1
|
Osete-Alcaraz L, Gómez-Plaza E, Jørgensen B, Oliva J, Cámara MA, Jurado R, Bautista-Ortín AB. The composition and structure of plant fibers affect their fining performance in wines. Food Chem 2024; 460:140657. [PMID: 39106809 DOI: 10.1016/j.foodchem.2024.140657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/05/2024] [Accepted: 07/25/2024] [Indexed: 08/09/2024]
Abstract
In recent years, the wine industry has shifted towards plant-based fining agents for food safety reasons and consumer preferences. This study analysed the interaction of five plant fibers with red wine phenolic compounds to determinate their performance as fining agents. Chemical composition, polysaccharide profile, and physical properties were examined. Pea, cellulose, and Sauvignon Blanc pomace fibers effectively reduced tannin content while minimally affecting the concentration of anthocyanins, flavonols and wine color. Contrary to previous beliefs, the presence of pectins in fibers didn't play a crucial role in phenolic compound interaction since cellulose-rich fibers with low pectin concentration also bound tannins effectively, especially those with small particle size and high contact surface. Pea fiber, rich in cellulose and pectins, showed remarkable tannin retention while minimally affecting wine color. This research highlights the potential of plant fibers as effective fining agents in wine production and how their composition affects their performance.
Collapse
Affiliation(s)
- Lucía Osete-Alcaraz
- Department of Food Science and Technology, Faculty of Veterinary Sciences, University of Murcia, 30100, Murcia, Spain
| | - Encarna Gómez-Plaza
- Department of Food Science and Technology, Faculty of Veterinary Sciences, University of Murcia, 30100, Murcia, Spain.
| | - Bodil Jørgensen
- Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
| | - José Oliva
- Department of Agricultural Chemistry, Faculty of Chemistry, University of Murcia, 30100, Murcia, Spain
| | - Miguel Angel Cámara
- Department of Agricultural Chemistry, Faculty of Chemistry, University of Murcia, 30100, Murcia, Spain
| | - Ricardo Jurado
- Agrovin S.A., Avenida de los Vinos s/n, 13600 Alcázar de San Juan, Ciudad Real, Spain
| | - Ana Belén Bautista-Ortín
- Department of Food Science and Technology, Faculty of Veterinary Sciences, University of Murcia, 30100, Murcia, Spain
| |
Collapse
|
2
|
Deng W, Xu Z, Li N, Lv T, Wang L, Li M, Chen X, Liu B. Rational design of a FA1-targeting anti-interference fluorescent probe for the point-of-care testing of albuminuria. Int J Biol Macromol 2024; 261:129723. [PMID: 38272419 DOI: 10.1016/j.ijbiomac.2024.129723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 01/14/2024] [Accepted: 01/22/2024] [Indexed: 01/27/2024]
Abstract
Albuminuria is a crucial urine biomarker of human unhealthy events such as kidney diseases, cardiovascular diseases, and diabetes. However, the accurate diagnosis of albuminuria poses a significant challenge owing to the severe interference from urine fluorescence and urine drugs. Here, we report a novel flavone-based fluorescent probe, DMC, by incorporating the FA1-targeting methylquinazoline group into a flavone skeleton with the extend π-conjugation. DMC exhibited a rapid response time, high sensitivity, and selectivity towards human serum albumin (HSA) in urine. Moreover, the red-shifted fluorescence and the FA1-targeted HSA-binding of DMC efficiently mitigated the interference from both urine fluorescence and urine drug metabolites. Furthermore, the establishment of a portable testing system highlighted the potential for point-of-care testing, offering a user-friendly and accurate approach to diagnose A2-level and A3-level albuminuria. We expect that the success of this DMC-based diagnostic platform in real urine samples can signify a significant advancement in early clinical diagnosis of albuminuria and its associated diseases.
Collapse
Affiliation(s)
- Weihua Deng
- College of Material Science and Engineering, Shenzhen University, 518060 Shenzhen, China
| | - Zhongyong Xu
- College of Material Science and Engineering, Shenzhen University, 518060 Shenzhen, China.
| | - Na Li
- College of Material Science and Engineering, Shenzhen University, 518060 Shenzhen, China
| | - Taoyuze Lv
- School of Physics, The University of Sydney, NSW 2006, Australia
| | - Lei Wang
- College of Material Science and Engineering, Shenzhen University, 518060 Shenzhen, China
| | - Mingle Li
- College of Material Science and Engineering, Shenzhen University, 518060 Shenzhen, China
| | - Xiaoqiang Chen
- College of Material Science and Engineering, Shenzhen University, 518060 Shenzhen, China
| | - Bin Liu
- College of Material Science and Engineering, Shenzhen University, 518060 Shenzhen, China.
| |
Collapse
|
3
|
Koch TB, Gabler AM, Biener F, Kreißl J, Frank O, Dawid C, Briesen H. Investigating the Role of Odorant-Polymer Interactions in the Aroma Perception of Red Wine: A Density Functional Theory-Based Approach. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:20231-20242. [PMID: 38062740 DOI: 10.1021/acs.jafc.3c03443] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
The aroma of red wine results from the intricate interplay between aroma compounds (odorants) and complex polymers generated during fermentation. This study combines density functional theory (DFT), human sensory experiments, and nuclear magnetic resonance to investigate the impact of odorant-polymer interactions on wine aroma. Molecular aggregation patterns of odorants with polymer segments are identified, indicating the crucial role of intermolecular noncovalent interactions, such as hydrogen bonds and van der Waals interactions, in stabilizing odorant-polymer conformations. Certain odorants, including 3-isobutyl-2-methoxypyrazine and cis-whisky lactone, exhibit high binding affinity to specific polymer segments, such as (+)-catechin and p-coumaric acid, resulting in substantial changes in the perceived aroma. Their strong binding affinities correlate with changes in sensory experiments for binary mixtures. The results provide insights into the molecular mechanisms of odorant-polymer interactions in red wine with the potential of DFT calculations as a tool for predicting and tailoring red wine aroma.
