1
|
Xu Y, Li Y, Zhou Z, Jiao J, Zhang H, Li H, Hu F, Xu L. Arabidopsis thaliana YUC1 reduced fluoranthene accumulation by modulating IAA content and antioxidant enzyme activities. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:116992. [PMID: 39244882 DOI: 10.1016/j.ecoenv.2024.116992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/31/2024] [Accepted: 08/31/2024] [Indexed: 09/10/2024]
Abstract
Indole-3-acetic acid (IAA) can regulate plant growth and thus modulate the accumulation of polycyclic aromatic hydrocarbons (PAHs). However, the effect of endogenous IAA on PAHs accumulation and its influencing factors remains unclear. To unravel this, two different IAA expression genotypes of Arabidopsis thaliana, i.e., IAA-underproducing yucca1D [YUC1] mutant and wild type [WT]) were selected and treated with different fluoranthene (Flu) concentrations (0 mg/L [CK], 5 mg/L [Flu5], and 20 mg/L [Flu20]) to reveal the impact mechanism of endogenous IAA on Flu uptake by plants. The results indicated that under Flu5 treatment, the bioconcentration factors (BCF) and translocation factors (TF) of Flu in WT were 41.4 % and 14.3 % higher than those in YUC1. Similarly, under Flu20 treatment, the BCF and TF of Flu in WT were also 42.2 % and 8.2 % higher than those in YUC1. In addition, the BCF and TF were 72.5 % and 35.8 % higher under Flu5 treatment compared to Flu20 treatment for WT, and 73.4 % and 28.6 % higher respectively for YUC1. Moreover, WT exhibited higher plant growth (biomass, root morphology indicators [root length, root area and number of tips]) and IAA content compared to YUC1 under identical Flu treatments. Plant growth and IAA content declined with the increase of Flu concentration in both YUC1 and WT leaves compared with CK treatment. Conversely, in WT roots, root biomass and morphology indicators promoted followed by a decrease as the concentration of Flu increased. Additionally, the antioxidant enzyme activities (SOD, POD, and CAT) of WT were 11.1 %, 16.7 %, and 28.9 % higher than those of YUC1 under Flu5 treatment, and 13.6 %, 12.9 %, and 26.5 % higher under Flu20 treatment. Compared with CK treatment, SOD and POD activities promoted with increasing Flu concentration, whereas CAT activities decreased. Variability separation analysis revealed that level of IAA primarily influenced Flu accumulation in WT or under Flu5 treatments, whereas antioxidant enzyme activity primarily affected Flu accumulation in YUC1 or under Flu20 treatments. Exploring the relationship between the IAA synthesis gene YUCCA and IAA levels, alongside Flu accumulation, could yield novel insights into the regulation of PAH accumulation in plants.
Collapse
Affiliation(s)
- Yuanzhou Xu
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Yunyun Li
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Zhiguo Zhou
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Jiaguo Jiao
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 210014, People's Republic of China
| | - Huijuan Zhang
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 210014, People's Republic of China
| | - Huixin Li
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 210014, People's Republic of China
| | - Feng Hu
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 210014, People's Republic of China
| | - Li Xu
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 210014, People's Republic of China; Sanya Institute of Nanjing Agricultural University, Sanya, People's Republic of China.
| |
Collapse
|
2
|
Xu Y, Li Y, Xiao Z, Zhang X, Jiao J, Zhang H, Li H, Hu F, Xu L. Endogenous IAA affected fluoranthene accumulation by regulating H +-ATPase and SOD activity in ryegrass. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 276:116315. [PMID: 38614001 DOI: 10.1016/j.ecoenv.2024.116315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/23/2024] [Accepted: 04/09/2024] [Indexed: 04/15/2024]
Abstract
This study explores the role of endogenous indole-3-acetic acid (IAA) in modulating plant responses to pollution stress and its effect on pollutant accumulation, with a focus on fluoranthene (Flu) in ryegrass. To elucidate the mechanism, we employed an IAA promoter (α-aminobutyric acid [α-AB]) and an IAA inhibitor (naphthylphthalamic acid [NPA]) to regulate IAA levels and analyze Flu uptake characteristics. The experimental setup included a Flu treatment group (ryegrass with Flu addition) and a control group (ryegrass without Flu). Our findings demonstrate that Flu treatment enhanced IAA content and plant growth in ryegrass compared to the control. The Flu+AB treatment further enhanced these effects, while the Flu+NPA treatment exhibited a contrasting trend. Moreover, Flu+AB treatment led to increased Flu accumulation, in contrast to the inhibitory effect observed with Flu+NPA treatment. Flu treatment also enhanced the activities of key antioxidant enzymes (SOD, POD, CAT) and increased soluble sugar and protein levels, indicative of enzymatic and nonenzymatic defense responses, respectively. The Flu+AB treatment amplified these responses, whereas the Flu+NPA treatment attenuated them. Significantly, Flu treatment raised H+-ATPase activity compared to the control, an effect further elevated by Flu+AB treatment and diminished by Flu+NPA treatment. A random forest analysis suggested that Flu accumulation dependency varied under different treatments: it relied more on H+-ATPase activity under Flu+AB treatment and more on SOD activity under Flu+NPA treatment. Additionally, Flu+AB treatment boosted the transpiration rate in ryegrass, thereby increasing the Flu translocation factor, a trend reversed by Flu+NPA treatment. This research highlights crucial factors influencing Flu accumulation in ryegrass, offering potential new avenues for controlling the gathering of contaminants within plant systems.
