Xie G. A Novel POP-Ni Catalyst Derived from PBTP for Ambient Fixation of CO 2 into Cyclic Carbonates. MATERIALS (BASEL, SWITZERLAND) 2023; 16:2132. [PMID: 36984012 PMCID: PMC10057775 DOI: 10.3390/ma16062132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/02/2023] [Accepted: 03/04/2023] [Indexed: 06/18/2023]
Abstract
The immobilization of homogeneous catalysts has always been a hot issue in the field of catalysis. In this paper, in an attempt to immobilize the homogeneous [Ni(Me6Tren)X]X (X = I, Br, Cl)-type catalyst with porous organic polymer (POP), the heterogeneous catalyst PBTP-Me6Tren(Ni) (POP-Ni) was designed and constructed by quaternization of the porous bromomethyl benzene polymer (PBTP) with tri[2-(dimethylamino)ethyl]amine (Me6Tren) followed by coordination of the Ni(II) Lewis acidic center. Evaluation of the performance of the POP-Ni catalyst found it was able to catalyze the CO2 cycloaddition with epichlorohydrin in N,N-dimethylformamide (DMF), affording 97.5% yield with 99% selectivity of chloropropylene carbonate under ambient conditions (80 °C, CO2 balloon). The excellent catalytic performance of POP-Ni could be attributed to its porous properties, the intramolecular synergy between Lewis acid Ni(II) and nucleophilic Br anion, and the efficient adsorption of CO2 by the multiamines Me6Tren. In addition, POP-Ni can be conveniently recovered through simple centrifugation, and up to 91.8% yield can be obtained on the sixth run. This research provided a facile approach to multifunctional POP-supported Ni(II) catalysts and may find promising application for sustainable and green synthesis of cyclic carbonates.
Collapse
Affiliation(s)
- Fen Wei
- Guangdong Provincial Engineering Technology Research Center of Key Material for High Performance Copper Clad Laminate, School of Materials Science and Engineering, Dongguan University of Technology, Dongguan 523808, China
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Jiaxiang Qiu
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Yanbin Zeng
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Zhimeng Liu
- Guangdong Provincial Engineering Technology Research Center of Key Material for High Performance Copper Clad Laminate, School of Materials Science and Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Xiaoxia Wang
- Guangdong Provincial Engineering Technology Research Center of Key Material for High Performance Copper Clad Laminate, School of Materials Science and Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Guanqun Xie
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China
| |
Collapse
|
4
|
Sattayawat P, Yunus IS, Jones PR. Production of Fatty Acids and Derivatives Using Cyanobacteria. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2023. [PMID: 36764955 DOI: 10.1007/10_2022_213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Fatty acids and their derivatives are highly valuable chemicals that can be produced through chemical or enzymatic processes using plant lipids. This may compete with human food sources. Therefore, there has been an urge to create a new method for synthesizing these chemicals. One approach is to use microbial cells, specifically cyanobacteria, as a factory platform. Engineering may need to be implemented in order to allow a cost-competitive production and to enable a production of a variety of different fatty acids and derivatives. In this chapter, we explain in details the importance of fatty acids and their derivatives, including fatty aldehydes, fatty alcohols, hydrocarbons, fatty acid methyl esters, and hydroxy fatty acids. The production of these chemicals using cyanobacterial native metabolisms together with strategies to engineer them are also explained. Moreover, recent examples of fatty acid and fatty acid derivative production from engineered cyanobacteria are gathered and reported. Commercial opportunities to manufacture fatty acids and derivatives are also discussed in this chapter. Altogether, it is clear that fatty acids and their derivatives are important chemicals, and with recent advancements in genetic engineering, a cyanobacterial platform for bio-based production is feasible. However, there are regulations and guidelines in place for the use of genetically modified organisms (GMOs) and some further developments are still needed before commercialization can be reached.
Collapse
Affiliation(s)
- Pachara Sattayawat
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Ian S Yunus
- Joint BioEnergy Institute, Emeryville, CA, USA.,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Patrik R Jones
- Department of Life Sciences, Imperial College London, London, UK.
