1
|
Ge MX, Chen RP, Zhang L, Wang YM, Chi CF, Wang B. Novel Ca-Chelating Peptides from Protein Hydrolysate of Antarctic Krill ( Euphausia superba): Preparation, Characterization, and Calcium Absorption Efficiency in Caco-2 Cell Monolayer Model. Mar Drugs 2023; 21:579. [PMID: 37999403 PMCID: PMC10672039 DOI: 10.3390/md21110579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 10/31/2023] [Accepted: 11/03/2023] [Indexed: 11/25/2023] Open
Abstract
Antarctic krill (Euphausia superba) is the world's largest resource of animal proteins and is thought to be a high-quality resource for future marine healthy foods and functional products. Therefore, Antarctic krill was degreased and separately hydrolyzed using flavourzyme, pepsin, papain, and alcalase. Protein hydrolysate (AKH) of Antarctic krill prepared by trypsin showed the highest Ca-chelating rate under the optimized chelating conditions: a pH of 8.0, reaction time of 50 min, temperature of 50 °C, and material/calcium ratio of 1:15. Subsequently, fourteen Ca-chelating peptides were isolated from APK by ultrafiltration and a series of chromatographic methods and identified as AK, EAR, AEA, VERG, VAS, GPK, SP, GPKG, APRGH, GVPG, LEPGP, LEKGA, FPPGR, and GEPG with molecular weights of 217.27, 374.40, 289.29, 459.50, 275.30, 300.36, 202.21, 357.41, 536.59, 328.37, 511.58, 516.60, 572.66, and 358.35 Da, respectively. Among fourteen Ca-chelating peptides, VERG presented the highest Ca-chelating ability. Ultraviolet spectrum (UV), Fourier Transform Infrared (FTIR), and scanning electron microscope (SEM) analysis indicated that the VERG-Ca chelate had a dense granular structure because the N-H, C=O and -COOH groups of VERG combined with Ca2+. Moreover, the VERG-Ca chelate is stable in gastrointestinal digestion and can significantly improve Ca transport in Caco-2 cell monolayer experiments, but phytate could significantly reduce the absorption of Ca derived from the VERG-Ca chelate. Therefore, Ca-chelating peptides from protein hydrolysate of Antarctic krill possess the potential to serve as a Ca supplement in developing healthy foods.
Collapse
Affiliation(s)
- Ming-Xue Ge
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China; (M.-X.G.); (R.-P.C.)
| | - Ru-Ping Chen
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China; (M.-X.G.); (R.-P.C.)
| | - Lun Zhang
- National and Provincial Joint Laboratory of Exploration and Utilization of Marine Aquatic Genetic Resources, National Engineering Research Center of Marine Facilities Aquaculture, School of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316022, China; (L.Z.)
| | - Yu-Mei Wang
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China; (M.-X.G.); (R.-P.C.)
| | - Chang-Feng Chi
- National and Provincial Joint Laboratory of Exploration and Utilization of Marine Aquatic Genetic Resources, National Engineering Research Center of Marine Facilities Aquaculture, School of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316022, China; (L.Z.)
| | - Bin Wang
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China; (M.-X.G.); (R.-P.C.)
| |
Collapse
|
2
|
Hu YD, Xi QH, Kong J, Zhao YQ, Chi CF, Wang B. Angiotensin-I-Converting Enzyme (ACE)-Inhibitory Peptides from the Collagens of Monkfish ( Lophius litulon) Swim Bladders: Isolation, Characterization, Molecular Docking Analysis and Activity Evaluation. Mar Drugs 2023; 21:516. [PMID: 37888451 PMCID: PMC10608021 DOI: 10.3390/md21100516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 09/25/2023] [Accepted: 09/27/2023] [Indexed: 10/28/2023] Open
Abstract
The objective of this study was to isolate and characterize collagen and angiotensin-I-converting enzyme (ACE)-inhibitory (ACEi) peptides from the swim bladders of monkfish (Lophius litulon). Therefore, acid-soluble collagen (ASC-M) and pepsin-soluble collagen (PSC-M) with yields of 4.27 ± 0.22% and 9.54 ± 0.51%, respectively, were extracted from monkfish swim bladders using acid and enzyme methods. The ASC-M and PSC-M contained Gly (325.2 and 314.9 residues/1000 residues, respectively) as the major amino acid, but they had low imino acid content (192.5 and 188.6 residues/1000 residues, respectively) in comparison with collagen from calf skins (CSC) (216.6 residues/1000 residues). The sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) patterns and ultraviolet (UV) absorption spectrums of ASC-M and PSC-M illustrated that they were mainly composed of type I collagen. Subsequently, three ACEi peptides were isolated from a PSC-M hydrolysate prepared via a double-enzyme system (alcalase + neutrase) and identified as SEGPK (MHP6), FDGPY (MHP7) and SPGPW (MHP9), with molecular weights of 516.5, 597.6 and 542.6 Da, respectively. SEGPK, FDGPY and SPGPW displayed remarkable anti-ACE activity, with IC50 values of 0.63, 0.94 and 0.71 mg/mL, respectively. Additionally, a molecular docking assay demonstrated that the affinities of SEGPK, FDGPY and SPGPW with ACE were -7.3, -10.9 and -9.4 kcal/mol, respectively. The remarkable ACEi activity of SEGPK, FDGPY and SPGPW was due to their connection with the active pockets and/or sites of ACE via hydrogen bonding, hydrophobic interaction and electrostatic force. Moreover, SEGPK, FDGPY and SPGPW could protect HUVECs by controlling levels of nitric oxide (NO) and endothelin-1 (ET-1). Therefore, this work provides an effective means for the preparation of collagens and novel ACEi peptides from monkfish swim bladders, and the prepared ACEi peptides, including SEGPK, FDGPY and SPGPW, could serve as natural functional components in the development of health care products to control hypertension.