Collapse
Affiliation(s)
- Yuanzhou Xu
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Yunyun Li
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Zhuoliang Xiao
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Xinyue Zhang
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Jiaguo Jiao
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 210014, People's Republic of China
| | - Huijuan Zhang
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 210014, People's Republic of China
| | - Huixin Li
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 210014, People's Republic of China
| | - Feng Hu
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 210014, People's Republic of China
| | - Li Xu
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 210014, People's Republic of China; Sanya Institute of Nanjing Agricultural University, Sanya, People's Republic of China.
| |
Collapse
|
3
|
Jiang Y, Li X, Zhang Y, Wu B, Li Y, Tian L, Sun J, Bai W. Mechanism of action of anthocyanin on the detoxification of foodborne contaminants-A review of recent literature. Compr Rev Food Sci Food Saf 2024; 23:e13259. [PMID: 38284614 DOI: 10.1111/1541-4337.13259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/09/2023] [Accepted: 10/13/2023] [Indexed: 01/30/2024]
Abstract
Foodborne contaminants refer to substances that are present in food and threaten food safety. Due to the progress in detection technology and the rising concerns regarding public health, there has been a surge in research focusing on the dangers posed by foodborne contaminants. These studies aim to explore and implement strategies that are both safe and efficient in mitigating the associated risks. Anthocyanins, a class of flavonoids, are abundantly present in various plant species, such as blueberries, grapes, purple sweet potatoes, cherries, mulberries, and others. Numerous epidemiological and nutritional intervention studies have provided evidence indicating that the consumption of anthocyanins through dietary intake offers a range of protective effects against the detrimental impact of foodborne contaminants. The present study aims to differentiate between two distinct subclasses of foodborne contaminants: those that are generated during the processing of food and those that originate from the surrounding environment. Furthermore, the impact of anthocyanins on foodborne contaminants was also summarized based on a review of articles published within the last 10 years. However, further investigation is warranted regarding the mechanism by which anthocyanins target foodborne contaminants, as well as the potential impact of individual variations in response. Additionally, it is important to note that there is currently a dearth of clinical research examining the efficacy of anthocyanins as an intervention for mitigating the effects of foodborne pollutants. Thus, by exploring the detoxification effect and mechanism of anthocyanins on foodborne pollutants, this review thereby provides evidence, supporting the utilization of anthocyanin-rich diets as a means to mitigate the detrimental effects of foodborne contaminants.
Collapse
Affiliation(s)
- Yan Jiang
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou, PR China
| | - Xusheng Li
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou, PR China
- The Sixth Affiliated Hospital, Jinan University, Dongguan, PR China
| | - Yulin Zhang
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou, PR China
| | - Biyu Wu
- Department of Human Nutrition, Food, and Animal Sciences, University of Hawaii at Manoa, Honolulu, Hawaii, USA
| | - Yuxi Li
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou, PR China
| | - Lingmin Tian
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou, PR China
| | - Jianxia Sun
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, PR China
| | - Weibin Bai
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou, PR China
| |
Collapse
|
4
|
Gong S, Zheng J, Zhang J, Han J. Arabinogalactan ameliorates benzo[a]pyrene-induced intestinal epithelial barrier dysfunction via AhR/MAPK signaling pathway. Int J Biol Macromol 2023:124866. [PMID: 37196716 DOI: 10.1016/j.ijbiomac.2023.124866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 05/05/2023] [Accepted: 05/10/2023] [Indexed: 05/19/2023]
Abstract
Benzo[a]pyrene (B[a]P), a kind of pollutant, can disrupt the gut microbiota, but its effects on the function of intestinal epithelial barrier (IEB) is still unclear. Arabinogalactan (AG), a natural polysaccharide, can protect intestinal tract. Thus, the purpose of this study was to evaluate the effect of B[a]P on IEB function and the mitigation effect of AG on the IEB dysfunction induced by B[a]P using a Caco-2 cell monolayer model. We found B[a]P could damage the IEB integrity by inducing cell cytotoxicity, increasing lactate dehydrogenase leakage, decreasing the transepithelial electrical resistance, and increasing fluorescein isothiocyanate-dextran flux. The mechanism of B[a]P-induced IEB damage may through induction of oxidative stress, including increasing reactive oxygen species levels, decreasing glutathione levels, reducing the activity of superoxide dismutase, and increasing malonaldehyde levels. Moreover, it can be due to increasing secretion of pro-inflammatory cytokines (interleukin [IL]-1β, IL-6, and tumor necrosis factor [TNF]-α), down-regulated expression of tight junction (TJ) proteins (claudin-1, zonula occludens [ZO]-1, and occludin), and induced activation of aryl hydrocarbon receptor (AhR)/mitogen activated protein kinase (MAPK) signaling pathway. Remarkably, AG ameliorated B[a]P-induced IEB dysfunction through inhibited oxidative stress and pro-inflammatory factor secretion. Our study demonstrated B[a]P could damage the IEB and AG could alleviate this damage.