| |
Collapse
|
5
|
Liu X, Luo H, Yu D, Tan J, Yuan J, Li H. Synthetic biology promotes the capture of CO2 to produce fatty acid derivatives in microbial cell factories. BIORESOUR BIOPROCESS 2022; 9:124. [PMID: 38647643 PMCID: PMC10992411 DOI: 10.1186/s40643-022-00615-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 11/27/2022] [Indexed: 12/07/2022] Open
Abstract
Environmental problems such as greenhouse effect, the consumption of fossil energy, and the increase of human demand for energy are becoming more and more serious, which force researcher to turn their attention to the reduction of CO2 and the development of renewable energy. Unsafety, easy to lead to secondary environmental pollution, cost inefficiency, and other problems limit the development of conventional CO2 capture technology. In recent years, many microorganisms have attracted much attention to capture CO2 and synthesize valuable products directly. Fatty acid derivatives (e.g., fatty acid esters, fatty alcohols, and aliphatic hydrocarbons), which can be used as a kind of environmentally friendly and renewable biofuels, are sustainable substitutes for fossil energy. In this review, conventional CO2 capture techniques pathways, microbial CO2 concentration mechanisms and fixation pathways were introduced. Then, the metabolic pathway and progress of direct production of fatty acid derivatives from CO2 in microbial cell factories were discussed. The synthetic biology means used to design engineering microorganisms and optimize their metabolic pathways were depicted, with final discussion on the potential of optoelectronic-microbial integrated capture and production systems.
Collapse
Affiliation(s)
- Xiaofang Liu
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insects of the Mountainous Region, College of Biology and Environmental Engineering, Guiyang University, Guiyang, Guizhou, China.
| | - Hangyu Luo
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insects of the Mountainous Region, College of Biology and Environmental Engineering, Guiyang University, Guiyang, Guizhou, China
- State Key Laboratory Breeding Base of Green Pesticide & Agricultural Bioengineering, Key Laboratory of Green Pesticide & Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for Research & Development of Fine Chemicals, Guizhou University, Guiyang, Guizhou, China
| | - Dayong Yu
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insects of the Mountainous Region, College of Biology and Environmental Engineering, Guiyang University, Guiyang, Guizhou, China
- State Key Laboratory Breeding Base of Green Pesticide & Agricultural Bioengineering, Key Laboratory of Green Pesticide & Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for Research & Development of Fine Chemicals, Guizhou University, Guiyang, Guizhou, China
| | - Jinyu Tan
- State Key Laboratory Breeding Base of Green Pesticide & Agricultural Bioengineering, Key Laboratory of Green Pesticide & Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for Research & Development of Fine Chemicals, Guizhou University, Guiyang, Guizhou, China
| | - Junfa Yuan
- State Key Laboratory Breeding Base of Green Pesticide & Agricultural Bioengineering, Key Laboratory of Green Pesticide & Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for Research & Development of Fine Chemicals, Guizhou University, Guiyang, Guizhou, China
| | - Hu Li
- State Key Laboratory Breeding Base of Green Pesticide & Agricultural Bioengineering, Key Laboratory of Green Pesticide & Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for Research & Development of Fine Chemicals, Guizhou University, Guiyang, Guizhou, China.
| |
Collapse
|
6
|
Kumar N, Kar S, Shukla P. Role of regulatory pathways and multi-omics approaches for carbon capture and mitigation in cyanobacteria. BIORESOURCE TECHNOLOGY 2022; 366:128104. [PMID: 36257524 DOI: 10.1016/j.biortech.2022.128104] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/05/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Cyanobacteria are known for their metabolic potential and carbon capture and sequestration capabilities. These cyanobacteria are not only an effective source for carbon minimization and resource mobilization into value-added products for biotechnological gains. The present review focuses on the detailed description of carbon capture mechanisms exerted by the various cyanobacterial strains, the role of important regulatory pathways, and their subsequent genes responsible for such mechanisms. Moreover, this review will also describe effectual mechanisms of central carbon metabolism like isoprene synthesis, ethylene production, MEP pathway, and the role of Glyoxylate shunt in the carbon sequestration mechanisms. This review also describes some interesting facets of using carbon assimilation mechanisms for valuable bio-products. The role of regulatory pathways and multi-omics approaches in cyanobacteria will not only be crucial towards improving carbon utilization but also will give new insights into utilizing cyanobacterial bioresource for carbon neutrality.