Collapse
Affiliation(s)
- Yu-Dong Hu
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Qing-Hao Xi
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Jing Kong
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Yu-Qin Zhao
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Chang-Feng Chi
- National and Provincial Joint Laboratory of Exploration and Utilization of Marine Aquatic Genetic Resources, National Engineering Research Center of Marine Facilities Aquaculture, School of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316022, China
| | - Bin Wang
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| |
Collapse
|
3
|
Chen Z, Nong Y, Wang Q, Feng L, He Y, Guo B, Qin Y, Zhong X, Qin J, Wei J, Dong M, Pan S, Su Z. Preventive effect of tilapia skin collagen hydrolysates on ulcerative colitis mice based on metabonomic and 16 S rRNA gene sequencing. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:3645-3658. [PMID: 36645331 DOI: 10.1002/jsfa.12457] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 01/01/2023] [Accepted: 01/17/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Tilapia skin collagen hydrolysates (TSCHs) are the product of enzymatic hydrolysis of collagen, which is mainly extracted from tilapia skin. The components of TSCHs have recently been reported to play a preventive role in dextran sulfate sodium (DSS)-induced ulcerative colitis (UC). However, it has not been illustrated whether TSCHs can prevent against DSS-induced UC via the gut microbiota and its derived metabolites. RESULTS TSCHs are mainly composed of amino acids, which have similar characteristics to collagen, with most having a molecular weight below 5 kDa. In a mouse model of UC, TSCHs had no toxic effect at a dose of 60 g kg-1 and could reduce body weight changes, colon length, histopathological changes and score, and the level of the serum inflammatory cytokine interleukin (IL)-6. Concurrently, 16 S rRNA sequencing showed that TSCHs significantly reduced the abundance of Bacteroidetes and Proteobacteria at the phylum level and norank_f__Muribaculaceae and Escherichia-Shigella at the genus level, while they increased the abundance of Firmicutes at the phylum level and Lachnoclostridium, Allobaculum, Enterorhabdus, and unclassified__f__Ruminococcaceae at the genus level. Target metabolomic analysis showed that TSCHs elevated the concentration of total acid, acetic acid, propanoic acid, and butanoic acid, but reduced isovaleric acid concentrations. Moreover, Pearson correlation analysis revealed that Allobaculum, unclassified_Ruminococcaceae, and Enterorhabdus were positively correlated with acetic acid and butyric acid, but not Escherichia-Shigella. CONCLUSION These findings suggest that TSCHs can prevent UC by modulating gut microbial and microbiota-derived metabolites. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhaoni Chen
- Pharmaceutical College, Guangxi Medical University, Nanning, China
| | - Yunyuan Nong
- Pharmaceutical College, Guangxi Medical University, Nanning, China
| | - Qianyi Wang
- Pharmaceutical College, Guangxi Medical University, Nanning, China
| | - Linlin Feng
- Pharmaceutical College, Guangxi Medical University, Nanning, China
| | - Ying He
- First Clinical Medical College, Guangxi Medical University, Nanning, China
| | - Bingjian Guo
- Pharmaceutical College, Guangxi Medical University, Nanning, China
| | - Yuelian Qin
- Pharmaceutical College, Guangxi Medical University, Nanning, China
| | - Xinyu Zhong
- Pharmaceutical College, Guangxi Medical University, Nanning, China
| | - Jinghua Qin
- Pharmaceutical College, Guangxi Medical University, Nanning, China
| | - Jinbin Wei
- Pharmaceutical College, Guangxi Medical University, Nanning, China
- Guangxi Beibu Gulf Marine Biomedicine Precision Development and High-value Utilization Engineering Research Center, Guangxi Medical University, Nanning, China
| | - Min Dong
- Pharmaceutical College, Guangxi Medical University, Nanning, China
- Guangxi Beibu Gulf Marine Biomedicine Precision Development and High-value Utilization Engineering Research Center, Guangxi Medical University, Nanning, China
| | - Shihan Pan
- Pharmaceutical College, Guangxi Medical University, Nanning, China
- Guangxi Beibu Gulf Marine Biomedicine Precision Development and High-value Utilization Engineering Research Center, Guangxi Medical University, Nanning, China