Collapse
Affiliation(s)
- Tobias B Koch
- Chair of Process Systems Engineering, TUM School of Life Sciences, Technical University of Munich, Gregor-Mendel-Str. 4, D-85354 Freising, Germany
| | - Anna M Gabler
- Chair of Food Chemistry and Molecular Sensory Science, TUM School of Life Sciences, Technical University of Munich, Lise-Meitner-Str. 34, D-85354 Freising, Germany
| | - Florian Biener
- Chair of Food Chemistry and Molecular Sensory Science, TUM School of Life Sciences, Technical University of Munich, Lise-Meitner-Str. 34, D-85354 Freising, Germany
| | - Johanna Kreißl
- Leibniz-Institute for Food Systems Biology at the Technical University of Munich, Lise-Meitner-Str. 34, D-85354 Freising, Germany
| | - Oliver Frank
- Chair of Food Chemistry and Molecular Sensory Science, TUM School of Life Sciences, Technical University of Munich, Lise-Meitner-Str. 34, D-85354 Freising, Germany
| | - Corinna Dawid
- Chair of Food Chemistry and Molecular Sensory Science, TUM School of Life Sciences, Technical University of Munich, Lise-Meitner-Str. 34, D-85354 Freising, Germany
- Professorship for Functional Phytometabolomics, TUM School of Life Sciences, Technical University of Munich, Lise-Meitner-Str. 34, 85354 Freising, Germany
| | - Heiko Briesen
- Chair of Process Systems Engineering, TUM School of Life Sciences, Technical University of Munich, Gregor-Mendel-Str. 4, D-85354 Freising, Germany
| |
Collapse
|
4
|
Qian J, Zhu H, Zhang J, Zhao C, Li X, Guo H. Separation and Purification of Bamboo Leaf Flavones by Polyvinylpolypyrrolidone Adsorption. J Chromatogr Sci 2023; 61:885-891. [PMID: 37009711 DOI: 10.1093/chromsci/bmad027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/18/2023] [Indexed: 04/04/2023]
Abstract
In view of the adsorption performance of polyvinylpolypyrrolidone (PVPP) to flavones, the adsorption and purification of bamboo leaf flavones (BLFs) by PVPP were studied. The flavones solution was adsorbed by PVPP column chromatography, and then establish a relatively effective method for elution and purification of flavones from bamboo leaf. The optimal separation conditions of column chromatography were determined as the following: the feed concentration of 10 mg/mL, the ratio of diameter to height of 1:1.9, eluents of deionized water (21 mL) and 70% ethanol (800 mL) with a flow rate of 0.33 mL/min. The purity of flavones obtained from ethanol eluents (80-480 mL) was 96.2%. This showed that the PVPP had an ideal adsorption and purification effect on BLFs.
Collapse
Affiliation(s)
- Junqing Qian
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Hanxiao Zhu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jiangliu Zhang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Changyan Zhao
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xinchen Li
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Hui Guo
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|
5
|
Rafael D, Guerrero M, Marican A, Arango D, Sarmento B, Ferrer R, Durán-Lara EF, Clark SJ, Schwartz S. Delivery Systems in Ocular Retinopathies: The Promising Future of Intravitreal Hydrogels as Sustained-Release Scaffolds. Pharmaceutics 2023; 15:1484. [PMID: 37242726 PMCID: PMC10220769 DOI: 10.3390/pharmaceutics15051484] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Slow-release delivery systems are needed to ensure long-term sustained treatments for retinal diseases such as age-related macular degeneration and diabetic retinopathy, which are currently treated with anti-angiogenic agents that require frequent intraocular injections. These can cause serious co-morbidities for the patients and are far from providing the adequate drug/protein release rates and required pharmacokinetics to sustain prolonged efficacy. This review focuses on the use of hydrogels, particularly on temperature-responsive hydrogels as delivery vehicles for the intravitreal injection of retinal therapies, their advantages and disadvantages for intraocular administration, and the current advances in their use to treat retinal diseases.
Collapse
Affiliation(s)
- Diana Rafael
- Drug Delivery & Targeting, Vall d’Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain;
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Functional Validation & Preclinical Research (FVPR), 20 ICTS Nanbiosis, Vall d’Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain
| | - Marcelo Guerrero
- Bio & Nano Materials Lab, Drug Delivery and Controlled Release, Departamento de Microbiología, Facultad de Ciencias de la Salud, Universidad de Talca, Talca 3460000, Chile; (M.G.); (A.M.); (E.F.D.-L.)
- Center for Nanomedicine, Diagnostic & Drug Development (ND3), Universidad de Talca, Talca 3460000, Chile
| | - Adolfo Marican
- Bio & Nano Materials Lab, Drug Delivery and Controlled Release, Departamento de Microbiología, Facultad de Ciencias de la Salud, Universidad de Talca, Talca 3460000, Chile; (M.G.); (A.M.); (E.F.D.-L.)