Collapse
Affiliation(s)
- Shaoying Gong
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Jiachen Zheng
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Junjie Zhang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Jianchun Han
- College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
5
|
Batiha GES, Al-Snafi AE, Thuwaini MM, Teibo JO, Shaheen HM, Akomolafe AP, Teibo TKA, Al-Kuraishy HM, Al-Garbeeb AI, Alexiou A, Papadakis M. Morus alba: a comprehensive phytochemical and pharmacological review. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023:10.1007/s00210-023-02434-4. [PMID: 36877269 DOI: 10.1007/s00210-023-02434-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 02/16/2023] [Indexed: 03/07/2023]
Abstract
Morus alba is a fast-growing shrub or medium-sized tree with a straight, cylindrical trunk. Medicinally, whole plants, leaves, fruits, branches, and roots have been employed. Google Scholar, PubMed, Scopus, and Web of Science were used to search for relevant material on the phytochemical components and pharmacologic and mechanism of action of the Morus alba. This was reviewed to assess important updates about Morus alba. The fruits of Morus alba have traditionally been used as an analgesic, anthelmintic, antibacterial, anti-rheumatic, diuretic, hypotensive, hypoglycemia, purgative, restorative, sedative tonic, and blood stimulant. Various plant parts were used as a cooling, sedating, diuretic, tonic, and astringent agent to treat nerve disorders. The plant contained tannins, steroids, phytosterols, sitosterol, glycosides, alkaloids, carbohydrates, proteins, and amino acids, as well as saponins, triterpenes, phenolics, flavonoids, benzofuran derivatives, anthocyanins, anthraquinones, glycosides, vitamins, and minerals. Previous pharmacological research identified antimicrobial, anti-inflammatory, immunological, analgesic, antipyretic, antioxidant, anti-cancer, antidiabetic, gastrointestinal, respiratory, cardiovascular, hypolipidemic, anti-obesity, dermatological, neurological, muscular, and protecting effects. This study looked at Morus alba's traditional uses, chemical components, and pharmacological effects.
Collapse
Affiliation(s)
- Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, El Beheira, Egypt.
| | - Ali Esmail Al-Snafi
- Department of Pharmacology, College of Medicine, University of Thi-Qar, Nasiriyah, Iraq
| | - Mahdi M Thuwaini
- College of Medical and Healthy Techniques, Southern Technique University, Basra, Iraq
| | - John Oluwafemi Teibo
- Department of Biochemistry and Immunology, Ribeirão, Preto Medical School , University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
| | - Hazem M Shaheen
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, El Beheira, Egypt
| | | | - Titilade Kehinde Ayandeyi Teibo
- Department of Maternal-Infant and Public Health Nursing, College of Nursing, University of São Paulo, Ribeirão PretoRibeirão Preto, São Paulo, Brazil
| | - Hayder M Al-Kuraishy
- Department of Clinical Pharmacologyand, Therapeutic Medicine, College of Medicine , Almustansiriyah University, Baghdad, Iraq
| | - Ali I Al-Garbeeb
- Department of Clinical Pharmacologyand, Therapeutic Medicine, College of Medicine , Almustansiriyah University, Baghdad, Iraq
| | - Athanasios Alexiou
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, NSW, 2770, Australia.,AFNP Med, 1030, Vienna, Austria
| | - Marios Papadakis
- Department of Surgery II, University Hospital Witten-Herdecke, University of Witten-Herdecke, Heusnerstrasse 40, 42283, Wuppertal, Germany.
| |
Collapse
|
6
|
Kim HM, Kang YM, Jin BR, Lee H, Lee DS, Lee M, An HJ. Morus alba fruits attenuates atopic dermatitis symptoms and pathology in vivo and in vitro via the regulation of barrier function, immune response and pruritus. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 109:154579. [PMID: 36610150 DOI: 10.1016/j.phymed.2022.154579] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 09/14/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Morus alba fruits (MAF) belong to the Moraceae family, which are known to be effective in treating diabetic, autoimmune, and hormonal diseases owing to its low toxicity. MAF, as excerpted from Donguibogam, a representative Korean medical encyclopedia protected by UNESCO, has been widely used to treat lumbago, arthritis, and diabetes. Based on these effects, MAF is investigated for unidentified effects of atopic dermatitis, characterized by complex etiology of skin barrier dysfunction, inflammation, and chronic pruritus. METHODS The antioxidant, inflammatory, and immunomodulatory properties of MAF and its bioactive compounds have been widely reported. According to an examination of 1-chloro-2,4-dinitrobenzene-induced AD-like skin lesions in NC/Nga mice, AD symptoms, such as increased dermatitis score, scratching frequency, immunoglobulin E, trans-epidermal water loss, epidermal thickness, and infiltration of mast cells, were relieved by topical MAF administration. They effectively attenuated cytokines and chemokines, such as interleukin (IL)-4, IL-5, IL-6, IL-8, IL-13, IL-17A, IL-22, IL-1β, tumor necrosis factor-α, thymic stromal lymphopoietin (TSLP), thymic- and activation-regulated chemokine, normal T cell expression, and macrophage-derived chemokine secretion at the mRNA level in TNF-α/IFN-γ induced HaCaT (human immortalized keratinocyte) cells. RESULTS Both in vivo and in vitro models, MAF increased the expression of filaggrin, involucrin, and loricrin, as well as inhibited the activation of Janus kinase 2, signal transducer and activator of transcription proteins 1, and mitogen-activated protein kinase pathways, including extracellular signal-regulated kinase, c-jun N-terminal kinase, and p38. Moreover, MAF reduced the expression of TSLP and periostin, which play important roles in skin pruritus as chronic pruritogenic factors. CONCLUSION These data indicate that MAF could be used as a potential treatment for AD-like skin lesions by regulating the inflammatory response, improving physical skin barriers, and relieving symptomatic pruritus.