Collapse
Affiliation(s)
- Niwas Kumar
- Society for Research and Initiatives for Sustainable Technologies and Institutions, Navrangapura, Ahmedabad 380009, India
| | - Srabani Kar
- Enzyme Technology and Protein Bioinformatics Laboratory, School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Pratyoosh Shukla
- Enzyme Technology and Protein Bioinformatics Laboratory, School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
7
|
Ma J, Guo T, Ren M, Chen L, Song X, Zhang W. Cross-feeding between cyanobacterium Synechococcus and Escherichia coli in an artificial autotrophic–heterotrophic coculture system revealed by integrated omics analysis. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:69. [PMID: 35733176 PMCID: PMC9219151 DOI: 10.1186/s13068-022-02163-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 06/04/2022] [Indexed: 01/21/2023]
Abstract
Background Light-driven consortia, which consist of sucrose-secreting cyanobacteria and heterotrophic species, have attracted considerable attention due to their capability for the sustainable production of valuable chemicals directly from CO2. In a previous study, we achieved a one-step conversion of sucrose secreted from cyanobacteria to fine chemicals by constructing an artificial coculture system consisting of sucrose-secreting Synechococcus elongateus cscB+ and 3-hydroxypropionic acid (3-HP) producing Escherichia coli ABKm. Analyses of the coculture system showed that the cyanobacterial cells grew better than their corresponding axenic cultures. To explore the underlying mechanism and to identify the metabolic nodes with the potential to further improve the coculture system, we conducted integrated transcriptomic, proteomic and metabolomic analyses. Results We first explored how the relieved oxidative stress affected cyanobacterial cell growth in a coculture system by supplementing additional ascorbic acid to CoBG-11 medium. We found that the cell growth of cyanobacteria was clearly improved with an additional 1 mM ascorbic acid under axenic culture; however, its growth was still slower than that in the coculture system, suggesting that the improved growth of Synechococcus cscB+ may be caused by multiple factors, including reduced oxidative stress. To further explore the cellular responses of cyanobacteria in the system, quantitative transcriptomics, proteomics and metabolomics were applied to Synechococcus cscB+. Analyses of differentially regulated genes/proteins and the abundance change of metabolites in the photosystems revealed that the photosynthesis of the cocultured Synechococcus cscB+ was enhanced. The decreased expression of the CO2 transporter suggested that the heterotrophic partner in the system might supplement additional CO2 to support the cell growth of Synechococcus cscB+. In addition, the differentially regulated genes and proteins involved in the nitrogen and phosphate assimilation pathways suggested that the supply of phosphate and nitrogen in the Co-BG11 medium might be insufficient. Conclusion An artificial coculture system capable of converting CO2 to fine chemicals was established and then analysed by integrated omics analysis, which demonstrated that in the coculture system, the relieved oxidative stress and increased CO2 availability improved the cell growth of cyanobacteria. In addition, the results also showed that the supply of phosphate and nitrogen in the Co-BG11 medium might be insufficient, which paves a new path towards the optimization of the coculture system in the future. Taken together, these results from the multiple omics analyses provide strong evidence that beneficial interactions can be achieved from cross-feeding and competition between phototrophs and prokaryotic heterotrophs and new guidelines for engineering more intelligent artificial consortia in the future. Supplementary Information The online version contains supplementary material available at 10.1186/s13068-022-02163-5.
Collapse
|
8
|
Hans S, Kumar N, Gohil N, Khambhati K, Bhattacharjee G, Deb SS, Maurya R, Kumar V, Reshamwala SMS, Singh V. Rebooting life: engineering non-natural nucleic acids, proteins and metabolites in microorganisms. Microb Cell Fact 2022; 21:100. [PMID: 35643549 PMCID: PMC9148472 DOI: 10.1186/s12934-022-01828-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 05/15/2022] [Indexed: 12/01/2022] Open
Abstract
The surging demand of value-added products has steered the transition of laboratory microbes to microbial cell factories (MCFs) for facilitating production of large quantities of important native and non-native biomolecules. This shift has been possible through rewiring and optimizing different biosynthetic pathways in microbes by exercising frameworks of metabolic engineering and synthetic biology principles. Advances in genome and metabolic engineering have provided a fillip to create novel biomolecules and produce non-natural molecules with multitude of applications. To this end, numerous MCFs have been developed and employed for production of non-natural nucleic acids, proteins and different metabolites to meet various therapeutic, biotechnological and industrial applications. The present review describes recent advances in production of non-natural amino acids, nucleic acids, biofuel candidates and platform chemicals.