| | - Zhiheng Su
- Pharmaceutical College, Guangxi Medical University, Nanning, China
- Guangxi Beibu Gulf Marine Biomedicine Precision Development and High-value Utilization Engineering Research Center, Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, Guangxi Medical University, Nanning, China
- Guangxi Health Commission Key Laboratory of Basic Research on Antigeriatric Drugs, Guangxi Medical University, Nanning, China
| |
Collapse
|
4
|
Zhai W, Lin D, Mo R, Zou X, Zhang Y, Zhang L, Ge Y. Process Optimization, Structural Characterization, and Calcium Release Rate Evaluation of Mung Bean Peptides-Calcium Chelate. Foods 2023; 12:foods12051058. [PMID: 36900575 PMCID: PMC10000905 DOI: 10.3390/foods12051058] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/22/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
To reduce grievous ecological environment pollution and protein resource waste during mung bean starch production, mung bean peptides-calcium chelate (MBP-Ca) was synthesized as a novel and efficient calcium supplement. Under the optimal conditions (pH = 6, temperature = 45 °C, mass ratio of mung bean peptides (MBP)/CaCl2 = 4:1, MBP concentration = 20 mg/mL, time = 60 min), the obtained MBP-Ca achieved a calcium chelating rate of 86.26%. MBP-Ca, different from MBP, was a new compound rich in glutamic acid (32.74%) and aspartic acid (15.10%). Calcium ions could bind to MBP mainly through carboxyl oxygen, carbonyl oxygen, and amino nitrogen atoms to form MBP-Ca. Calcium ions-induced intra- and intermolecular interactions caused the folding and aggregation of MBP. After the chelation reaction between calcium ions and MBP, the percentage of β-sheet in the secondary structure of MBP increased by 1.90%, the size of the peptides increased by 124.42 nm, and the dense and smooth surface structure of MBP was transformed into fragmented and coarse blocks. Under different temperatures, pH, and gastrointestinal simulated digestion conditions, MBP-Ca exhibited an increased calcium release rate compared with the conventional calcium supplement CaCl2. Overall, MBP-Ca showed promise as an alternative dietary calcium supplement with good calcium absorption and bioavailability.
Collapse
Affiliation(s)
- Wenliang Zhai
- College of Food and Pharmacy Engineering, Guiyang University, Guiyang 550005, China
| | - Dong Lin
- College of Food and Pharmacy Engineering, Guiyang University, Guiyang 550005, China
- Key Laboratory of Functional Food of Universities in Guizhou Province, Guiyang 550005, China
- Biopharmaceutical Engineering Research Center of Guizhou Province, Guiyang 550005, China
- Correspondence:
| | - Ruoshuang Mo
- College of Food and Pharmacy Engineering, Guiyang University, Guiyang 550005, China
| | - Xiaozhuan Zou
- College of Food and Pharmacy Engineering, Guiyang University, Guiyang 550005, China
| | - Yongqing Zhang
- College of Food and Pharmacy Engineering, Guiyang University, Guiyang 550005, China
| | - Liyun Zhang
- College of Food and Pharmacy Engineering, Guiyang University, Guiyang 550005, China
| | - Yonghui Ge
- College of Food and Pharmacy Engineering, Guiyang University, Guiyang 550005, China
- Biopharmaceutical Engineering Research Center of Guizhou Province, Guiyang 550005, China
| |
Collapse
|
5
|
Lao L, Jian H, Liao W, Zeng C, Liu G, Cao Y, Miao J. Casein Calcium-Binding Peptides: Preparation, Characterization, and Promotion of Calcium Uptake in Caco-2 Cell Monolayers. Process Biochem 2023. [DOI: 10.1016/j.procbio.2023.03.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
6
|
Liu W, Tang C, Cai Z, Jin Y, Ahn DU, Xi H. The effectiveness of polypeptides from phosvitin and eggshell membrane in enhancing the bioavailability of eggshell powder calcium and its accumulation in bones. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
7
|
Liu B, Sun L, Zhuang Y. Protective effects of tilapia (Oreochromis niloticus) skin gelatin hydrolysates on osteoporosis rats induced by retinoic acid. FOOD SCIENCE AND HUMAN WELLNESS 2022. [DOI: 10.1016/j.fshw.2022.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
8
|
An J, Zhang Y, Ying Z, Li H, Liu W, Wang J, Liu X. The Formation, Structural Characteristics, Absorption Pathways and Bioavailability of Calcium–Peptide Chelates. Foods 2022; 11:foods11182762. [PMID: 36140890 PMCID: PMC9497609 DOI: 10.3390/foods11182762] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/04/2022] [Accepted: 09/06/2022] [Indexed: 12/04/2022] Open