Collapse
Affiliation(s)
- Hye-Min Kim
- Department of Pharmacology, College of Korean Medicine, Sangji University, Wonju, Gangwon-do, 26339, Republic of Korea
| | - Yun-Mi Kang
- Korean Medicine (KM)-Application Center, Korea Institute of Oriental Medicine (KIOM), 70 Cheomdan-ro, Dong-gu, Daegu, 41062, Republic of Korea
| | - Bo-Ram Jin
- Department of Oriental Pharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Hwan Lee
- Department of Pharmacy, College of Pharmacy, Chosun University, Dong-gu, Gwangju, 61452, Republic of Korea
| | - Dong-Sung Lee
- Department of Pharmacy, College of Pharmacy, Chosun University, Dong-gu, Gwangju, 61452, Republic of Korea
| | - Minho Lee
- Department of Life Science, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyeonggi-do, 10326, Republic of Korea.
| | - Hyo-Jin An
- Department of Oriental Pharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul, 02447, Republic of Korea.
| |
Collapse
|
7
|
Lou W, Zhang MD, Chen Q, Bai TY, Hu YX, Gao F, Li J, Lv XL, Zhang Q, Chang FH. Molecular mechanism of benzo [a] pyrene regulating lipid metabolism via aryl hydrocarbon receptor. Lipids Health Dis 2022; 21:13. [PMID: 35057794 PMCID: PMC8772151 DOI: 10.1186/s12944-022-01627-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 01/07/2022] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Benzo [a] pyrene (BaP), a potent carcinogen, has been proved that it has toxicological effects via activation the aryl hydrocarbon receptor (AhR) pathway. AhR can participate in regulating lipogenesis and lipolysis. This topic will verify whether BaP regulates lipid metabolism via AhR. METHODS (1) C57BL/6 mice were gavaged with BaP for 12 weeks to detect serum lipids, glucose tolerance, and insulin resistance. Morphological changes in white adipose tissue (WAT) were detected by Hematoxylin and Eosin staining. The mRNA expression levels of adipogenesis-related factors included recombinant human CCAAT/enhancer binding protein alpha (C/EBPα), peroxisome proliferator-activated receptor gamma (PPARγ), and fatty acid binding protein 4 (FABP4) and inflammatory factors included nuclear factor kappa-B (NF-κB), monocyte chemotactic protein-1 (MCP-1), and tumor necrosis factor alpha (TNF-α) were detected using PCR. (2) Neutral lipid content changes in differentiated 3 T3-L1 adipocytes treated with BaP with and w/o AhR inhibitor were detected by Oil red staining. The protein expression levels of adipogenesis- and decomposition-related factors included PPARγ coactivator-1 alpha (PGC-1α), and peroxisome proliferation-activated receptor alpha (PPARα) were detected using western blotting. The mRNA expression levels of inflammatory factors were detected using PCR. RESULTS (1) BaP inhibited body weight gain, decreased lipid content, increased lipid levels, and decreased glucose tolerance and insulin tolerance in mice; (2) BaP reduced the expressions of C/EBPα, PPARγ, FABP4, PGC-1α, and PPARα and increased the expressions of NF-κB, MCP-1, and TNF-α by activating AhR. CONCLUSION BaP inhibit fat synthesis and oxidation while inducing inflammation by activating AhR, leading to WAT dysfunction and causing metabolic complications.