Collapse
|
9
|
Sarwar A, Nguyen LT, Lee EY. Bio-upgrading of ethanol to fatty acid ethyl esters by metabolic engineering of Pseudomonas putida KT2440. BIORESOURCE TECHNOLOGY 2022; 350:126899. [PMID: 35217159 DOI: 10.1016/j.biortech.2022.126899] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 02/19/2022] [Accepted: 02/21/2022] [Indexed: 06/14/2023]
Abstract
Fatty acid ethyl esters (FAEEs) have gained increasing attention as a replacement for traditional fossil fuels in the recent years. Here, we report the efficient upgrading of ethanol to FAEEs from Pseudomonas putida KT2440, using ethanol as the sole carbon source. First, the wax synthase (WS) encoded by the atfA gene from Acinetobacter baylyi ADP1 was expressed in P. putida KT2440. Second, the flux from ethanol towards acetyl-CoA was increased by expression of the acetaldehyde dehydrogenase (ada) from Dickeya zeae. By using dodecane overlay to capture FAEEs, 1.2 g/L of FAEEs with a yield of 152.09 mg FAEEs/g ethanol were produced. Culture optimization enhanced the FAEEs contents up to 1.6 g/L in shake flask and 4.3 g/L in a fed-batch fermenter. In summary, our study provides a basis for combining the bioethanol production process with the efficient upgrading of ethanol to biodiesel.
Collapse
Affiliation(s)
- Arslan Sarwar
- Department of Chemical Engineering (BK21 FOUR Integrated Engineering Program), Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea
| | - Linh Thanh Nguyen
- Department of Chemical Engineering (BK21 FOUR Integrated Engineering Program), Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea
| | - Eun Yeol Lee
- Department of Chemical Engineering (BK21 FOUR Integrated Engineering Program), Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea.
| |
Collapse
|
10
|
Esakkimuthu S, Wang S, Abomohra AEF. CO2-Mediated Energy Conversion and Recycling. WASTE-TO-ENERGY 2022:379-409. [DOI: 10.1007/978-3-030-91570-4_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
11
|
Taylor GM, Hitchcock A, Heap JT. Combinatorial assembly platform enabling engineering of genetically stable metabolic pathways in cyanobacteria. Nucleic Acids Res 2021; 49:e123. [PMID: 34554258 PMCID: PMC8643660 DOI: 10.1093/nar/gkab791] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 08/18/2021] [Accepted: 09/02/2021] [Indexed: 11/13/2022] Open
Abstract
Cyanobacteria are simple, efficient, genetically-tractable photosynthetic microorganisms which in principle represent ideal biocatalysts for CO2 capture and conversion. However, in practice, genetic instability and low productivity are key, linked problems in engineered cyanobacteria. We took a massively parallel approach, generating and characterising libraries of synthetic promoters and RBSs for the cyanobacterium Synechocystis sp. PCC 6803, and assembling a sparse combinatorial library of millions of metabolic pathway-encoding construct variants. Genetic instability was observed for some variants, which is expected when variants cause metabolic burden. Surprisingly however, in a single combinatorial round without iterative optimisation, 80% of variants chosen at random and cultured photoautotrophically over many generations accumulated the target terpenoid lycopene from atmospheric CO2, apparently overcoming genetic instability. This large-scale parallel metabolic engineering of cyanobacteria provides a new platform for development of genetically stable cyanobacterial biocatalysts for sustainable light-driven production of valuable products directly from CO2, avoiding fossil carbon or competition with food production.
Collapse
Affiliation(s)
- George M Taylor
- Imperial College Centre for Synthetic Biology, Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Andrew Hitchcock
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
| | - John T Heap
- Imperial College Centre for Synthetic Biology, Department of Life Sciences, Imperial College London, London SW7 2AZ, UK.,School of Life Sciences, The University of Nottingham, Biodiscovery Institute, University Park, Nottingham NG7 2RD, UK
| |
Collapse
|
12
|
You SK, Park HM, Lee ME, Ko YJ, Hwang DH, Oh JW, Han SO. Non-Photosynthetic CO 2 Utilization to Increase Fatty Acid Production in Yarrowia lipolytica. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:11912-11918. [PMID: 34586795 DOI: 10.1021/acs.jafc.1c04308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Metabolic engineering of non-photosynthetic microorganisms to increase the utilization of CO2 has been focused on as a green strategy to convert CO2 into valuable products such as fatty acids. In this study, a CO2 utilization pathway involving carbonic anhydrase and biotin carboxylase was formed to recycle CO2 in the oleaginous yeast Yarrowia lipolytica, thereby increasing the production of fatty acids. In the recombinant strain in which the CO2 utilization pathway was introduced, the production of fatty acids was 10.7 g/L, which was 1.5-fold higher than that of the wild-type strain. The resulting strain had a 1.4-fold increase in dry cell mass compared to the wild-type strain. In addition, linoleic acid was 47.7% in the fatty acid composition of the final strain, which was increased by 11.6% compared to the wild-type strain. These results can be applied as an essential technology for developing efficient and eco-friendly processes by directly utilizing CO2.
