1
|
Stojšin D, Vertuan H, Meng C, Effertz R, Jose M, Mahadeo D, Crivellari A, Hu C, Berger G. Plant characterization of insect-protected soybean. Transgenic Res 2024; 33:243-254. [PMID: 38902591 PMCID: PMC11319360 DOI: 10.1007/s11248-024-00391-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 06/14/2024] [Indexed: 06/22/2024]
Abstract
Insect-protected soybean (SIP) that produces the Cry1A.105 and Cry2Ab2 insecticidal crystal proteins has been developed to provide protection from feeding damage caused by targeted lepidopteran insect pests. Typically, as part of environmental risk assessment (ERA), plant characterization is conducted, and the data submitted to regulatory agencies prior to commercialization of genetically modified (GM) crops. The objectives of this research were to: (a) compare soybean with and without the SIP trait in plant characterization field trials designed to fulfill requirements for submissions to global regulatory agencies and address China-specific considerations and (b) compare risk assessment conclusions across regions and the methodologies used in the field trials. The soybean with and without the SIP trait in temperate, tropical, and subtropical germplasm were planted in replicated multi-location trials in the USA (in 2012 and 2018) and Brazil (in 2013/2014 and 2017/2018). Agronomic, phenotypic, plant competitiveness, and survival characteristics were assessed for soybean entries with and without the SIP trait. Regardless of genetic background, growing region, season, or testing methodology, the risk assessment conclusions were the same: the evaluated insect-protected soybean did not differ from conventional soybean in evaluated agronomic, phenotypic, competitiveness, and survival characteristics indicating no change in plant pest/weed potential. These results reinforce the concept of data transportability across global regions, different seasons, germplasm, and methodologies that should be considered when assessing environmental risks of GM crops.
Collapse
Affiliation(s)
| | | | - Chen Meng
- Bayer Crop Science, St. Louis, MO, USA
| | | | | | | | | | | | | |
Collapse
|
2
|
Wang X, Niu S, Yang J, Dong Y, Liu X, Jiao Y, Wang Z. Effects of stacking breeding on the methylome and transcriptome profile of transgenic rice with glyphosate tolerance. PLANTA 2023; 258:34. [PMID: 37378818 DOI: 10.1007/s00425-023-04181-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023]
Abstract
MAIN CONCLUSION Transcriptomics and methylomics were used to identify the potential effects resulting from GM rice breeding stacks, which provided scientific data for the safety assessment strategy of stacked GM crops in China. Gene interaction is one of the main concerns for stacked genetically modified crop safety. With the development of technology, the combination of omics and bioinformatics has become a useful tool to evaluate the unintended effects of genetically modified crops. In this study, transcriptomics and methylomics were used as molecular profiling techniques to identify the potential effects of stack through breeding. Stacked transgenic rice En-12 × Ec-26 was used as material, which was obtained through hybridization using parents En-12 and Ec-26, in which the foreign protein can form functional EPSPS protein by intein-mediated trans-splitting. Differentially methylated region (DMR) analysis showed that the effect of stacking breeding on methylation was less than that of genetic transformation at the methylome level. Differentially expressed gene (DEG) analysis showed that the DEGs between En-12 × Ec-26 and its parents were far fewer than those between transgenic rice and Zhonghua 11 (ZH11), and no unintended new genes were found in En-12 × Ec-26. Statistical analysis of gene expression and methylation involved in shikimic acid metabolism showed that there was no difference in gene expression, although there were 16 and 10 DMR genes between En-12 × Ec-26 and its parents (En and Ec) in methylation, respectively. The results indicated that the effect of stacking breeding on gene expression and DNA methylation was less than the effect of genetic transformation. This study provides scientific data supporting safety assessments of stacked GM crops in China.
Collapse
Affiliation(s)
- Xujing Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Key Laboratory on Molecular Safety Assessment of Agri-GMO, MARA, Beijing, 100081, China
| | - Shance Niu
- College of Horticulture, Hebei Agricultural University, Baoding, 071001, China
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, 071001, China
| | - Jiangtao Yang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Key Laboratory on Molecular Safety Assessment of Agri-GMO, MARA, Beijing, 100081, China
| | - Yufeng Dong
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Cropedit Biotechnology Co., Ltd, Beijing, 102206, China
| | - Xiaojing Liu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Key Laboratory on Molecular Safety Assessment of Agri-GMO, MARA, Beijing, 100081, China
| | - Yue Jiao
- Development Center for Science and Technology, MARA, Beijing, 100122, China.