Abstract
Calcium is one of the most important mineral elements in the human body and is closely related to the maintenance of human health. To prevent calcium deficiency, various calcium supplements have been developed, but their application tends to be limited by low calcium content and highly irritating effects on the stomach, among other side effects. Recently, calcium–peptide chelates, which have excellent stability and are easily absorbed, have received attention as an alternative emerging calcium supplement. Calcium-binding peptides (CaBP) are usually obtained via the hydrolysis of animal or plant proteins, and calcium-binding capacity (CaBC) can be further improved through chromatographic purification techniques. In calcium ions, the phosphate group, carboxylic group and nitrogen atom in the peptide are the main binding sites, and the four modes of combination are the unidentate mode, bidentate mode, bridging mode and α mode. The stability and safety of calcium–peptide chelates are discussed in this paper, the intestinal absorption pathways of calcium elements and peptides are described, and the bioavailability of calcium–peptide chelates, both in vitro and in vivo, is also introduced. This review of the research status of calcium–peptide chelates aims to provide a reasonable theoretical basis for their application as calcium supplementation products.
Collapse
Affiliation(s)
- Jiulong An
- National Soybean Processing Industry Technology Innovation Center, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Yinxiao Zhang
- National Soybean Processing Industry Technology Innovation Center, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Zhiwei Ying
- National Soybean Processing Industry Technology Innovation Center, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - He Li
- National Soybean Processing Industry Technology Innovation Center, Beijing Technology and Business University (BTBU), Beijing 100048, China
- Correspondence: (H.L.); (X.L.); Tel.: +86-10-68984481 (H.L.)
| | - Wanlu Liu
- National Soybean Processing Industry Technology Innovation Center, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Junru Wang
- National Soybean Processing Industry Technology Innovation Center, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Xinqi Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
- Correspondence: (H.L.); (X.L.); Tel.: +86-10-68984481 (H.L.)
| |
Collapse
|
9
|
Tian Q, Fan Y, Hao L, Wang J, Xia C, Wang J, Hou H. A comprehensive review of calcium and ferrous ions chelating peptides: Preparation, structure and transport pathways. Crit Rev Food Sci Nutr 2021:1-13. [PMID: 34761991 DOI: 10.1080/10408398.2021.2001786] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Calcium and iron play crucial roles in human health, deficiencies of which have globally generated public health risks. The poor solubility, low bioavailability and gastrointestinal irritation of existing commercial mineral supplements limit their further application. As an emerging type of mineral supplement, mineral chelating peptides have drawn plenty of attention due to their advantages in stability, absorptivity and safety. A majority of calcium and ferrous ions chelating peptides have been isolated from food processing by-products. Enzymatic hydrolysis combined with affinity chromatography, gel filtration and other efficient separation techniques is the predominant method to obtain peptides with high calcium and ferrous affinity. Peptides with small molecular weight are more likely to chelate metals, and carboxyl, amino groups and nitrogen, oxygen, sulfur atoms in the side chain, which can provide lone-pair electrons to combine with metallic ions. Unidentate, bidentate, tridentate, bridging and α mode are regarded as common chelating modes. Moreover, the stability of peptide-mineral complexes in the gastrointestinal tract and possible transport pathways were summarized. This review is to present an overview of the latest research progress, existing problems and research prospects in the field of peptide-mineral complexes and to provide a more comprehensive theoretical basis for their exploitation in food industry.