Collapse
Affiliation(s)
- Wei Lou
- Department of Pharmacology of Pharmaceutical College, Inner Mongolia Medical University, Hohhot, 010010, China
- Department of Pharmacy, Inner Mongolia Autonomous Region Hospital of Traditional Chinese Medicine, Hohhot, 010010, China
| | - Meng-di Zhang
- Department of Pharmacology of Pharmaceutical College, Inner Mongolia Medical University, Hohhot, 010010, China
- Inner Mongolia Research Center for Drug Screening, Inner Mongolia Medical University, Hohhot, 010110, China
| | - Qi Chen
- Department of Pharmacology of Pharmaceutical College, Inner Mongolia Medical University, Hohhot, 010010, China
| | - Tu-Ya Bai
- Department of Pharmacology of Pharmaceutical College, Inner Mongolia Medical University, Hohhot, 010010, China
- Inner Mongolia Research Center for Drug Screening, Inner Mongolia Medical University, Hohhot, 010110, China
| | - Yu-Xia Hu
- Department of Pharmacology of Pharmaceutical College, Inner Mongolia Medical University, Hohhot, 010010, China
- Inner Mongolia Research Center for Drug Screening, Inner Mongolia Medical University, Hohhot, 010110, China
- The Center for New Drug Safety Evaluation and Research, Inner Mongolia Medical University, Hohhot, 010010, China
| | - Feng Gao
- Department of Pharmacology of Pharmaceutical College, Inner Mongolia Medical University, Hohhot, 010010, China
- Inner Mongolia Research Center for Drug Screening, Inner Mongolia Medical University, Hohhot, 010110, China
| | - Jun Li
- Department of Pharmacology of Pharmaceutical College, Inner Mongolia Medical University, Hohhot, 010010, China
- Inner Mongolia Research Center for Drug Screening, Inner Mongolia Medical University, Hohhot, 010110, China
- The Center for New Drug Safety Evaluation and Research, Inner Mongolia Medical University, Hohhot, 010010, China
| | - Xiao-Li Lv
- Department of Pharmacology of Pharmaceutical College, Inner Mongolia Medical University, Hohhot, 010010, China
- Inner Mongolia Research Center for Drug Screening, Inner Mongolia Medical University, Hohhot, 010110, China
| | - Qian Zhang
- Department of Pharmacology of Pharmaceutical College, Inner Mongolia Medical University, Hohhot, 010010, China
- Inner Mongolia Research Center for Drug Screening, Inner Mongolia Medical University, Hohhot, 010110, China
- The Center for New Drug Safety Evaluation and Research, Inner Mongolia Medical University, Hohhot, 010010, China
| | - Fu-Hou Chang
- Department of Pharmacology of Pharmaceutical College, Inner Mongolia Medical University, Hohhot, 010010, China.
- Inner Mongolia Research Center for Drug Screening, Inner Mongolia Medical University, Hohhot, 010110, China.
- The Center for New Drug Safety Evaluation and Research, Inner Mongolia Medical University, Hohhot, 010010, China.
| |
Collapse
|
8
|
PARK JH, SHIN JY, CHO BO, HAO S, WANG F, LIM YT, SHIN DJ, JANG SI. Pectinase halophyte complex extract protects hairless mice skin damaged by UV-irradiation. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.72121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
| | | | | | | | - Feng WANG
- Jeonju University, Republic of Korea
| | - Yi Teak LIM
- Jinandang Agricultural Corp., Republic of Korea
| | - Da Jeong SHIN
- Research Institute, Ato Q&A Co., LTD, Republic of Korea
| | - Seon Il JANG
- Jeonju University, Republic of Korea; Jeonju University, Republic of Korea
| |
Collapse
|
9
|
Qu KJ, Wang B, Jiang CS, Xie BG, Liu AH, Li SW, Guo YW, Li J, Mao SC. Rearranged Diels-Alder Adducts and Prenylated Flavonoids as Potential PTP1B Inhibitors from Morus nigra. JOURNAL OF NATURAL PRODUCTS 2021; 84:2303-2311. [PMID: 34279099 DOI: 10.1021/acs.jnatprod.1c00403] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Two novel rearranged Diels-Alder adducts, morunigrines A (1) and B (2), and four new prenylated flavonoids, morunigrols A-D (3-6), were isolated from the twigs of Morus nigra, together with four known prenylated phenolic compounds, including two flavonoids (7 and 8) and two 2-arylbenzofurans (9 and 10). Morunigrines A (1) and B (2) are a novel class of Diels-Alder adducts with unprecedented carbon skeletons featuring a rearranged chalcone-stilbene/2-arylbenzofuran core decorated with a unique methylbiphenyl moiety. The structures of the new compounds were assigned by analysis of spectroscopic data. The absolute configuration of compound 6 was determined by the measurement of specific rotation. A plausible biogenetic pathway for 1 and 2 is also proposed. Compounds 1 and 2 exhibited more potent protein tyrosine phosphatase 1B inhibitory activity with IC50 values of 1.8 ± 0.2 and 1.3 ± 0.3 μM, respectively, than that of the positive control oleanolic acid (IC50, 2.5 ± 0.1 μM).