- Center for Nanomedicine, Diagnostic & Drug Development (ND3), Universidad de Talca, Talca 3460000, Chile
- Instituto de Química de Recursos Naturales, Universidad de Talca, Talca 3460000, Chile
| | - Diego Arango
- Group of Biomedical Research in Digestive Tract Tumors, Vall d’Hebron University Hospital Research Institute (VHIR), Universitat Autònoma de Barcelona, 08035 Barcelona, Spain;
- Group of Molecular Oncology, Biomedical Research Institute of Lleida (IRBLleida), 25198 Lleida, Spain
| | - Bruno Sarmento
- i3S-Instituto de Investigação e Inovação, Saúde Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal;
| | - Roser Ferrer
- Clinical Biochemistry Group, Vall d’Hebron Hospital, 08035 Barcelona, Spain;
| | - Esteban F. Durán-Lara
- Bio & Nano Materials Lab, Drug Delivery and Controlled Release, Departamento de Microbiología, Facultad de Ciencias de la Salud, Universidad de Talca, Talca 3460000, Chile; (M.G.); (A.M.); (E.F.D.-L.)
- Center for Nanomedicine, Diagnostic & Drug Development (ND3), Universidad de Talca, Talca 3460000, Chile
| | - Simon J. Clark
- Department for Ophthalmology, University Eye Clinic, Eberhard Karls University of Tübingen, 72076 Tübingen, Germany
- Institute for Ophthalmic Research, Eberhard Karls University of Tübingen, 72076 Tübingen, Germany
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK
| | - Simo Schwartz
- Drug Delivery & Targeting, Vall d’Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain;
- Clinical Biochemistry Group, Vall d’Hebron Hospital, 08035 Barcelona, Spain;
| |
Collapse
|
6
|
Poly(ethylene glycol) (PEG)-based microgels embedded with magnetic nanoparticles for tannin removal and valorization. KOREAN J CHEM ENG 2023. [DOI: 10.1007/s11814-022-1328-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
7
|
Ibáñez D, González-García MB, Hernández-Santos D, Fanjul-Bolado P. Spectroelectrochemical Enzyme Sensor System for Acetaldehyde Detection in Wine. BIOSENSORS 2022; 12:1032. [PMID: 36421150 PMCID: PMC9688840 DOI: 10.3390/bios12111032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/09/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
A new spectroelectrochemical two-enzyme sensor system has been developed for the detection of acetaldehyde in wine. A combination of spectroscopy and electrochemistry improves the analytical features of the electrochemical sensor because the optical information collected with this system is only associated with acetaldehyde and avoids the interferents also present in wines as polyphenols. Spectroelectrochemical detection is achieved by the analysis of the optical properties of the K3[Fe(CN)6]/K4[Fe(CN)6] redox couple involved in the enzymatic process: aldehyde dehydrogenase catalyzes the aldehyde oxidation using β-nicotinamide adenine dinucleotide hydrate (NAD+) as a cofactor and, simultaneously, diaphorase reoxidizes the NADH formed in the first enzymatic process due to the presence of K3[Fe(CN)6]. An analysis of the characteristic UV-vis bands of K3[Fe(CN)6] at 310 and 420 nm allows the detection of acetaldehyde, since absorption bands are only related to the oxidation of this substrate, and avoids the contribution of other interferents.
Collapse
|
8
|
Wine Faults: State of Knowledge in Reductive Aromas, Oxidation and Atypical Aging, Prevention, and Correction Methods. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27113535. [PMID: 35684472 PMCID: PMC9182507 DOI: 10.3390/molecules27113535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/24/2022] [Accepted: 05/27/2022] [Indexed: 11/17/2022]
Abstract
The review summarizes the latest scientific findings and recommendations for the prevention of three very common wine faults of non-microbial origin. The first group, presented by the reductive aromas, is caused mainly by excessive H2S and other volatile sulfur compounds with a negative impact on wine quality. The most efficient prevention of undesirable reductive aromas in wine lies in creating optimal conditions for yeast and controlling the chemistry of sulfur compounds, and the pros and cons of correction methods are discussed. The second is browning which is associated especially with the enzymatic and non-enzymatic reaction of polyphenols and the prevention of this fault is connected with decreasing the polyphenol content in must, lowering oxygen access during handling, the use of antioxidants, and correction stands for the use of fining agents. The third fault, atypical aging, mostly occurs in the agrotechnics of the entire green land cover in the vineyard and the associated stress from lack of nutrients and moisture. Typical fox tones, naphthalene, or wet towel off-odors, especially in white wines are possible to prevent by proper moisture and grassland cover and alternating greenery combined with harmonious nutrition, while the correction is possible only partially with an application of fresh yeast. With the current knowledge, the mistakes in wines of non-microbial origin can be reliably prevented. Prevention is essential because corrective solutions for the faults are difficult and never perfect.
Collapse
|
9
|
Evaluation of Plant-Based Byproducts as Green Fining Agents for Precision Winemaking. Molecules 2022; 27:molecules27051671. [PMID: 35268772 PMCID: PMC8911674 DOI: 10.3390/molecules27051671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/26/2022] [Accepted: 03/02/2022] [Indexed: 11/16/2022] Open
Abstract
Consumers are increasingly looking for foods, including wine, that are free of animal-derived proteins. This study seeks to evaluate patatin, a new, plant-based and allergen-free fining agent, by comparing it with the fining agents polyvinipolypyrrolidone, bovine serum albumin, and methylcellulose. Specifically, its effects on the phenolic profile of enological tannins were analyzed with four spectrophotometric assays: OD 280 nm, Folin−Ciocâlteu, Adams−Harbertson, and methylcellulose. In addition, changes in the polyphenol composition of Sangiovese red wine were determined by UV-Vis spectrophotometry and HPLC with adsorption trials, and the solid−liquid interaction in a wine solution was modeled by both Langmuir and Freundlich equations. Our findings highlight the occurrence of systematic proportional error between the selected spectrophotometric assays. As a result, direct comparisons of protein precipitation assays can be made only among results obtained with the same spectrophotometric method. However, it is clear that patatin has an impact on the phenolic profile of Sangiovese red wine: it removes simple phenolics (gallic acid, (+)-catechin, (−)-epicatechin, epicatechin gallate, syringic acid, fertaric acid, coutaric acid, and rutin) as well as both oligomeric and polymeric tannins to different extents. In concentrations of less than 1 g/L, the patatin isotherm showed a linear relation between the equilibrium concentration and the quantity absorbed, obeying the Freundlich model reasonably well (KF 1.46; 1/n 1.07; R2 0.996 with 1/n > 1). Thus, the adsorption process is strongly dependent on the fining dosage.
