1
|
Dunn PJ, Gilbertson LM. A mechanistic model for determining factors that influence inorganic nitrogen fate in corn cultivation. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2025. [PMID: 39782020 DOI: 10.1039/d4em00566j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Conventional practices for inorganic nitrogen fertilizer are highly inefficient leading to excess nitrogen in the environment. Excess environmental nitrogen induces ecological (e.g., hypoxia, eutrophication) and public health (e.g., nitrate contaminated drinking water) consequences, motivating adoption of management strategies to improve fertilizer use efficiency. Yet, how to limit the environmental impacts from inorganic nitrogen fertilizer while maintaining crop yields is a persistent challenge. The lack of empirical data on the fate and transport of nitrogen in an agriculture soil-crop system and how transport changes under varying conditions limits our ability to address this challenge. To this end, we developed a mechanistic model to assess how various parameters within a soil-crop system affect where nitrogen goes and inform how we can perturb the system to improve crop nitrogen content while reducing nitrogen emissions to the environment. The model evaluates nitrogen transport and distribution in the soil-corn plant system on a conventional Iowa corn farm. Simulations determine the amount of applied nitrogen fertilizer acquired by the crop root system, leached to groundwater, lost to tile drainage, and denitrified. Through scenario modeling, it was found that reducing application rates from 200 kg ha-1 to 160 kg ha-1 had limited impact on plant nitrogen content, while decreasing wasted nitrogen fertilizer by 25%. Delayed application until June significantly increased the f-NUE and denitrification while reducing the amount of fertilizer leached and exported through tile drainage. The value in a model like the one presented herein, is the ability to perturb the system through manipulation of variables representative of a specific scenario of interest to inform how one can improve crop-based nitrogen management.
Collapse
Affiliation(s)
- Patrick J Dunn
- Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Leanne M Gilbertson
- Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Civil and Environmental Engineering, Duke University, Durham, NC, USA
| |
Collapse
|
2
|
Hu R, Shi J, Tian C, Chen X, Zuo H. Nucleic Acid Aptamers for Pesticides, Toxins, and Biomarkers in Agriculture. Chempluschem 2022; 87:e202200230. [PMID: 36410759 DOI: 10.1002/cplu.202200230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 10/17/2022] [Indexed: 01/31/2023]
Abstract
Nucleic acid aptamers are short single-stranded DNA/RNA (ssDNA/RNA) oligonucleotides that can selectively bind to the targets. They are widely used in medicine, biosensing, and diagnostic assay. They have also been identified and extensively used for various targets in agriculture. In this review we summarize the progress of nucleic acid aptamers on pesticides (herbicides, insecticides, and fungicides), toxins, specific biomarkers of crops, and plant growth regulators in agricultural field in recent years. The basic process of aptamer selection, the already identified DNA/RNA aptamers and the aptasensors are discussed. We also discuss the future perspectives and the challenges for aptamer development in agriculture.
Collapse
Affiliation(s)
- Rongping Hu
- Sichuan Institute of Edible Fungi, Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan, 610066, P. R. China
| | - Jun Shi
- Mianyang Academy of Agricultural Sciences, Crop Characteristic Resources Creation, and Utilization Key Laboratory of Sichuan Province, Mianyang, Sichuan, 621023 (P. R., China
| | - Cheng Tian
- Key Laboratory of Luminescence Analysis, and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, P. R. China
| | - Xiaojuan Chen
- Sichuan Institute of Edible Fungi, Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan, 610066, P. R. China
| | - Hua Zuo
- Key Laboratory of Luminescence Analysis, and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, P. R. China
| |
Collapse
|
3
|
Mastronardi E, Cyr K, Monreal CM, DeRosa MC. Selection of DNA Aptamers for Root Exudate l-Serine Using Multiple Selection Strategies. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:4294-4306. [PMID: 33600189 DOI: 10.1021/acs.jafc.0c06796] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Agricultural biosensing can aid decisions about crop health and maintenance, because crops release root exudates that can inform about their status. l-Serine has been found to be indicative of nitrogen uptake in wheat and canola. The development of a biosensor for l-serine could allow farmers to monitor crop nutrient demands more precisely. The development of robust l-serine-binding DNA aptamers is described. Because small molecules can be challenging targets for Systematic Evolution of Ligands by EXponential enrichment (SELEX), three separate DNA libraries were used for SELEX experiments. A l-homocysteine aptamer was randomized to create a starting library for a l-serine selection (randomized SELEX). The final selection rounds of the l-homocysteine selection were also used as a starting library for l-serine (redirected SELEX). Finally, an original DNA library was used (original SELEX). All three SELEX experiments produced l-serine-binding aptamers with micromolar affinity, with Red.1 aptamer having a Kd of 7.9 ± 3.6 μM. Truncation improved the binding affinity to 5.2 ± 2.7 μM, and from this sequence, a Spiegelmer with improved nuclease resistance was created with a Kd of 2.0 ± 0.8 μM. This l-serine-binding Spiegelmer has the affinity and stability to be incorporated into aptamer-based biosensors for agricultural applications.