Collapse
Affiliation(s)
- Ke-Jun Qu
- School of Pharmacy, Nanchang University, Nanchang 330006, People's Republic of China
| | - Bin Wang
- School of Pharmacy, Nanchang University, Nanchang 330006, People's Republic of China
| | - Chang-Sheng Jiang
- Jiangxi Province Center for Drug Certification and Evaluation, Nanchang 330046, People's Republic of China
| | - Bao-Gang Xie
- Department of Pharmaceutics, Medical College of Jiaxing University, Jiaxing 314001, People's Republic of China
| | - Ai-Hong Liu
- Center of Analysis and Testing, Nanchang University, Nanchang 330047, People's Republic of China
| | - Song-Wei Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, People's Republic of China
| | - Yue-Wei Guo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, People's Republic of China
| | - Jia Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, People's Republic of China
| | - Shui-Chun Mao
- School of Pharmacy, Nanchang University, Nanchang 330006, People's Republic of China
| |
Collapse
|
10
|
Kim J, Park SH, Yang S, Oh SW, Kwon K, Park SJ, Yu E, Kim H, Park JY, Choi S, Yang S, Song M, Cho JY, Lee J. Protective Effects of Maclurin against Benzo[a]pyrene via Aryl Hydrocarbon Receptor and Nuclear Factor Erythroid 2-Related Factor 2 Targeting. Antioxidants (Basel) 2021; 10:antiox10081189. [PMID: 34439437 PMCID: PMC8388905 DOI: 10.3390/antiox10081189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 07/23/2021] [Accepted: 07/24/2021] [Indexed: 12/19/2022] Open
Abstract
Benzo[a]pyrene (B[a]P), a polycyclic aromatic hydrocarbon formed during the incomplete combustion of organic matter, has harmful effects. Therefore, much research is ongoing to develop agents that can mitigate the effects of B[a]P. The aim of this study was to examine the effect of maclurin, one component of the branches of Morus alba L., on the B[a]P-induced effects in HaCaT cells, a human keratinocyte cell line. Maclurin treatment inhibited aryl hydrocarbon receptor (AHR) signaling as evidenced by reduced xenobiotic response element (XRE) reporter activity, decreased expression of cytochrome P450 1A1 (CYP1A1), and reduced nuclear translocation of AHR. The B[a]P-induced dissociation of AHR from AHR-interacting protein (AIP) was suppressed by maclurin. Maclurin also inhibited the production of intracellular reactive oxygen species (ROS) induced by B[a]P. In addition, the antioxidant property of maclurin itself was demonstrated by the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay. Furthermore, maclurin activated antioxidant response element (ARE) signaling through enhancement of ARE luciferase reporter activity and the expression of ARE-dependent genes including nuclear factor (erythroid-derived 2)-like 2 (Nrf2) and heme oxygenase-1 (HO-1). Nrf2 activation and its nuclear translocation were promoted by maclurin through p38 MAPK activation. These data indicate that maclurin had antagonistic activity against B[a]P effects through activation of Nrf2-mediated signaling and inhibition of AHR signaling and, suggesting its potential in protecting from harmful B[a]P-containing pollutants.
Collapse
Affiliation(s)
- Jangsoon Kim
- Molecular Dermatology Laboratory, Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon City 16419, Gyunggi do, Korea; (J.K.); (S.Y.); (S.W.O.); (K.K.); (S.J.P.); (E.Y.); (H.K.); (J.Y.P.); (S.C.); (S.Y.)
| | - See-Hyoung Park
- Department of Bio and Chemical Engineering, Hongik University, Sejong City 30016, Korea;
| | - Seyoung Yang
- Molecular Dermatology Laboratory, Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon City 16419, Gyunggi do, Korea; (J.K.); (S.Y.); (S.W.O.); (K.K.); (S.J.P.); (E.Y.); (H.K.); (J.Y.P.); (S.C.); (S.Y.)
| | - Sae Woong Oh
- Molecular Dermatology Laboratory, Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon City 16419, Gyunggi do, Korea; (J.K.); (S.Y.); (S.W.O.); (K.K.); (S.J.P.); (E.Y.); (H.K.); (J.Y.P.); (S.C.); (S.Y.)
| | - Kitae Kwon
- Molecular Dermatology Laboratory, Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon City 16419, Gyunggi do, Korea; (J.K.); (S.Y.); (S.W.O.); (K.K.); (S.J.P.); (E.Y.); (H.K.); (J.Y.P.); (S.C.); (S.Y.)
| | - Se Jung Park
- Molecular Dermatology Laboratory, Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon City 16419, Gyunggi do, Korea; (J.K.); (S.Y.); (S.W.O.); (K.K.); (S.J.P.); (E.Y.); (H.K.); (J.Y.P.); (S.C.); (S.Y.)
| | - Eunbi Yu
- Molecular Dermatology Laboratory, Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon City 16419, Gyunggi do, Korea; (J.K.); (S.Y.); (S.W.O.); (K.K.); (S.J.P.); (E.Y.); (H.K.); (J.Y.P.); (S.C.); (S.Y.)
| | - Hyeyoun Kim
- Molecular Dermatology Laboratory, Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon City 16419, Gyunggi do, Korea; (J.K.); (S.Y.); (S.W.O.); (K.K.); (S.J.P.); (E.Y.); (H.K.); (J.Y.P.); (S.C.); (S.Y.)
| | - Jung Yoen Park
- Molecular Dermatology Laboratory, Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon City 16419, Gyunggi do, Korea; (J.K.); (S.Y.); (S.W.O.); (K.K.); (S.J.P.); (E.Y.); (H.K.); (J.Y.P.); (S.C.); (S.Y.)
| | - Seoyoung Choi
- Molecular Dermatology Laboratory, Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon City 16419, Gyunggi do, Korea; (J.K.); (S.Y.); (S.W.O.); (K.K.); (S.J.P.); (E.Y.); (H.K.); (J.Y.P.); (S.C.); (S.Y.)