Collapse
Affiliation(s)
- Seung Kyou You
- Department of Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Hyeon Min Park
- Department of Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Myeong-Eun Lee
- Department of Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Young Jin Ko
- Department of Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Dong-Hyeuk Hwang
- Department of Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Jun Won Oh
- Department of Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Sung Ok Han
- Department of Biotechnology, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
13
|
Sacko O, Barnes CL, Greene LH, Lee JW. Survivability of Wild-Type and Genetically Engineered Thermosynechococcus elongatus BP1 with Different Temperature Conditions. APPLIED BIOSAFETY 2020; 25:104-117. [DOI: 10.1177/1535676019896640] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Oumar Sacko
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, VA, USA
- Authors Oumar Sacko and Cherrelle L. Barnes contributed equally to this article
| | - Cherrelle L. Barnes
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, VA, USA
- Authors Oumar Sacko and Cherrelle L. Barnes contributed equally to this article
| | - Lesley H. Greene
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, VA, USA
| | - James W. Lee
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, VA, USA
| |
Collapse
|
14
|
Wang L, Chen L, Yang S, Tan X. Photosynthetic Conversion of Carbon Dioxide to Oleochemicals by Cyanobacteria: Recent Advances and Future Perspectives. Front Microbiol 2020; 11:634. [PMID: 32362881 PMCID: PMC7181335 DOI: 10.3389/fmicb.2020.00634] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 03/20/2020] [Indexed: 11/21/2022] Open
Abstract
Sustainable production of biofuels and biochemicals has been broadly accepted as a solution to lower carbon dioxide emissions. Besides being used as lubricants or detergents, oleochemicals are also attractive biofuels as they are compatible with existing transport infrastructures. Cyanobacteria are autotrophic prokaryotes possessing photosynthetic abilities with mature genetic manipulation systems. Through the introduction of exogenous or the modification of intrinsic metabolic pathways, cyanobacteria have been engineered to produce various bio-chemicals and biofuels over the past decade. In this review, we specifically summarize recent progress on photosynthetic production of fatty acids, fatty alcohols, fatty alk(a/e)nes, and fatty acid esters by genetically engineered cyanobacteria. We also summarize recent reports on fatty acid and lipid metabolisms of cyanobacteria and provide perspectives for economic cyanobacterial oleochemical production in the future.
Collapse
Affiliation(s)
- Li Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, School of Life Sciences, Hubei University, Wuhan, China
| | - Liyuan Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, School of Life Sciences, Hubei University, Wuhan, China
| | - Shihui Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, School of Life Sciences, Hubei University, Wuhan, China
| | - Xiaoming Tan
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, School of Life Sciences, Hubei University, Wuhan, China
| |
Collapse
|
15
|
Bishé B, Taton A, Golden JW. Modification of RSF1010-Based Broad-Host-Range Plasmids for Improved Conjugation and Cyanobacterial Bioprospecting. iScience 2019; 20:216-228. [PMID: 31585408 PMCID: PMC6817606 DOI: 10.1016/j.isci.2019.09.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/23/2019] [Accepted: 09/01/2019] [Indexed: 01/22/2023] Open
Abstract
To facilitate the genetic engineering of diverse cyanobacterial strains, we have modified broad-host-range RSF1010-based plasmids to improve transmissibility, increase copy number, and facilitate cloning. RSF1010-based plasmids replicate in diverse bacterial strains but produce low amounts of useable DNA for cloning. We previously engineered a mobAY25F mutation in RSF1010-based plasmids that improved cloning but decreased conjugation efficiency. Here, we engineered RSF1010-based plasmids to restore conjugation efficiency, which was demonstrated in three diverse laboratory strains of cyanobacteria. We then used an improved RSF1010-based plasmid in mating experiments with cultured samples of wild cyanobacteria. This plasmid, which confers antibiotic resistance and carries a yfp reporter gene, allowed selection of exconjugant cyanobacteria and facilitated the isolation of genetically tractable strains from mixed wild cultures. Improved RSF1010 vectors can be used for bioprospecting genetically tractable strains and are compatible with the CYANO-VECTOR cloning system, a versatile toolbox for constructing plasmids for cyanobacterial genetic engineering. An RSF1010 mobAY25F mutation facilitates plasmid cloning but reduces conjugation Addition of an RK2-bom site improves conjugation efficiency of mobAY25F vectors A helper plasmid carrying the mobA gene improves conjugation efficiency of mobAY25F Improved RSF1010-based vectors can be used for bioprospecting of cyanobacteria
Collapse
Affiliation(s)
- Bryan Bishé
- Division of Biological Sciences, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA
| | - Arnaud Taton
- Division of Biological Sciences, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA
| | - James W Golden
- Division of Biological Sciences, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA.