Collapse
Affiliation(s)
- Emily Mastronardi
- Department of Chemistry, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada
| | - Kathryn Cyr
- Department of Chemistry, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada
| | - Carlos M Monreal
- Agriculture and Agri-Food Canada, K.W. Neatby Building, Ottawa, Ontario K1A 0C6, Canada
| | - Maria C DeRosa
- Department of Chemistry, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada
| |
Collapse
|
4
|
Kah M, Tufenkji N, White JC. Nano-enabled strategies to enhance crop nutrition and protection. NATURE NANOTECHNOLOGY 2019; 14:532-540. [PMID: 31168071 DOI: 10.1038/s41565-019-0439-5] [Citation(s) in RCA: 355] [Impact Index Per Article: 59.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 03/28/2019] [Indexed: 05/18/2023]
Abstract
Various nano-enabled strategies are proposed to improve crop production and meet the growing global demands for food, feed and fuel while practising sustainable agriculture. After providing a brief overview of the challenges faced in the sector of crop nutrition and protection, this Review presents the possible applications of nanotechnology in this area. We also consider performance data from patents and unpublished sources so as to define the scope of what can be realistically achieved. In addition to being an industry with a narrow profit margin, agricultural businesses have inherent constraints that must be carefully considered and that include existing (or future) regulations, as well as public perception and acceptance. Directions are also identified to guide future research and establish objectives that promote the responsible and sustainable development of nanotechnology in the agri-business sector.
Collapse
Affiliation(s)
- Melanie Kah
- School of Environment, University of Auckland, Auckland, New Zealand.
| | - Nathalie Tufenkji
- Department of Chemical Engineering, McGill University, Montreal, Quebec, Canada
| | - Jason C White
- Center for Sustainable Nanotechnology, Department of Analytical Chemistry, Connecticut Agricultural Experiment Station, New Haven, CT, USA.
| |
Collapse
|
5
|
Lowry GV, Avellan A, Gilbertson LM. Opportunities and challenges for nanotechnology in the agri-tech revolution. NATURE NANOTECHNOLOGY 2019; 14:517-522. [PMID: 31168073 DOI: 10.1038/s41565-019-0461-7] [Citation(s) in RCA: 358] [Impact Index Per Article: 59.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 04/18/2019] [Indexed: 05/21/2023]
Abstract
Current agricultural practices, developed during the green revolution, are becoming unsustainable, especially in the face of climate change and growing populations. Nanotechnology will be an important driver for the impending agri-tech revolution that promises a more sustainable, efficient and resilient agricultural system, while promoting food security. Here, we present the most promising new opportunities and approaches for the application of nanotechnology to improve the use efficiency of necessary inputs (light, water, soil) for crop agriculture, and for better managing biotic and abiotic stress. Potential development and implementation barriers are discussed, emphasizing the need for a systems approach to designing proposed nanotechnologies.
Collapse
Affiliation(s)
- Gregory V Lowry
- Civil and Environmental Engineering Department, Carnegie Mellon University, Pittsburgh, PA, USA.
- Center for Environmental Implications of Nanotechnology, Pittsburgh, PA, USA.
| | - Astrid Avellan
- Civil and Environmental Engineering Department, Carnegie Mellon University, Pittsburgh, PA, USA
- Center for Environmental Implications of Nanotechnology, Pittsburgh, PA, USA
| | - Leanne M Gilbertson
- Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|