Collapse
Affiliation(s)
- Qiaoji Tian
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Yan Fan
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Li Hao
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Jie Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Chensi Xia
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Jingfeng Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Hu Hou
- College of Food Science and Engineering, Ocean University of China, Qingdao, China.,Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
10
|
Yamada S, Yamamoto K, Nakazono A, Matsuura T, Yoshimura A. Functional roles of fish collagen peptides on bone regeneration. Dent Mater J 2021; 40:1295-1302. [PMID: 34334505 DOI: 10.4012/dmj.2020-446] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Fish collagen peptides (FCP) derived from the skin, bones and scales are commercially used as a functional food or dietary supplement for hypertension and diabetes. However, there is limited evidence on the effects of FCP on the osteoblast function in contrast to evidence of the effects on wound healing, diabetes and bone regeneration, which have been obtained from animal studies. In this narrative review, we expound on the availability of FCP by basic research using osteoblasts. Low-concentration FCP upregulates the expression of osteoblast proliferation, differentiation and collagen modifying enzyme-related genes. Furthermore, it could accelerate matrix mineralization. FCP may have potential utility as a biomaterial to improve collagen quality and promote mineralization through the mitogen-activated protein kinase and Smad cascades. However, there are few clinical studies on bone regeneration in human subjects. It is desirable to be applied clinically through clinical study as soon as possible, based on the results from basic research.
Collapse
Affiliation(s)
- Shizuka Yamada
- Department of Periodontology and Endodontology, Nagasaki University Graduate School of Biomedical Sciences
| | - Kohei Yamamoto
- Department of Periodontology and Endodontology, Nagasaki University Graduate School of Biomedical Sciences
| | - Ayako Nakazono
- Department of Periodontology and Endodontology, Nagasaki University Graduate School of Biomedical Sciences
| | - Takashi Matsuura
- Department of Periodontology and Endodontology, Nagasaki University Graduate School of Biomedical Sciences
| | - Atsutoshi Yoshimura
- Department of Periodontology and Endodontology, Nagasaki University Graduate School of Biomedical Sciences
| |
Collapse
|
11
|
Zhang H, Zhao L, Shen Q, Qi L, Jiang S, Guo Y, Zhang C, Richel A. Preparation of cattle bone collagen peptides-calcium chelate and its structural characterization and stability. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111264] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
12
|
Chen Y, Chen J, Chen J, Yu H, Zheng Y, Zhao J, Zhu J. Recent advances in seafood bioactive peptides and their potential for managing osteoporosis. Crit Rev Food Sci Nutr 2020; 62:1187-1203. [PMID: 33094645 DOI: 10.1080/10408398.2020.1836606] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Marine biodiversity provides a range of diverse biological resources, including seafoods that are rich in protein and a well-balanced amino acid composition. Previous studies have shown that peptides can improve bone formation and/or inhibit bone resorption, suggesting the potential for seafood bioactive peptides (SBPs) in development of food and pharmaceuticals for management of osteoporosis. In this review, we provided an up-to-date overview of the anti-osteoporosis activity of SBPs and describe their underlying molecular mechanisms. We focus on SBPs' development, broadening the scope and depth of research, as well as strengthening in vivo and clinical research. In vitro cell cultures and in vivo animal osteoporosis models have demonstrated the potential for seafood-derived SBPs, including fish, mollusks, crustaceans, seaweed and microalgae, in preventing osteoporosis. These peptides may act by activating the signaling pathways, such as BMP/Smads, MAPK, OPG/RANKL/RANK, and NF-κB, which are associated with modulation bone health.
Collapse
Affiliation(s)
- Yixuan Chen
- College of Biosystems Engineering & Food Science, Zhejiang University, Hangzhou, China
| | - Jianchu Chen
- College of Biosystems Engineering & Food Science, Zhejiang University, Hangzhou, China.,Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou, China
| | - Juan Chen
- College of Biosystems Engineering & Food Science, Zhejiang University, Hangzhou, China
| | - Huilin Yu
- College of Biosystems Engineering & Food Science, Zhejiang University, Hangzhou, China
| | - Yangfan Zheng
- College of Biosystems Engineering & Food Science, Zhejiang University, Hangzhou, China
| | - Jiawen Zhao
- College of Biosystems Engineering & Food Science, Zhejiang University, Hangzhou, China
| | - Jiajin Zhu
- College of Biosystems Engineering & Food Science, Zhejiang University, Hangzhou, China.,Ningbo Research Institute, Zhejiang University, Ningbo, China
| |
Collapse
|
13
|
Fernandes IDAA, Maciel GM, Oliveira ALMS, Miorim AJF, Fontana JD, Ribeiro VR, Haminiuk CWI. Hybrid bacterial cellulose‐collagen membranes production in culture media enriched with antioxidant compounds from plant extracts. POLYM ENG SCI 2020. [DOI: 10.1002/pen.25514] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
| | - Giselle Maria Maciel
- Laboratório de Biotecnologia Universidade Tecnológica Federal do Paraná (UTFPR) Curitiba Brazil
| | | | - Avany Judith Ferraro Miorim
- Departamento Acadêmico de Química e Biologia (DAQBi) Universidade Tecnológica Federal do Paraná Curitiba Brazil
| | | | - Valéria Rampazzo Ribeiro
- Programa de Pós‐Graduação em Engenharia de Alimentos (PPGEAL) Universidade Federal do Paraná (UFPR) Curitiba Brazil