| | - Zhixing Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
- Key Laboratory on Molecular Safety Assessment of Agri-GMO, MARA, Beijing, 100081, China.
| |
Collapse
|
3
|
Zhao S, Yang X, Liu D, Sun X, Li G, Wu K. Performance of the domestic Bt corn event expressing pyramided Cry1Ab and Vip3Aa19 against the invasive Spodoptera frugiperda (J. E. Smith) in China. PEST MANAGEMENT SCIENCE 2023; 79:1018-1029. [PMID: 36326028 DOI: 10.1002/ps.7273] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 10/24/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND The invasive fall armyworm, Spodoptera frugiperda (J.E. Smith), has caused serious corn yield losses and increased the frequency of insecticide spraying on corn in Africa and Asia. Drawing lessons from the use of Bt corn to manage fall armyworm in the Americas, China released a certificate for the genetically modified corn event DBN3601T pyramidally expressing Cry1Ab and Vip3Aa19 for industrialization in 2021. Performance of the DBN3601T event against invasive fall armyworm in China was evaluated by plant tissue-based bioassays and field trials during 2019-2021. RESULTS In the bioassays, tissues and organs of DBN3601T corn differed significantly in lethality to fall armyworm neonates in the order: leaf > husk > tassel and kernel > silk. In field trials, compared with non-Bt corn, DBN3601T corn greatly suppressed fall armyworm populations and damage; larval density, damage incidence, and leaf damage scores for DBN3601T corn were significantly lower than for non-Bt corn at different vegetative stages, and efficacy against larval populations during the 3 years ranged from 95.24% to 98.30%. CONCLUSION A laboratory bioassay and 3-year field trials confirmed that DBN3601T corn greatly suppressed fall armyworm populations and has high potential as a control of this invasive pest, making it a key tactic for integrated management of fall armyworm in China. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Shengyuan Zhao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Guangdong laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Xianming Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Dazhong Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaoxu Sun
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Guoping Li
- Key Laboratory of Integrated Pest Management on Crops in Southern Part of Northern China, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Kongming Wu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
4
|
Soares D, Vertuan H, Bacalhau F, José M, Crivellari A, Belchior GG, Berger GU. Genetically modified crops do not present variations in pollen viability and morphology when compared to their conventional counterparts. PLoS One 2023; 18:e0285079. [PMID: 37126533 PMCID: PMC10150986 DOI: 10.1371/journal.pone.0285079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 04/16/2023] [Indexed: 05/02/2023] Open
Abstract
Modern agricultural biotechnologies, such as those derived from genetic modification, are solutions that can enable an increase in food production, lead to more efficient use of natural resources, and promote environmental impact reduction. Crops with altered genetic materials have been extensively subjected to safety assessments to fulfill regulatory requirements prior to commercialization. The Brazilian National Technical Biosafety Commission (CTNBio) provides provisions for commercial release of transgenic crops in Brazil, including requiring information on pollen dispersion ability as part of environmental risk assessment, which includes pollen viability and morphology studies. Here we present the pollen viability and morphology of non-transgenic conventional materials, single-event genetically modified (GM) products, and stacked GM products from soybean, maize and cotton cultivated in Brazil. Microscopical observation of stained pollen grain was conducted to determine the percentage of pollen viability as well as pollen morphology, which is assessed by measuring pollen grain diameter. The pollen viability and diameter of GM soybean, maize and cotton, evaluated across a number of GM events in each crop, were similar to the conventional non-GM counterparts. Pollen characterization data contributed to the detailed phenotypic description of GM crops, supporting the conclusion that the studied events were not fundamentally different from the conventional control.