Collapse
|
10
|
Elucidating the Color of Rosé Wines Using Polyphenol-Targeted Metabolomics. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27041359. [PMID: 35209149 PMCID: PMC8874620 DOI: 10.3390/molecules27041359] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 02/14/2022] [Accepted: 02/15/2022] [Indexed: 11/16/2022]
Abstract
The color of rosé wines is extremely diverse and a key element in their marketing. It is due to the presence of anthocyanins and of additional pigments derived from them and from other wine constituents. To explore the pigment composition and determine its links with color, 268 commercial rosé wines were analysed. The concentration of 125 polyphenolic compounds was determined by a targeted metabolomics approach using ultra high-performance liquid chromatography coupled to triple quadrupole mass spectrometry (UHPLC-QqQ-MS) analysis in the Multiple Reaction Monitoring (MRM) mode and the color characterised by spectrophotometry and CieLab parameters. Chemometrics analysis of the composition and color data showed that although color intensity is primarily determined by polyphenol extraction (especially anthocyanins and flavanols) from the grapes, different color styles correspond to different pigment compositions. The salmon shade of light rosé wines is mostly due to pyranoanthocyanin pigments, resulting from reactions of anthocyanins with phenolic acids and pyruvic acid, a yeast metabolite. Redness of intermediate color wines is related to anthocyanins and carboxypoyranoanthocyanins and that of dark rosé wines to products of anthocyanin reactions with flavanols while yellowness of these wines is associated to oxidation.
Collapse
|
11
|
Mohammad Alwi M, Normaya E, Ismail H, Iqbal A, Mat Piah B, Abu Samah MA, Ahmad MN. Two-Dimensional Infrared Correlation Spectroscopy, Conductor-like Screening Model for Real Solvents, and Density Functional Theory Study on the Adsorption Mechanism of Polyvinylpolypyrrolidone for Effective Phenol Removal in an Aqueous Medium. ACS OMEGA 2021; 6:25179-25192. [PMID: 34632177 PMCID: PMC8495713 DOI: 10.1021/acsomega.1c02699] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 09/09/2021] [Indexed: 06/13/2023]
Abstract
The discharge of industrial effluents, such as phenol, into aquatic and soil environments is a global problem due to its serious negative impacts on human health and aquatic ecosystems. In this study, the ability of polyvinylpolypyrrolidone (PVPP) to remove phenol from an aqueous medium was investigated. The results showed that a significant proportion of phenol (up to 74.91%) was removed using PVPP at pH 6.5. Isotherm adsorption experiments of phenol on PVPP indicated that the best-fit adsorption was obtained using Langmuir models. The response peaks of the hydroxyl groups of phenol (OH) and the carboxyl groups (i.e., C=O) of PVPP were altered, indicating the formation of a hydrogen bond between the PVPP and phenol during phenol removal, as characterized using 1D and 2D IR spectroscopy. The resulting complexes were successfully characterized based on their thermodynamic properties, Mulliken charge, and electronic transition using the DFT approach. To clarify the types of interactions taking place in the complex systems, quantum theory of atoms in molecules (QTAIM) analysis, reduced density gradient noncovalent interaction (RDG-NCI) approach, and conductor-like screening model for real solvents (COSMO-RS) approach were also successfully calculated. The results showed that the interactions that occurred in the process of removing phenol by PVPP were through hydrogen bonding (based on RDG-NCI and COSMO-RS), which was identified as an intermediate type (∇2ρ(r) > 0 and H < 0, QTAIM). To gain a deeper understanding of how these interactions occurred, further characterization was performed based on adsorption mechanisms using molecular electrostatic potential, global reactivity, and local reactivity descriptors. The results showed that during hydrogen bond formation, PVPP acts as a nucleophile, whereas phenol acts as an electrophile and the O9 atom (i.e., donor electron) reacts with the H22 atom (i.e., acceptor electron).