| | | |
Collapse
|
14
|
Wang J, Liu J, Guo Y. Cell Growth Stimulation, Cell Cycle Alternation, and Anti-Apoptosis Effects of Bovine Bone Collagen Hydrolysates Derived Peptides on MC3T3-E1 Cells Ex Vivo. Molecules 2020; 25:E2305. [PMID: 32422931 PMCID: PMC7287833 DOI: 10.3390/molecules25102305] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/27/2020] [Accepted: 05/12/2020] [Indexed: 01/30/2023] Open
Abstract
Bovine bone collagen hydrolysates promote bone formation through regulating bone growth. However, the peptide sequences within these isolates have not been characterized. In this study, twenty-nine peptides from bovine bone collagen hydrolysates were purified and identified using nano-HPLC-MS-MS and Peak Studio analysis. HHGDQGAPGAVGPAGPRGPAGPSGPAGKDGR (Deamidation) and GPAGANGDRGEAGPAGPAGPAGPR (Deamidation) enhanced cell viability, inhibited apoptosis, and significantly altered the cell cycle of MC3T3-E1 osteoblast cells. These peptides were selected to perform molecular docking analysis to examine the mechanism underlying these bioactivities. Molecular docking analysis showed that these two peptides formed hydrophobic interactions and hydrogen bonds with epidermal growth factor receptor (EGFR) to activate the EGFR-signaling pathway, which may explain their bioactivity. These findings indicate that these and other similar peptides might be candidates for the treatment of osteoporosis.
Collapse
Affiliation(s)
- Jianing Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China; (J.W.); (J.L.)
- School of Chemical Sciences, University of Chinese Academy of Sciences, Yuquan Road 19A, Beijing 100049, China
| | - Junli Liu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China; (J.W.); (J.L.)
| | - Yanchuan Guo
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China; (J.W.); (J.L.)
- School of Chemical Sciences, University of Chinese Academy of Sciences, Yuquan Road 19A, Beijing 100049, China
| |
Collapse
|
15
|
Guo D, He H, Hou T. Purification and characterization of positive allosteric regulatory peptides of calcium sensing receptor (CaSR) from desalted duck egg white. Food Chem 2020; 325:126919. [PMID: 32387992 DOI: 10.1016/j.foodchem.2020.126919] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 04/21/2020] [Accepted: 04/25/2020] [Indexed: 02/07/2023]
Abstract
HPLC-ESI-MS/MS, molecular docking simulation and in situ single-pass intestinal perfusion (SPIP) study were used to identify, select, and confirm the binding affinities between peptides identified from desalted duck egg white peptides (DPs) and calcium sensing receptor (CaSR), respectively. F3 fraction from DPs possessed superior calcium binding activity (P < 0.05), and 16 peptides enriched aromatic amino acids and other 33 peptides were identified. FAE, FNE, INSW, FDPE and NFE presented well binding affinities with CaSR in molecular docking. Additionally, SPIP results showed that NFE and INSW significantly reduced the increased PTH levels by 45.8% and 48.8%, respectively (P < 0.05), and increased calcium percent absorption, calcium absorption rate constant (Ka) and calcium effective permeability (Peff) (P < 0.05), as well as up-regulated mRNA levels of CaSR (P < 0.05). Moreover, NFE and INSW could interact with the VFT domain of CaSR, which exhibited the potential activities in regulation of CaSR.
Collapse
Affiliation(s)
- Danjun Guo
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Hui He
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Tao Hou
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
16
|
Guo D, He H, Zhao M, Zhang G, Hou T. Desalted duck egg white peptides promoted osteogenesis via wnt/β-catenin signal pathway. J Food Sci 2020; 85:834-842. [PMID: 32078745 DOI: 10.1111/1750-3841.15067] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 01/07/2020] [Accepted: 01/17/2020] [Indexed: 12/18/2022]
Abstract
Osteoporosis is a degenerative disease that threatens bone health of the elderly (especially postmenopausal women). Since osteoporosis is important to prevent, the aim of this study was to investigate the regulation of desalted duck egg white peptides (DPs) on osteoporosis. In this study, the effects of DPs on bone formation were evaluated using MC3T3-E1 cells and ovariectomized (OVX) rats. DPs significantly enhanced the preosteoblasts proliferation, differentiation, and matrix mineralization via the upregulation of wnt3a expression, low-density lipoprotein receptor-related protein-5 (LRP-5), β-catenin, runt-related transcription factor 2 (Runx2), and osteoprotegerin (OPG) (P < 0.05). The intracellular calcium concentration was significantly elevated by DPs (P < 0.05), which is attributed to calcium influx and L-type calcium channels. Additionally, OVX rat model experiment indicated that DPs (600 mg/kg bw) had a superior effect against bone loss induced by estrogen deficiency, as it significantly declined bone turnover markers, and significantly increased biomechanical parameters (P < 0.05). Mineralized bone surfaces and bone microstructure were also obviously improved by DPs treatment. Immunohistochemical analysis showed that receptor activator of nuclear factor κ B (RANK) expression of tibia in DPs group was significantly reduced compared with the model group (P < 0.05). Our results demonstrated that DPs could enhance preosteoblasts differentiation and antiosteoporosis via wnt/β-catenin signal pathway and several key osteogenic transcription factors such as Runx2 and OPG. PRACTICAL APPLICATION: High-value utilization of salted duck egg white, a byproduct of food industry, is worthy of in-depth study. Desalted duck egg white peptides (DPs) were proved to promote bone formation, which suggests the potentials of DPs as cofactors in osteoporosis prevention.