| |
Collapse
|
16
|
Burkart MD, Hazari N, Tway CL, Zeitler EL. Opportunities and Challenges for Catalysis in Carbon Dioxide Utilization. ACS Catal 2019. [DOI: 10.1021/acscatal.9b02113] [Citation(s) in RCA: 179] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Michael D. Burkart
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093-0358, United States
| | - Nilay Hazari
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520, United States
| | - Cathy L. Tway
- Johnson Matthey, 2 Trans Am Plaza Drive, Suite 230, Oakbrook Terrace, Illinois 60181, United States
| | - Elizabeth L. Zeitler
- Board on Energy
and Environmental Systems, National Academies of Sciences, Engineering and Medicine, 500 Fifth Street, NW, Washington, D.C. 20001, United States
| |
Collapse
|
17
|
Noreña-Caro D, Benton MG. Cyanobacteria as photoautotrophic biofactories of high-value chemicals. J CO2 UTIL 2018. [DOI: 10.1016/j.jcou.2018.10.008] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
18
|
Metabolic engineering tools in model cyanobacteria. Metab Eng 2018; 50:47-56. [DOI: 10.1016/j.ymben.2018.03.014] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 03/15/2018] [Accepted: 03/15/2018] [Indexed: 12/27/2022]
|
19
|
Guo Y, Song Y, Zheng H, Zhang Y, Guo J, Sui N. NADP-Malate Dehydrogenase of Sweet Sorghum Improves Salt Tolerance of Arabidopsis thaliana. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:5992-6002. [PMID: 29847118 DOI: 10.1021/acs.jafc.8b02159] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Sweet sorghum is a C4 crop that shows high salt tolerance and high yield. NADP-malate dehydrogenase ( NADP-ME) is a crucial enzyme of the C4 pathway. The regulatory mechanism of NADP-ME remains unclear. In this study, we isolated SbNADP-ME from sweet sorghum. The open reading frame of SbNADP-ME is 1911 bp and 637 amino acid residues. Quantitative real-time PCR analysis showed that SbNADP-ME transcription in sweet sorghum was enhanced by salt stress. The SbNADP-ME transcript level was highest under exposure to 150 mM NaCl. Arabidopsis overexpressing SbNADP-ME showed increased germination rate and root length under NaCl treatments. At the seedling stage, physiological photosynthesis parameters, chlorophyll content, PSII photochemical efficiency, and PSI oxidoreductive activity in the wild type decreased more severely than in the overexpression lines but less than in T-DNA insertion mutants under salt stress. Overexpression of SbNADP-ME in Arabidopsis may also increase osmotic adjustment and scavenging activity on DPPH and decrease membrane peroxidation. These results suggest that SbNADP-ME overexpression in Arabidopsis increases salt tolerance and alleviates PSII and PSI photoinhibition under salt stress by improving photosynthetic capacity.
Collapse
Affiliation(s)
- Yuanyuan Guo
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Science , Shandong Normal University , Jinan 250014 , China
| | - Yushuang Song
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Science , Shandong Normal University , Jinan 250014 , China
| | - Hongxiang Zheng
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Science , Shandong Normal University , Jinan 250014 , China
| | - Yi Zhang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Science , Shandong Normal University , Jinan 250014 , China
| | - Jianrong Guo
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Science , Shandong Normal University , Jinan 250014 , China
| | - Na Sui
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Science , Shandong Normal University , Jinan 250014 , China
| |
Collapse
|
20
|
Woo HM. Metabolic pathway rewiring in engineered cyanobacteria for solar-to-chemical and solar-to-fuel production from CO 2. Bioengineered 2018; 9:2-5. [PMID: 28430539 PMCID: PMC5972923 DOI: 10.1080/21655979.2017.1317572] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Photoautotrophic cyanobacteria have been developed to convert CO2 to valuable chemicals and fuels as solar-to-chemical (S2C) and solar-to-fuel (S2F) platforms. Here, I describe the rewiring of the metabolic pathways in cyanobacteria to better understand the endogenous carbon flux and to enhance the yield of heterologous products. The plasticity of the cyanobacterial metabolism has been proposed to be advantageous for the development of S2C and S2F processes. The rewiring of the sugar catabolism and of the phosphoketolase pathway in the central cyanobacterial metabolism allowed for an enhancement in the level of target products by redirecting the carbon fluxes. Thus, metabolic pathway rewiring can promote the development of more efficient cyanobacterial cell factories for the generation of feasible S2C and S2F platforms.