Collapse
Affiliation(s)
- Muhammad
Ammar Mohammad Alwi
- Experimental
and Theoretical Research Lab, Department of Chemistry, Kulliyyah of Science, International Islamic University
of Malaysia, 25200 Kuantan, Pahang, Malaysia
| | - Erna Normaya
- Experimental
and Theoretical Research Lab, Department of Chemistry, Kulliyyah of Science, International Islamic University
of Malaysia, 25200 Kuantan, Pahang, Malaysia
- River
of Life (ROL) Kuantan Chapter, International
Islamic University of Malaysia, 25200 Kuantan, Pahang, Malaysia
- Innovative
Toyyib Environment Minds (ITEMS), International Islamic University
of Malaysia, 25200 Kuantan, Pahang, Malaysia
| | - Hakimah Ismail
- Experimental
and Theoretical Research Lab, Department of Chemistry, Kulliyyah of Science, International Islamic University
of Malaysia, 25200 Kuantan, Pahang, Malaysia
| | - Anwar Iqbal
- School
of Chemical Science, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Bijarimi Mat Piah
- Faculty
of Chemical & Natural Resources Engineering, Universiti Malaysia Pahang, 26300 Kuantan, Pahang, Malaysia
| | - Mohd Armi Abu Samah
- Experimental
and Theoretical Research Lab, Department of Chemistry, Kulliyyah of Science, International Islamic University
of Malaysia, 25200 Kuantan, Pahang, Malaysia
- River
of Life (ROL) Kuantan Chapter, International
Islamic University of Malaysia, 25200 Kuantan, Pahang, Malaysia
- Innovative
Toyyib Environment Minds (ITEMS), International Islamic University
of Malaysia, 25200 Kuantan, Pahang, Malaysia
| | - Mohammad Norazmi Ahmad
- Experimental
and Theoretical Research Lab, Department of Chemistry, Kulliyyah of Science, International Islamic University
of Malaysia, 25200 Kuantan, Pahang, Malaysia
- River
of Life (ROL) Kuantan Chapter, International
Islamic University of Malaysia, 25200 Kuantan, Pahang, Malaysia
- Innovative
Toyyib Environment Minds (ITEMS), International Islamic University
of Malaysia, 25200 Kuantan, Pahang, Malaysia
- Drug and
Poison Call Centre, IIUM Poison Centre, International Islamic University of Malaysia, 25200 Kuantan, Pahang, Malaysia
| |
Collapse
|
12
|
Improvement of light stability of DHR123 radio fluorogenic nano clay gel dosimeter by incorporating a new dispersant. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2021.113423] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
13
|
Yang Y, Yang Y, Zhang J, Yao K, Liu J, Shao B. Combination of polyvinylpolypyrrolidone extraction and standard addition strategy for the accurate determination of multiple allergen residues in red wine by UPLC-MS/MS. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1179:122849. [PMID: 34246171 DOI: 10.1016/j.jchromb.2021.122849] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 05/28/2021] [Accepted: 06/26/2021] [Indexed: 01/17/2023]
Abstract
During the winemaking process, fining materials derived from milk and egg products are traditionally used to remove undesirable substances to reduce bitterness and astringency. The possible residues of allergens in treated wine may pose a potential risk for allergy patients. In this study, we developed a method for the simultaneous quantification of eight allergens (αS1-casein, αS2-casein, β-casein, κ-casein, β-lactoglobulin, lysozyme, ovalbumin and ovotransferrin) in red wine by ultrahigh-performance liquid chromatography coupled to tandem mass spectrometry (UPLC-MS/MS). The sample was extracted with polyvinylpolypyrrolidone (PVPP) solution, following trypsin digestion and peptide-level purification by solid-phase extraction (SPE). A strategy based on standard addition was used for the accurate quantification of the target allergens in wine products. The limits of detection (LODs) were shown to be 0.003-0.015 μg/mL for milk allergens and 0.1 μg/mL for egg allergens. This economical and reliable method would be appropriate for routine analysis and further allergen label management for red wine.
Collapse
Affiliation(s)
- Yunjia Yang
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, China; Beijing Research Center for Preventive Medicine, Beijing 100013, China
| | - Yi Yang
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, China; Beijing Research Center for Preventive Medicine, Beijing 100013, China
| | - Jing Zhang
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, China; Beijing Research Center for Preventive Medicine, Beijing 100013, China
| | - Kai Yao
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, China; Beijing Research Center for Preventive Medicine, Beijing 100013, China
| | - Jinyuan Liu
- School of Public Health, Capital Medical University, Beijing 100069, China
| | - Bing Shao
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, China; Beijing Research Center for Preventive Medicine, Beijing 100013, China; School of Public Health, Capital Medical University, Beijing 100069, China; College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
14
|
Pascotto K, Leriche C, Caillé S, Violleau F, Boulet JC, Geffroy O, Levasseur-Garcia C, Cheynier V. Study of the relationship between red wine colloidal fraction and astringency by asymmetrical flow field-flow fractionation coupled with multi-detection. Food Chem 2021; 361:130104. [PMID: 34087570 DOI: 10.1016/j.foodchem.2021.130104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 05/07/2021] [Accepted: 05/11/2021] [Indexed: 01/17/2023]
Abstract
Macromolecules including condensed tannins and polysaccharides impact wine taste and especially astringency. Asymmetrical Flow-Field-Flow-Fractionation (AF4) coupled to UV detection (UV), multi-angle light scattering (MALS) and refractive index detection (dRI) has been proposed to separate red wine colloids. The present work aimed at relating AF4-mutidetection profiles with red wine astringency. Fifty commercial red wines characterized by a trained sensory panel were analysed by AF4-UV-MALS-dRI and UV-visible spectroscopy. The analytical data set was built by selecting the three variables most predictive of the astringency score from each table (UV, dRI, MALS, Mw distribution, and UV-visible spectra of whole wine, permeate and retentate A4F fractions) and analysed by principal component analysis. Red wine astringency was more related to variables extracted from the AF4 data than to UV- absorbance of the wine or permeate, confirming the relevance of AF4-multidetection for analysis of the colloidal fraction involved in this perception.