Collapse
Affiliation(s)
- Danjun Guo
- College of Food Science and Technology, Huazhong Agricultural Univ., Wuhan, 430070, China.,Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural Univ.), Ministry of Education, Wuhan, 43000, China
| | - Hui He
- College of Food Science and Technology, Huazhong Agricultural Univ., Wuhan, 430070, China.,Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural Univ.), Ministry of Education, Wuhan, 43000, China
| | - Mengge Zhao
- College of Food Science and Technology, Huazhong Agricultural Univ., Wuhan, 430070, China.,Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural Univ.), Ministry of Education, Wuhan, 43000, China
| | - Guoqing Zhang
- College of Food Science and Technology, Huazhong Agricultural Univ., Wuhan, 430070, China.,Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural Univ.), Ministry of Education, Wuhan, 43000, China
| | - Tao Hou
- College of Food Science and Technology, Huazhong Agricultural Univ., Wuhan, 430070, China.,Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural Univ.), Ministry of Education, Wuhan, 43000, China
| |
Collapse
|
17
|
Liao W, Chen H, Jin W, Yang Z, Cao Y, Miao J. Three Newly Isolated Calcium-Chelating Peptides from Tilapia Bone Collagen Hydrolysate Enhance Calcium Absorption Activity in Intestinal Caco-2 Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:2091-2098. [PMID: 31927882 DOI: 10.1021/acs.jafc.9b07602] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In this study, we used reversed-phase high performance liquid chromatography (LC) to isolate three novel peptides with calcium-chelating capacity from tilapia bone collagen hydrolysate. Using LC-tandem mass spectrometry, we determined the amino acid sequences to be GPAGPHGPVG, FDHIVY, and YQEPVIAPKL. We then synthesized the three peptides and verified their calcium-chelating activity. Results showed that the calcium-chelating activity of GPAGPHGPVG, FDHIVY, and YQEPVIAPKL reached 18.80 ± 0.49, 35.73 ± 0.74, and 28.4 ± 0.94 mg/g, respectively. We next investigated how each peptide enhanced intestinal calcium absorption using Caco-2 cell monolayers. Compared with the control group, GPAGPHGPVG, FDHIVY, and YQEPVIAPKL potently enhanced calcium transport within 30 min by 89 ± 9, 202 ± 12, and 130 ± 7%, respectively. Results suggest that these peptides isolated from tilapia bone hydrolysate can be used as dietary supplements to increase calcium absorption.