Collapse
Affiliation(s)
- Han Min Woo
- a Department of Food Science and Biotechnology , Sungkyunkwan University (SKKU) , Jangan-gu, Suwon , Republic of Korea
| |
Collapse
|
21
|
Woo HM, Lee HJ. Toward solar biodiesel production from CO2 using engineered cyanobacteria. FEMS Microbiol Lett 2017; 364:3605366. [PMID: 28407086 DOI: 10.1093/femsle/fnx066] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 04/11/2017] [Indexed: 01/01/2023] Open
Abstract
Metabolic engineering of cyanobacteria has received attention as a sustainable strategy to convert carbon dioxide to various biochemicals including fatty acid-derived biodiesel. Recently, Synechococcus elongatus PCC 7942, a model cyanobacterium, has been engineered to convert CO2 to fatty acid ethyl esters (FAEEs) as biodiesel. Modular pathway has been constructed for FAEE production. Several metabolic engineering strategies were discussed to improve the production levels of FAEEs, including host engineering by improving CO2 fixation rate and photosynthetic efficiency. In addition, protein engineering of key enzyme in S. elongatus PCC 7942 was implemented to address issues on FAEE secretions toward sustainable FAEE production from CO2. Finally, advanced metabolic engineering will promote developing biosolar cell factories to convert CO2 to feasible amount of FAEEs toward solar biodiesel.
Collapse
Affiliation(s)
- Han Min Woo
- Department of Food Science and Biotechnology, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| | - Hyun Jeong Lee
- Clean Energy Research Center, Korea Institute of Science and Technology, Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea
| |
Collapse
|
22
|
Zhu B, Chen G, Cao X, Wei D. Molecular characterization of CO 2 sequestration and assimilation in microalgae and its biotechnological applications. BIORESOURCE TECHNOLOGY 2017; 244:1207-1215. [PMID: 28606753 DOI: 10.1016/j.biortech.2017.05.199] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 05/29/2017] [Accepted: 05/30/2017] [Indexed: 06/07/2023]
Abstract
Microalgae are renewable feedstock for sustainable biofuel production, cell factory for valuable chemicals and promising in alleviation of greenhouse gas CO2. However, the carbon assimilation capacity is still the bottleneck for higher productivity. Molecular characterization of CO2 sequestration and assimilation in microalgae has advanced in the past few years and are reviewed here. In some cyanobacteria, genes for 2-oxoglytarate dehydrogenase was replaced by four alternative mechanisms to fulfill TCA cycle. In green algae Coccomyxa subellipsoidea C-169, alternative carbon assimilation pathway was upregulated under high CO2 conditions. These advances thus provide new insights and new targets for accelerating CO2 sequestration rate and enhancing bioproduct synthesis in microalgae. When integrated with conventional parameter optimization, molecular approach for microalgae modification targeting at different levels is promising in generating value-added chemicals from green algae and cyanobacteria efficiently in the near future.
Collapse
Affiliation(s)
- Baojun Zhu
- School of Food Sciences and Engineering, South China University of Technology, Wushan Rd. 381, Guangzhou 510641, PR China
| | - Gu Chen
- School of Food Sciences and Engineering, South China University of Technology, Wushan Rd. 381, Guangzhou 510641, PR China
| | - Xupeng Cao
- Marine Bioengineering Group, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, PR China
| | - Dong Wei
- School of Food Sciences and Engineering, South China University of Technology, Wushan Rd. 381, Guangzhou 510641, PR China.
| |
Collapse
|
23
|
Choi SY, Wang JY, Kwak HS, Lee SM, Um Y, Kim Y, Sim SJ, Choi JI, Woo HM. Improvement of Squalene Production from CO 2 in Synechococcus elongatus PCC 7942 by Metabolic Engineering and Scalable Production in a Photobioreactor. ACS Synth Biol 2017; 6:1289-1295. [PMID: 28365988 DOI: 10.1021/acssynbio.7b00083] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The push-and-pull strategy for metabolic engineering was successfully demonstrated in Synechococcus elongatus PCC 7942, a model photosynthetic bacterium, to produce squalene from CO2. Squalene synthase (SQS) was fused to either a key enzyme (farnesyl diphosphate synthase) of the methylerythritol phosphate pathway or the β-subunit of phycocyanin (CpcB1). Engineered cyanobacteria with expression of a fusion CpcB1-SQS protein showed a squalene production level (7.16 ± 0.05 mg/L/OD730) that was increased by 1.8-fold compared to that of the control strain expressing SQS alone. To increase squalene production further, the gene dosage for CpcB1·SQS protein expression was increased and the fusion protein was expressed under a strong promoter, yielding 11.98 ± 0.49 mg/L/OD730 of squalene, representing a 3.1-fold increase compared to the control. Subsequently, the best squalene producer was cultivated in a scalable photobioreactor (6 L) with light optimization, which produced 7.08 ± 0.5 mg/L/OD730 squalene (equivalent to 79.2 mg per g dry cell weight). Further optimization for photobioprocessing and strain development will promote the construction of a solar-to-chemical platform.