Collapse
Affiliation(s)
- Kevin Pascotto
- Plateforme TFFFC, Université de Toulouse, INP-PURPAN, Toulouse, France; Laboratoire de Chimie Agro-industrielle, LCA, Université de Toulouse, INRAE, Toulouse, France
| | | | - Soline Caillé
- SPO, INRAE, Univ Montpellier, Institut Agro, Montpellier, France
| | - Frédéric Violleau
- Plateforme TFFFC, Université de Toulouse, INP-PURPAN, Toulouse, France; Laboratoire de Chimie Agro-industrielle, LCA, Université de Toulouse, INRAE, Toulouse, France
| | - Jean-Claude Boulet
- SPO, INRAE, Univ Montpellier, Institut Agro, Montpellier, France; INRAE, PROBE Research Infrastructure, Polyphenol Analytical Facility, Montpellier, France.
| | - Olivier Geffroy
- Plateforme TFFFC, Université de Toulouse, INP-PURPAN, Toulouse, France
| | | | | |
Collapse
|
15
|
López-Puertollano D, Agulló C, Mercader JV, Abad-Somovilla A, Abad-Fuentes A. Immunoanalytical methods for ochratoxin A monitoring in wine and must based on innovative immunoreagents. Food Chem 2020; 345:128828. [PMID: 33338836 DOI: 10.1016/j.foodchem.2020.128828] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 12/01/2020] [Accepted: 12/03/2020] [Indexed: 12/19/2022]
Abstract
Immunochemical methods are highly deployed in analytical laboratories worldwide for monitoring the incidence of mycotoxins in the food chain. Nevertheless, most conventional immunoassays for ochratoxin A (OTA), including commercial kits, show limitations to robustly determine this mycotoxin in grape-derived products below regulated levels (2 ng/mL). Herein, two rapid tests for sensitive OTA determination in wine and must were developed capitalizing on a collection of bioconjugates from innovative synthetic haptens and monoclonal antibodies with subnanomolar affinity. The ELISA (LOD = 8 pg/mL) showed excellent performance in recovery studies, and it was applied to survey commercial wines and musts for OTA contamination. Concerning LFIA, validation according to the Commission Regulation 519/2014 showed that samples exceeding 2 ng/mL were properly scored as uncompliant. More importantly, illegal samples provided a complete inhibition of the test signal, making this test an easy-to-use, rapid, and convenient screening method for in-house control of OTA in wineries.
Collapse
Affiliation(s)
- Daniel López-Puertollano
- Department of Organic Chemistry, Universitat de València, Doctor Moliner 50, 46100 Burjassot, València, Spain
| | - Consuelo Agulló
- Department of Organic Chemistry, Universitat de València, Doctor Moliner 50, 46100 Burjassot, València, Spain
| | - Josep V Mercader
- Institute of Agrochemistry and Food Technology (IATA), Spanish National Research Council (CSIC), Agustí Escardino 7, 46980 Paterna, València, Spain
| | - Antonio Abad-Somovilla
- Department of Organic Chemistry, Universitat de València, Doctor Moliner 50, 46100 Burjassot, València, Spain
| | - Antonio Abad-Fuentes
- Institute of Agrochemistry and Food Technology (IATA), Spanish National Research Council (CSIC), Agustí Escardino 7, 46980 Paterna, València, Spain.
| |
Collapse
|
16
|
Gil M, Reynes C, Cazals G, Enjalbal C, Sabatier R, Saucier C. Discrimination of rosé wines using shotgun metabolomics with a genetic algorithm and MS ion intensity ratios. Sci Rep 2020; 10:1170. [PMID: 31980696 PMCID: PMC6981237 DOI: 10.1038/s41598-020-58193-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 01/13/2020] [Indexed: 01/09/2023] Open
Abstract
A rapid Ultra Performance Liquid Chromatography coupled with Quadrupole/Time Of Flight Mass Spectrometry (UPLC-QTOF-MS) method was designed to quickly acquire high-resolution mass spectra metabolomics fingerprints for rosé wines. An original statistical analysis involving ion ratios, discriminant analysis, and genetic algorithm (GA) was then applied to study the discrimination of rosé wines according to their origins. After noise reduction and ion peak alignments on the mass spectra, about 14 000 different signals were detected. The use of an in-house mass spectrometry database allowed us to assign 72 molecules. Then, a genetic algorithm was applied on two series of samples (learning and validation sets), each composed of 30 commercial wines from three different wine producing regions of France. Excellent results were obtained with only four diagnostic peaks and two ion ratios. This new approach could be applied to other aspects of wine production but also to other metabolomics studies.
Collapse
Affiliation(s)
- Mélodie Gil
- Univ Montpellier, SPO, INRAE, Montpellier Supagro, Montpellier, France
| | | | | | | | | | - Cédric Saucier
- Univ Montpellier, SPO, INRAE, Montpellier Supagro, Montpellier, France.
| |
Collapse
|
17
|
Gaspar LM, Machado A, Coutinho R, Sousa S, Santos R, Xavier A, Figueiredo M, Teixeira MDF, Centeno F, Simões J. Development of Potential Yeast Protein Extracts for Red Wine Clarification and Stabilization. Front Microbiol 2019; 10:2310. [PMID: 31649649 PMCID: PMC6794431 DOI: 10.3389/fmicb.2019.02310] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 09/20/2019] [Indexed: 11/25/2022] Open
Abstract
Recently, new technologies have been combined to improve quality and sensorial diversity of wine. Several fining agents were developed to induce flocculation and sedimentation of particulate matter in wine, enhancing its clarification, and stabilization. The fining agents most commonly used are animal proteins, such as milk casein or egg albumin. However, its use is being related to food intolerance. To overcome this issue, alternative sources should be explored for use in industrial processes. In previous studies performed by our consortium, the potential of yeast protein extracts (YPE) in white wine clarification, stabilization, and curative processes was identified. Thus, the main objective of the present work is to select YPE with the potential to develop fining agents for red wine, without health risk to consumers. Therefore, five yeast strains were selected from a diversified collection of oenological yeasts, in order to produce protein extracts. Along with the fining trials, a vinification assay was performed to evaluate the maceration effect of the obtained YPE. The previously selected yeast strains were also screened for the production of the usual enzymatic activities found in commercial maceration preparations, namely polygalacturonase, cellulase, protease, and ß-glucosidase activities, in order to evaluate its potential effect on wine. Our results indicate that YPE, particularly BCVII 1, BCVII 2, and BCVII 5 were able to promote a significant brilliance increase, along with a turbidity reduction and final color improvement. In the vinification assay, BCVII 2 stands out with better results for color intensity and phenolic compounds content improvement. In what refers to enzymatic activities, BCVII 2 shows advantage over the other YPEs, due to its protease and β-glucosidase activity. We demonstrate that the selected YPEs, with emphasis on BCVII 2, may represent an efficient alternative to the commonly used fining products.