Collapse
Affiliation(s)
- Daniel Soares
- Regulatory Science, Bayer Crop Science, São Paulo, SP, Brazil
| | | | | | - Marcia José
- Regulatory Science, Bayer Crop Science, São Paulo, SP, Brazil
| | | | | | | |
Collapse
|
5
|
Jose M, Vertuan H, Soares D, Sordi D, Bellini LF, Kotsubo R, Berger GU. Comparing agronomic and phenotypic plant characteristics between single and stacked events in soybean, maize, and cotton. PLoS One 2020; 15:e0231733. [PMID: 32339186 PMCID: PMC7185713 DOI: 10.1371/journal.pone.0231733] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 03/30/2020] [Indexed: 11/28/2022] Open
Abstract
Genetically modified (GM) crops are one of the most valuable tools of modern biotechnology that secure yield potential needed to sustain the global agricultural demands for food, feed, fiber, and energy. Crossing single GM events through conventional breeding has proven to be an effective way to pyramid GM traits from individual events and increase yield protection in the resulting combined products. Even though years of research and commercialization of GM crops show that these organisms are safe and raise no additional biosafety concerns, some regulatory agencies still require risk assessments for these products. We sought out to investigate whether stacking single GM events would have a significant impact on agronomic and phenotypic plant characteristics in soybean, maize, and cotton. Several replicated field trials designed as randomized complete blocks were conducted by Monsanto Regulatory Department from 2008 to 2017 in field sites representative of cultivation regions in Brazil. In total, twenty-one single and stacked GM materials currently approved for in-country commercial use were grown with the corresponding conventional counterparts and commercially available GM/non-GM references. The generated data were presented to the Brazilian regulatory agency CTNBio (National Biosafety Technical Committee) over the years to request regulatory approvals for the single and stacked products, in compliance with the existing normatives. Data was submitted to analysis of variance and differences between GM and control materials were assessed using t-test with a 5% significance level. Data indicated the predominance of similarities and neglectable differences between single and stacked GM crops when compared to conventional counterpart. Our results support the conclusion that combining GM events through conventional breeding does not alter agronomic or phenotypic plant characteristics in these stacked crops. This is compatible with a growing weight of evidence that indicates this long-adopted strategy does not increase the risks associated with GM materials. It also provides evidence to support the review and modernization of the existing regulatory normatives to no longer require additional risk assessments of GM stacks comprised of previously approved single events for biotechnology-derived crops. The data analyzed confirms that the risk assessment of the individual events is sufficient to demonstrate the safety of the stacked products, which deliver significant benefits to growers and to the environment.
Collapse
Affiliation(s)
- Marcia Jose
- Regulatory Science, Bayer Crop Science., São Paulo, SP, Brazil
| | | | - Daniel Soares
- Regulatory Science, Bayer Crop Science., São Paulo, SP, Brazil
| | - Daniel Sordi
- Regulatory Science, Bayer Crop Science., São Paulo, SP, Brazil
| | - Luiz F. Bellini
- Regulatory Science, Bayer Crop Science., São Paulo, SP, Brazil
| | - Rafael Kotsubo
- Regulatory Science, Bayer Crop Science., São Paulo, SP, Brazil
| | | |
Collapse
|
6
|
Fast BJ, Shan G, Gampala SS, Herman RA. Transgene expression in sprayed and non-sprayed herbicide-tolerant genetically engineered crops is equivalent. Regul Toxicol Pharmacol 2020; 111:104572. [DOI: 10.1016/j.yrtph.2019.104572] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 12/13/2019] [Accepted: 12/25/2019] [Indexed: 11/16/2022]
|
7
|
McDonald J, Burns A, Raybould A. Advancing ecological risk assessment on genetically engineered breeding stacks with combined insect-resistance traits. Transgenic Res 2020; 29:135-148. [PMID: 31953798 PMCID: PMC7000536 DOI: 10.1007/s11248-019-00185-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 12/19/2019] [Indexed: 11/01/2022]
Abstract
To inform the ecological risk assessment (ERA) of a transgenic crop with multiple insecticidal traits combined by conventional breeding (breeding stack), a comparative field study is customarily conducted to compare transgenic protein concentrations in a breeding stack to those in corresponding component single events used in the breeding process. This study tests the hypothesis that transgenic protein expression will not significantly increase due to stacking, such that existing margins of exposure erode to unacceptable levels. Corroboration of this hypothesis allows for the use of existing non-target organism (NTO) effects tests results, where doses were based on the estimated environmental concentrations determined for a component single event. Results from over 20 studies comparing expression profiles of insecticidal proteins produced by commercial events in various combinations of conventionally-bred stacks were examined to evaluate applying previously determined no-observed-effect concentrations (NOECs) to stack ERAs. This paper presents a large number of tests corroborating the hypothesis of no significant increase in insecticidal protein expression due to combination by conventional breeding, and much of the variation in protein expression is likely attributed to genetic and environmental factors. All transgenic protein concentrations were well within conservative margins between exposure and corresponding NOEC. This work supports the conclusion that protein expression data generated for single events and the conservative manner for setting NTO effects test concentrations allows for the transportability of existing NOECs to the ERA of conventionally-bred stacks, and that future tests of the stated hypothesis are no longer critically informative for ERA on breeding stacks.