| | - Seoyeon Yang
- Molecular Dermatology Laboratory, Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon City 16419, Gyunggi do, Korea; (J.K.); (S.Y.); (S.W.O.); (K.K.); (S.J.P.); (E.Y.); (H.K.); (J.Y.P.); (S.C.); (S.Y.)
| | - Minkyung Song
- T Cell and Tumor Immunology Laboratory, Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon City 16419, Gyunggi do, Korea
- Correspondence: (M.S.); (J.Y.C.); (J.L.)
| | - Jae Youl Cho
- Molecular Immunology Laboratory, Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon City 16419, Gyunggi do, Korea
- Correspondence: (M.S.); (J.Y.C.); (J.L.)
| | - Jongsung Lee
- Molecular Dermatology Laboratory, Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon City 16419, Gyunggi do, Korea; (J.K.); (S.Y.); (S.W.O.); (K.K.); (S.J.P.); (E.Y.); (H.K.); (J.Y.P.); (S.C.); (S.Y.)
- Correspondence: (M.S.); (J.Y.C.); (J.L.)
| |
Collapse
|
11
|
Evaluation of Selective COX-2 Inhibition and In Silico Study of Kuwanon Derivatives Isolated from Morus alba. Int J Mol Sci 2021; 22:ijms22073659. [PMID: 33915826 PMCID: PMC8036738 DOI: 10.3390/ijms22073659] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/26/2021] [Accepted: 03/26/2021] [Indexed: 11/17/2022] Open
Abstract
Six kuwanon derivatives (A/B/C/E/H/J) extracted from the roots of Morus alba L. were evaluated to determine their cyclooxygenase (COX)-1 and 2 inhibitory effects. Cyclooxygenase (COX) is known as the target enzyme of nonsteroidal anti-inflammatory drugs (NSAIDs), which are the most widely used therapeutic agents for pain and inflammation. Among six kuwanon derivatives, kuwanon A showed selective COX-2 inhibitory activity, almost equivalent to that of celecoxib, a known COX inhibitor. Kuwanon A showed high COX-2 inhibitory activity (IC50 = 14 μM) and a selectivity index (SI) range of >7.1, comparable to celecoxib (SI > 6.3). To understand the mechanisms underlying this effect, we performed docking simulations, fragment molecular orbital (FMO) calculations, and pair interaction energy decomposition analysis (PIEDA) at the quantum-mechanical level. As a result, kuwanon A had the strongest interaction with Arg120 and Tyr355 at the gate of the COX active site (−7.044 kcal/mol) and with Val89 in the membrane-binding domain (−6.599 kcal/mol). In addition, kuwanon A closely bound to Val89, His90, and Ser119, which are residues at the entrance and exit routes of the COX active site (4.329 Å). FMO calculations and PIEDA well supported the COX-2 selective inhibitory action of kuwanon A. It showed that the simulation and modeling results and experimental evidence were consistent.
Collapse
|
12
|
Ha Y, Kim Y, Choi J, Hwang I, Ko JY, Jeon HK, Kim YJ. Evaluation of cytotoxicity, genotoxicity, and zebrafish embryo toxicity of mixtures containing Hyssopus officinalis, Morus alba, Engraulis japonicus, and 27 other extracts for cosmetic safety assessment. Mol Cell Toxicol 2021. [DOI: 10.1007/s13273-021-00128-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
13
|
Gan M, Ding H, Chen G. 6-Formylindolo[3,2-b]carbazole reduces apoptosis induced by benzo[a]pyrene in a mitochondrial-dependent manner. Cell Biol Int 2020; 44:2427-2437. [PMID: 32808713 DOI: 10.1002/cbin.11450] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 07/24/2020] [Accepted: 08/16/2020] [Indexed: 01/02/2023]
Abstract
Benzo[a]pyrene (B[a]P), a potent carcinogen, has been proved that it can induce apoptosis via activation of the aryl hydrocarbon receptor (AhR) pathway. The metabolite of tryptophan 6-formylindolo[3,2-b]carbazole (FICZ), an endogenous activator of AhR, plays bifunctional roles in cell growth and apoptosis. However, whether and how FICZ can reduce the toxicity of B[a]P and the mechanism underlying this remain unclear. In this study, FICZ interfered with the toxicity of B[a]P in mouse hepatocarcinoma cell line Hepa1-6. The results of the MTT assay indicated that FICZ and B[a]P made opposite effects on cell proliferation. The scratch-wound healing assay showed that B[a]P (1 µM for 24 hr) exposure triggered cell migration and that was inhibited by FICZ (10 nM). In addition, FICZ ameliorated B[a]P-induced apoptosis by inhibiting reactive oxygen species generation and caspase-3 activation, as well as increasing reduced glutathione level in mitochondria. Furthermore, gene expression analyses indicated that FICZ competed with B[a]P, which reduced the transcriptional activation of the cyp1a1 and cyp1b1 genes, as well as Bcl2 and P53. Accordingly, the interaction between FICZ and B[a]P in the AhR pathway inhibited apoptosis in a mitochondrial-dependent manner, suggesting that endogenous compound may reduce the toxicity of exogenous pollutant in vivo and providing an available way to improve health condition related to the hepatic metabolic disorder.