Collapse
Affiliation(s)
| | | | | | | | | | - Adriana Xavier
- PROENOL – Indústria Biotecnológica, Lda., Canelas, Portugal
| | | | | | - Filipe Centeno
- PROENOL – Indústria Biotecnológica, Lda., Canelas, Portugal
| | - João Simões
- Genomics Unit, Biocant, Cantanhede, Portugal
| |
Collapse
|
18
|
Gil M, Louazil P, Iturmendi N, Moine V, Cheynier V, Saucier C. Effect of polyvinylpolypyrrolidone treatment on rosés wines during fermentation: Impact on color, polyphenols and thiol aromas. Food Chem 2019; 295:493-498. [PMID: 31174786 DOI: 10.1016/j.foodchem.2019.05.125] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 05/15/2019] [Accepted: 05/17/2019] [Indexed: 10/26/2022]
Abstract
Fining treatment with polyvinylpolypyrrolidone (PVPP) is often used during winemaking of rosé wines. It can modulate the intensity and hue of their pink color and prevent some organoleptic degradations. In this paper, the effect of PVPP treatments on rosé wine during fermentation was investigated by measuring color, polyphenol content and thiol aromas. As expected, colorimetry results showed a decrease in color, indicating some adsorption of anthocyanins and other pigments. This was confirmed by UPLC-ESI-MS/MS analyses. Specific adsorption of certain families of polyphenols was evidenced. Flavonols, flavanols and anthocyanins, especially coumaroylated anthocyanins were preferentially adsorbed by PVPP. The thiol content (3-sulfanylhexyl acetate (3SHA) and 3-sulfanylhexan-1-ol (3SH)) was usually higher after PVPP treatments, in a dose dependent manner. A possible explanation is that the partial adsorption of some polyphenols at an early stage of fermentation would later limit the amount of quinone compounds able to trap thiol aromas.
Collapse
Affiliation(s)
- Mélodie Gil
- SPO, Univ Montpellier, INRA, Montpellier SupAgro, Montpellier, France
| | | | | | - Virginie Moine
- Biolaffort, 126 Quai de la Souys, 33100 Bordeaux, France
| | | | - Cédric Saucier
- SPO, Univ Montpellier, INRA, Montpellier SupAgro, Montpellier, France.
| |
Collapse
|
19
|
Oak barrel tannin and toasting temperature: Effects on red wine anthocyanin chemistry. Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2018.09.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
20
|
Liang C, Boss PK, Jeffery DW. Extraction Properties of New Polymeric Sorbents Applied to Wine. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:10086-10096. [PMID: 30222344 DOI: 10.1021/acs.jafc.8b04641] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Polymeric sorbents are frequently used in wine, either as solid phase extraction materials for isolation of analytes or as sorptive materials for removal of undesirable compounds (amelioration). Six new polymeric sorbents were produced thermally or in a microwave from various ratios of methacrylic acid, acrylic acid, and 4-vinylbenzoic acid as hydrophilic monomers, together with ethylene glycol dimethacrylate as cross-linker, using different porogen solvents. The relationship between physicochemical properties (pore size, surface area, and polarity) of the sorbents and their sorption properties for compounds in wine was investigated and compared to four commercially available sorbents. With some similarities to their commercial counterparts depending on hydrophobic and hydrophilic characteristics, the six new sorbents showed specificity toward different groups of compounds (e.g., volatiles and phenolics) and could be applied for targeted purposes. The results provide insight into the selection and utilization of new polymeric materials for extraction of components from wine.