Collapse
Affiliation(s)
- Justin McDonald
- Product Safety, Syngenta Crop Protection, LLC, Research Triangle Park, NC, USA.
| | - Andrea Burns
- Product Safety, Syngenta Crop Protection, LLC, Research Triangle Park, NC, USA
| | - Alan Raybould
- Science, Technology and Innovation Studies and Global Academy of Agriculture and Food Security, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
8
|
De Cerqueira DT, Fast BJ, Silveira AC, Herman RA. Transgene-product expression levels in genetically engineered breeding stacks are equivalent to those of the single events. GM CROPS & FOOD 2019; 10:35-43. [PMID: 31010358 PMCID: PMC6592641 DOI: 10.1080/21645698.2019.1604038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 04/04/2019] [Indexed: 11/19/2022]
Abstract
Transgene product expression levels are measured in genetically engineered (GE) crops containing single transformation events and the measured expression levels are then utilized in food, feed, and environmental safety assessments as part of the requirements for de-regulation of the event. Many countries also require measurement of expression levels and safety assessments for GE breeding stacks, even though the breeding stacks are composed of single events that have been previously assessed. Transgene product expression levels were measured in tissues of maize, soybean, and cotton breeding stacks and each of their component single events. Expression levels in the breeding stacks were plotted against expression levels in the single events to quantify the ability of the single events to predict transgene product expression levels in the breeding stacks. These results indicate that transgene product expression levels in single events are a reliable indicator of expression levels in breeding stacks. Based on these results it is concluded that safety assessments for breeding stacks can be conducted using transgene product expression levels from single events.
Collapse
Affiliation(s)
| | - Brandon J. Fast
- Agriculture Division of DowDuPont™, Corteva Agriscience™, Johnston, IA, USA
| | | | - Rod A. Herman
- Corteva Agriscience™, Agriculture Division of DowDuPont™, Indianapolis, IN, USA
| |
Collapse
|
9
|
Wu AJ, Chapman K, Sathischandra S, Massengill J, Araujo R, Soria M, Bugas M, Bishop Z, Haas C, Holliday B, Cisneros K, Lor J, Canez C, New S, Mackie S, Ghoshal D, Privalle L, Hunst P, Pallett K. GHB614 × T304-40 × GHB119 × COT102 Cotton: Protein Expression Analyses of Field-Grown Samples. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:275-281. [PMID: 30521338 DOI: 10.1021/acs.jafc.8b05395] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Food and feed safety assessment is not enhanced by performing protein expression analysis on stacked trait products. The expression levels of six proteins in cotton matrices from four single cotton events and three conventionally stacked trait cotton products are reported. Three proteins were for insect control; two proteins confer herbicide tolerance; and one protein was a transformation-selectable marker. The cotton matrices were produced at three U.S., five Brazil, and two Argentina field trials. Similar protein expression was observed for all six proteins in the stacked trait products and the single events. However, when two copies of the bar gene were present in the stacked trait products, the expression level of phosphinothricin acetyl transferase herbicide tolerance was additive. Conventional breeding of genetically engineered traits does not alter the level or pattern of expression of the newly introduced proteins, except when multiple copies of the same transgene are present.
Collapse
Affiliation(s)
- A-J Wu
- BASF Agricultural Solutions Seed U.S. LLC , 2 T.W. Alexander Drive , Research Triangle Park , North Carolina 27709 United States
| | - K Chapman
- American Agricultural Services, Incorporated , 404 East Chatham Street , Cary , North Carolina 27511 , United States
| | - S Sathischandra
- BASF Agricultural Solutions Seed U.S. LLC , 2 T.W. Alexander Drive , Research Triangle Park , North Carolina 27709 United States
| | - J Massengill
- BASF Agricultural Solutions Seed U.S. LLC , 2 T.W. Alexander Drive , Research Triangle Park , North Carolina 27709 United States
| | - R Araujo
- BASF Agricultural Solutions Seed U.S. LLC , 2 T.W. Alexander Drive , Research Triangle Park , North Carolina 27709 United States
| | - M Soria