Collapse
Affiliation(s)
- Sun Young Choi
- Clean
Energy Research Center, Korea Institute of Science and Technology, Hwarangro 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Jin-Young Wang
- Clean
Energy Research Center, Korea Institute of Science and Technology, Hwarangro 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea
| | | | - Sun-Mi Lee
- Clean
Energy Research Center, Korea Institute of Science and Technology, Hwarangro 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Youngsoon Um
- Clean
Energy Research Center, Korea Institute of Science and Technology, Hwarangro 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Yunje Kim
- Clean
Energy Research Center, Korea Institute of Science and Technology, Hwarangro 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea
| | | | - Jong-il Choi
- Department
of Biotechnology and Bioengineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea
| | - Han Min Woo
- Department
of Food Science and Biotechnology, Sungkyunkwan University (SKKU), 2066
Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| |
Collapse
|
24
|
Kim WJ, Lee SM, Um Y, Sim SJ, Woo HM. Development of SyneBrick Vectors As a Synthetic Biology Platform for Gene Expression in Synechococcus elongatus PCC 7942. FRONTIERS IN PLANT SCIENCE 2017; 8:293. [PMID: 28303150 PMCID: PMC5332412 DOI: 10.3389/fpls.2017.00293] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 02/17/2017] [Indexed: 05/20/2023]
Abstract
Cyanobacteria are oxygenic photosynthetic prokaryotes that are able to assimilate CO2 using solar energy and water. Metabolic engineering of cyanobacteria has suggested the possibility of direct CO2 conversion to value-added chemicals. However, engineering of cyanobacteria has been limited due to the lack of various genetic tools for expression and control of multiple genes to reconstruct metabolic pathways for biochemicals from CO2. Thus, we developed SyneBrick vectors as a synthetic biology platform for gene expression in Synechococcus elongatus PCC 7942 as a model cyanobacterium. The SyneBrick chromosomal integration vectors provide three inducible expression systems to control gene expression and three neutral sites for chromosomal integrations. Using a SyneBrick vector, LacI-regulated gene expression led to 24-fold induction of the eYFP reporter gene with 1 mM isopropyl β-D-1-thiogalactopyranoside (IPTG) inducer in S. elongatus PCC 7942 under 5% (v/v) CO2. TetR-regulated gene expression led to 19-fold induction of the GFP gene when 100 nM anhydrotetracycline (aTc) inducer was used. Gene expression decreased after 48 h due to degradation of aTc under light. T7 RNA polymerase-based gene expression resulted in efficient expression with a lower IPTG concentration than a previously developed pTrc promoter. A library of T7 promoters can be used for tunable gene expression. In summary, SyneBrick vectors were developed as a synthetic biology platform for gene expression in S. elongatus PCC 7942. These results will accelerate metabolic engineering of biosolar cell factories through expressing and controlling multiple genes of interest.
Collapse
Affiliation(s)
- Wook Jin Kim
- Clean Energy Research Center, Korea Institute of Science and TechnologySeoul, South Korea
- Green School (Graduate School of Energy and Environment), Korea UniversitySeoul, South Korea
| | - Sun-Mi Lee
- Clean Energy Research Center, Korea Institute of Science and TechnologySeoul, South Korea
- Green School (Graduate School of Energy and Environment), Korea UniversitySeoul, South Korea
| | - Youngsoon Um
- Clean Energy Research Center, Korea Institute of Science and TechnologySeoul, South Korea
| | - Sang Jun Sim
- Green School (Graduate School of Energy and Environment), Korea UniversitySeoul, South Korea
- Department of Chemical and Biological Engineering, Korea UniversitySeoul, South Korea
| | - Han Min Woo
- Department of Food Science and Biotechnology, Sungkyunkwan UniversitySuwon, South Korea
| |
Collapse
|