Collapse
Affiliation(s)
- Wanwen Liao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science , South China Agricultural University , Guangzhou 510642 , China
- Jiangsu Key Laboratory of Marine Bioresources and Environment , Jiangsu Ocean University , Lianyungang 222005 China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health , Beijing Technology & Business University (BTBU) , Beijing 102488 , China
| | - Hui Chen
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science , South China Agricultural University , Guangzhou 510642 , China
| | - Wengang Jin
- Bio-resources Key Laboratory of Shaanxi Province, School of Biological Science and Engineering , Shaanxi University of Technology , Hanzhong 723001 , People's Republic of China
| | - Zhennai Yang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health , Beijing Technology & Business University (BTBU) , Beijing 102488 , China
| | - Yong Cao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science , South China Agricultural University , Guangzhou 510642 , China
| | - Jianyin Miao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science , South China Agricultural University , Guangzhou 510642 , China
- Jiangsu Key Laboratory of Marine Bioresources and Environment , Jiangsu Ocean University , Lianyungang 222005 China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health , Beijing Technology & Business University (BTBU) , Beijing 102488 , China
| |
Collapse
|
18
|
Walters ME, Esfandi R, Tsopmo A. Potential of Food Hydrolyzed Proteins and Peptides to Chelate Iron or Calcium and Enhance their Absorption. Foods 2018; 7:E172. [PMID: 30347663 PMCID: PMC6210708 DOI: 10.3390/foods7100172] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 10/17/2018] [Accepted: 10/18/2018] [Indexed: 01/01/2023] Open
Abstract
Iron and calcium are two essential micronutrients that have strong effects on nutrition and human health because of their involvement in several biological and redox processes. Iron is responsible for electron and oxygen transport, cell respiration, and gene expression, whereas calcium is responsible for intracellular metabolism, muscle contraction, cardiac function, and cell proliferation. The bioavailability of these nutrients in the body is dependent on enhancers and inhibitors, some of which are found in consumed foods. Hydrolyzed proteins and peptides from food proteins can bind these essential minerals in the body and facilitate their absorption and bioavailability. The binding is also important because excess free iron will increase oxidative stress and the risks of developing chronic diseases. This paper provides an overview of the function of calcium and iron, and strategies to enhance their absorption with an emphasis on hydrolyzed proteins and peptides from foods. It also discusses the relationship between the structure of peptides and their potential to act as transition metal ligands.
Collapse
Affiliation(s)
- Mallory E Walters
- Food Science and Nutrition Program, Department of Chemistry, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada.
| | - Ramak Esfandi
- Food Science and Nutrition Program, Department of Chemistry, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada.
| | - Apollinaire Tsopmo
- Food Science and Nutrition Program, Department of Chemistry, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada.
- Institute of Biochemistry, Carleton Unive6rsity, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada.
| |
Collapse
|
19
|
Pretreatment with formic acid enhances the production of small peptides from highly cross-linked collagen of spent hens. Food Chem 2018; 258:174-180. [DOI: 10.1016/j.foodchem.2018.03.036] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 03/02/2018] [Accepted: 03/08/2018] [Indexed: 11/22/2022]
|
20
|
Yang H, Wang Y, Yu W, Shi L, Wang H, Su R, Chen C, Liu S. Screening and investigation of triplex DNA binders from Stephania tetrandra S. Moore by a combination of peak area-fading ultra high-performance liquid chromatography with orbitrap mass spectrometry and optical spectroscopies. J Sep Sci 2018; 41:2878-2885. [PMID: 29763521 DOI: 10.1002/jssc.201800190] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 04/22/2018] [Accepted: 05/04/2018] [Indexed: 01/24/2023]
Abstract
The identification and screening of triplex DNA binders are important because these compounds, in many cases, are potential anticancer agents as well as promising drug candidates. Therefore, the ability to screen for these compounds in a high-throughput mode could dramatically improve the drug screening process. A method involving a combination of 96-well plate format and peak area-fading ultra high-performance liquid chromatography coupled with Orbitrap mass spectrometry was employed for screening bioactive compounds binding to the triplex DNA from the extracts of Stephania tetrandra S. Moore. Two compounds were screened out and identified as fangchinoline and tetrandrine based on the comparison of retention time and tandem mass spectrometry data with those of standards. The binding mechanisms of fangchinoline and tetrandrine at the molecular level were explored using tandem mass spectrometry, fluorescence spectroscopy, ultraviolet-visible spectroscopy, and circular dichroism. Collision-induced dissociation experiments showed that the complexes with fangchinoline and tetrandrine were dissociated by ligand elimination. According to these measurements, an intercalating binding is the most appropriate binding mode of these two alkaloids to the triplex DNA. The current work provides not only deep insight into alkaloid-triplex DNA complexes but also useful guidelines for the design of efficient anticancer agents.
Collapse
Affiliation(s)
- Hongmei Yang
- Changchun University of Chinese Medicine, Jilin Ginseng Academy, Changchun, P. R. China
| | - Yihan Wang
- Changchun University of Chinese Medicine, Jilin Ginseng Academy, Changchun, P. R. China
| | - Wenjing Yu
- Changchun University of Chinese Medicine, Jilin Ginseng Academy, Changchun, P. R. China
| | - Lei Shi
- China National Nuclear Corporation, Beijing, P. R. China
| | - Hongfeng Wang
- Changchun University of Chinese Medicine, Jilin Ginseng Academy, Changchun, P. R. China
| | - Rui Su
- Changchun University of Chinese Medicine, Jilin Ginseng Academy, Changchun, P. R. China
| | - Changbao Chen
- Changchun University of Chinese Medicine, Jilin Ginseng Academy, Changchun, P. R. China
| | - Shuying Liu
- Changchun University of Chinese Medicine, Jilin Ginseng Academy, Changchun, P. R. China
| |
Collapse
|