- BASF Agricultural Solutions Seed U.S. LLC , 2 T.W. Alexander Drive , Research Triangle Park , North Carolina 27709 United States
| | - M Bugas
- BASF Agricultural Solutions Seed U.S. LLC , 2 T.W. Alexander Drive , Research Triangle Park , North Carolina 27709 United States
| | - Z Bishop
- BASF Agricultural Solutions Seed U.S. LLC , 2 T.W. Alexander Drive , Research Triangle Park , North Carolina 27709 United States
| | - C Haas
- BASF Agricultural Solutions Seed U.S. LLC , 2 T.W. Alexander Drive , Research Triangle Park , North Carolina 27709 United States
| | - B Holliday
- iAdvantage Software, Incorporated , 404 East Chatham Street , Cary , North Carolina 27511 , United States
| | - K Cisneros
- BASF Agricultural Solutions Seed U.S. LLC , 2 T.W. Alexander Drive , Research Triangle Park , North Carolina 27709 United States
| | - J Lor
- BASF Agricultural Solutions Seed U.S. LLC , 2 T.W. Alexander Drive , Research Triangle Park , North Carolina 27709 United States
| | - C Canez
- BASF Agricultural Solutions Seed U.S. LLC , 2 T.W. Alexander Drive , Research Triangle Park , North Carolina 27709 United States
| | - S New
- BASF Agricultural Solutions Seed U.S. LLC , 2 T.W. Alexander Drive , Research Triangle Park , North Carolina 27709 United States
| | - S Mackie
- BASF Agricultural Solutions Seed U.S. LLC , 2 T.W. Alexander Drive , Research Triangle Park , North Carolina 27709 United States
| | - D Ghoshal
- BASF Agricultural Solutions Seed U.S. LLC , 2 T.W. Alexander Drive , Research Triangle Park , North Carolina 27709 United States
| | - L Privalle
- BASF Agricultural Solutions Seed U.S. LLC , 2 T.W. Alexander Drive , Research Triangle Park , North Carolina 27709 United States
| | - P Hunst
- BASF Agricultural Solutions Seed U.S. LLC , 2 T.W. Alexander Drive , Research Triangle Park , North Carolina 27709 United States
| | - K Pallett
- Innovation Center , Bayer CropScience NV , Tech Lane Ghent Science Park 38 , B-9052 Gent , Belgium
| |
Collapse
|
10
|
Chinnadurai P, Stojšin D, Liu K, Frierdich GE, Glenn KC, Geng T, Schapaugh A, Huang K, Deffenbaugh AE, Liu ZL, Burzio LA. Variability of CP4 EPSPS expression in genetically engineered soybean (Glycine max L. Merrill). Transgenic Res 2018; 27:511-524. [PMID: 30173346 PMCID: PMC6267263 DOI: 10.1007/s11248-018-0092-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 08/24/2018] [Indexed: 11/26/2022]
Abstract
The expression of the CP4 EPSPS protein in genetically engineered (GE) soybean confers tolerance to the Roundup® family of agricultural herbicides. This study evaluated the variability of CP4 EPSPS expression using an enzyme-linked immunosorbent assay in soybean tissues collected across diverse germplasm and 74 different environments in Argentina, Brazil and the USA. Evaluated material included single and combined (stacked) trait products with other GE traits in entries with cp4 epsps gene at one or two loci. The highest level of CP4 EPSPS was observed in leaf tissues, intermediate in forage and seed, and lowest in root tissues. Varieties with two loci had approximately twice the level of CP4 EPSPS expression compared to one locus entries. Variable and non-directional level of CP4 EPSPS was observed with other factors like genetic background, trait stacking, growing region or season. The maximum and average CP4 EPSPS expression levels in seed provided large margins of exposure (MOE of approximately 4000 and 11,000, respectively), mitigating concerns over exposure to this protein in food and feed from soybean varieties tolerant to Roundup® herbicides.
Collapse
Affiliation(s)
| | - Duška Stojšin
- Bayer Crop Sciences, 700 Chesterfield Parkway West, St. Louis, MO, 63017, USA
| | - Kang Liu
- Bayer Crop Sciences, 700 Chesterfield Parkway West, St. Louis, MO, 63017, USA
| | - Gregory E Frierdich
- Bayer Crop Sciences, 700 Chesterfield Parkway West, St. Louis, MO, 63017, USA
| | - Kevin C Glenn
- Bayer Crop Sciences, 700 Chesterfield Parkway West, St. Louis, MO, 63017, USA
| | - Tao Geng
- Bayer Crop Sciences, 700 Chesterfield Parkway West, St. Louis, MO, 63017, USA
| | - Adam Schapaugh
- Bayer Crop Sciences, 700 Chesterfield Parkway West, St. Louis, MO, 63017, USA
| | - Keguo Huang
- Bayer Crop Sciences, 700 Chesterfield Parkway West, St. Louis, MO, 63017, USA
| | | | - Zi L Liu
- Bayer Crop Sciences, 700 Chesterfield Parkway West, St. Louis, MO, 63017, USA
| | - Luis A Burzio
- Bayer Crop Sciences, 700 Chesterfield Parkway West, St. Louis, MO, 63017, USA
| |
Collapse
|