Collapse
Affiliation(s)
- Min Gan
- Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Hongbiao Ding
- Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Gang Chen
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
14
|
Isoorientin attenuates benzo[a]pyrene-induced colonic injury and gut microbiota disorders in mice. Food Res Int 2019; 126:108599. [DOI: 10.1016/j.foodres.2019.108599] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 07/18/2019] [Accepted: 07/30/2019] [Indexed: 12/19/2022]
|
15
|
Antagonizing Effects of Clematis apiifolia DC. Extract against Benzo[a]pyrene-Induced Damage to Human Keratinocytes. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:2386163. [PMID: 31885779 PMCID: PMC6925742 DOI: 10.1155/2019/2386163] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 09/26/2019] [Accepted: 10/01/2019] [Indexed: 12/12/2022]
Abstract
Background. Benzo[a]pyrene (B[a]P), a polycyclic aromatic hydrocarbon present in the atmosphere, has cytotoxic and carcinogenic effects. There have been no reports to demonstrate involvement of Clematis apiifolia DC. extract (CAE) in B[a]P-induced effects. This study was conducted to investigate the effect of CAE on B[a]P-induced effects and to elucidate its mechanism of action in HaCaT human keratinocytes. CAE inhibited aryl hydrocarbon receptor (AhR) signaling by decreasing both XRE reporter activity and expression of cytochrome P450 1A1 (CYP1A1) induced by B[a]P treatment in HaCaT cells. We also found that B[a]P-induced nuclear translocation of AhR and production of reactive oxygen species (ROS) and proinflammatory cytokines were attenuated by CAE treatment. CAE treatment suppressed B[a]P-induced phosphorylation of Src (Tyr416). In addition, dasatinib, a Src inhibitor, also inhibited B[a]P-induced nuclear translocation of AhR, similar to CAE treatment. In addition, CAE activated antioxidant response element (ARE) signaling by increasing ARE luciferase reporter activity and expression of ARE-dependent genes such as nuclear factor (erythroid-derived 2)-like 2 (Nrf2), NAD(P)H dehydrogenase [quinone] 1 (NQO1), and heme oxygenase-1 (HO-1). Nuclear translocation of Nrf2 by CAE was demonstrated by Western blot analysis and immunocytochemistry. The effects of CAE on ARE signaling were attenuated by knockdown of the Nrf2 gene. Inhibition of AhR signaling and activation of antioxidant activity by CAE operated in a reciprocally independent manner as evidenced by AhR and Nrf2 siRNA experiments. These findings indicate that CAE exerts protective effects against B[a]P by inhibiting AhR signaling and activating Nrf2-mediated signaling, suggesting its potential in protection from harmful B[a]P-containing pollutants.
Collapse
|
16
|
|
17
|
Giménez-Bastida JA, Laparra-Llopis JM, Baczek N, Zielinski H. Buckwheat and buckwheat enriched products exert an anti-inflammatory effect on the myofibroblasts of colon CCD-18Co. Food Funct 2018; 9:3387-3397. [PMID: 29870039 PMCID: PMC6597957 DOI: 10.1039/c8fo00193f] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Buckwheat (BW) constitutes a good source of bioactive components that show anti-inflammatory effects in vitro and in vivo. The use of functional foods in the prevention and treatment of inflammatory bowel diseases (IBDs) has aroused increasing interest. This study investigates the effect of in vitro digested BW and BW-enriched products (BW-enriched wheat breads, roasted BW groats -fermented and non-fermented-, and BW sprouts) on colon myofibroblasts, the cells involved in the regulation of inflammatory response in the intestine. The cells were treated with different digested-BW products, alone or together with TNF-α (20 ng mL-1), and the effects on the cell migration, mitochondrial membrane potential and cell cycle, processes altered during intestinal inflammation, were investigated. A significant reduction in TNF-α-induced migration (25.5%, p < 0.05) and attenuation of the TNF-α-altered cell cycle (p < 0.05) was observed in myofibroblasts treated with BW-enriched white wheat bread. These results contribute to extend the beneficial effects derived from BW bioactive compounds, and suggest that BW consumption can exert beneficial effects on IBDs.
Collapse
Affiliation(s)
- J A Giménez-Bastida
- Department of Pharmacology. Vanderbilt University School of Medicine, RRB 514, 23rd Ave. S. at Pierce, Nashville, TN 37232-6602, USA
| | | | | | | |
Collapse
|
18
|
Seong SH, Ha MT, Min BS, Jung HA, Choi JS. Moracin derivatives from Morus Radix as dual BACE1 and cholinesterase inhibitors with antioxidant and anti-glycation capacities. Life Sci 2018; 210:20-28. [DOI: 10.1016/j.lfs.2018.08.060] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 08/22/2018] [Accepted: 08/23/2018] [Indexed: 12/20/2022]
|
19
|
Schisandra chinensis Protects the Skin from Global Pollution by Inflammatory and Redox Balance Pathway Modulations: An In Vitro Study. COSMETICS 2018. [DOI: 10.3390/cosmetics5020036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|