Collapse
Affiliation(s)
- Chen Liang
- The Australian Research Council Training Centre for Innovative Wine Production and Department of Wine and Food Science , The University of Adelaide , Waite Campus, PMB 1, Glen Osmond , SA 5064 , Australia
| | - Paul K Boss
- CSIRO Agriculture and Food , PMB 2, Glen Osmond , SA 5064 , Australia
| | - David W Jeffery
- The Australian Research Council Training Centre for Innovative Wine Production and Department of Wine and Food Science , The University of Adelaide , Waite Campus, PMB 1, Glen Osmond , SA 5064 , Australia
| |
Collapse
|
21
|
Avila-Salas F, Rodriguez Nuñez YA, Marican A, Castro RI, Villaseñor J, Santos LS, Wehinger S, Durán-Lara EF. Rational Development of a Novel Hydrogel as a pH-Sensitive Controlled Release System for Nifedipine. Polymers (Basel) 2018; 10:E806. [PMID: 30960732 PMCID: PMC6403543 DOI: 10.3390/polym10070806] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 07/10/2018] [Accepted: 07/22/2018] [Indexed: 11/16/2022] Open
Abstract
This work depicts the rational development (in-silico design, synthesis, characterization and in-vitro evaluation) of polyvinyl alcohol hydrogels (PVAH) cross-linked with maleic acid (MA) and linked to γ-cyclodextrin molecules (γ-CDPVAHMA) as systems for the controlled and sustained release of nifedipine (NFD). Through computational studies, the structural blocks (PVA chain + dicarboxylic acid + γ-CD) of 20 different hydrogels were evaluated to test their interaction energies (ΔE) with NFD. According to the ΔE obtained, the hydrogel cross-linked with maleic acid was selected. To characterize the intermolecular interactions between NFD and γ-CDPVAHMA, molecular dynamics simulation studies were carried out. Experimentally, three hydrogel formulations with different proportions of γ-CD (2.43%, 3.61% and 4.76%) were synthesized and characterized. Both loading and release of NFD from the hydrogels were evaluated at acid and basic pH. The computational and experimental results show that γ-CDs linked to the hydrogels were able to form 1:1 inclusion complexes with NFD molecules. Finally, γ-CDPVAHMA-3 demonstrated to be the best pH-sensitive release platform for nifedipine. Its effectiveness could significantly reduce the adverse effects caused by the anticipated release of NFD in the stomach of patients.
Collapse
Affiliation(s)
- Fabián Avila-Salas
- Centro de Nanotecnología Aplicada, Facultad de Ciencias, Universidad Mayor, Huechuraba 8580000, Región Metropolitana, Chile.
| | - Yeray A Rodriguez Nuñez
- BioNanoMaterials Lab|Drug Delivery and Controlled Release, Universidad de Talca, Talca 3460000, Maule, Chile.
| | - Adolfo Marican
- BioNanoMaterials Lab|Drug Delivery and Controlled Release, Universidad de Talca, Talca 3460000, Maule, Chile.
- Instituto de Química de Recursos Naturales, Universidad de Talca, Talca 3460000, Maule, Chile.
| | - Ricardo I Castro
- Multidisciplinary Agroindustry Research Laboratory, Universidad Autónoma de Chile, Talca 3460000, Maule, Chile.
- Carrera de Ingeniería en Construcción e Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Talca 3460000, Maule, Chile.
| | - Jorge Villaseñor
- Instituto de Química de Recursos Naturales, Universidad de Talca, Talca 3460000, Maule, Chile.
| | - Leonardo S Santos
- Instituto de Química de Recursos Naturales, Universidad de Talca, Talca 3460000, Maule, Chile.
| | - Sergio Wehinger
- Department of Clinical Biochemistry and Immunohematology, Faculty of Heatlh Sciences, Universidad de Talca, Talca 3460000, Maule, Chile.
- Center for Studies of Exercise, Metabolism and Cancer (CEMC), Universidad de Chile, Independencia 8380000, Región Metropolitana, Chile.
| | - Esteban F Durán-Lara
- BioNanoMaterials Lab|Drug Delivery and Controlled Release, Universidad de Talca, Talca 3460000, Maule, Chile.
- Departamento de Microbiología, Facultad de Ciencias de la Salud, Universidad de Talca, Talca 3460000, Maule, Chile.
| |
Collapse
|
22
|
Rational Design, Synthesis and Evaluation of γ-CD-Containing Cross-Linked Polyvinyl Alcohol Hydrogel as a Prednisone Delivery Platform. Pharmaceutics 2018. [PMID: 29518980 PMCID: PMC5874843 DOI: 10.3390/pharmaceutics10010030] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
This study describes the in-silico rational design, synthesis and evaluation of cross-linked polyvinyl alcohol hydrogels containing γ-cyclodextrin (γ-CDHSAs) as platforms for the sustained release of prednisone (PDN). Through in-silico studies using semi-empirical quantum mechanical calculations, the effectiveness of 20 dicarboxylic acids to generate a specific cross-linked hydrogel capable of supporting different amounts of γ-cyclodextrin (γ-CD) was evaluated. According to the interaction energies calculated with the in-silico studies, the hydrogel made from PVA cross-linked with succinic acids (SA) was shown to be the best candidate for containing γ-CD. Later, molecular dynamics simulation studies were performed in order to evaluate the intermolecular interactions between PDN and three cross-linked hydrogel formulations with different proportions of γ-CD (2.44%, 4.76% and 9.1%). These three cross-linked hydrogels were synthesized and characterized. The loading and the subsequent release of PDN from the hydrogels were investigated. The in-silico and experimental results showed that the interaction between PDN and γ-CDHSA was mainly produced with the γ-CDs linked to the hydrogels. Thus, the unique structures and properties of γ-CDHSA demonstrated an interesting multiphasic profile that could be utilized as a promising drug carrier for controlled, sustained and localized release of PDN.
Collapse
|
23
|
Avila-Salas F, Marican A, Villaseñor J, Arenas-Salinas M, Argandoña Y, Caballero J, Durán-Lara EF. In-Silico Design, Synthesis and Evaluation of a Nanostructured Hydrogel as a Dimethoate Removal Agent. NANOMATERIALS (BASEL, SWITZERLAND) 2018; 8:E23. [PMID: 29300312 PMCID: PMC5791110 DOI: 10.3390/nano8010023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 12/28/2017] [Accepted: 12/30/2017] [Indexed: 11/16/2022]
Abstract
This study describes the in-silico design, synthesis, and evaluation of a cross-linked PVA hydrogel (CLPH) for the absorption of organophosphorus pesticide dimethoate from aqueous solutions. The crosslinking effectiveness of 14 dicarboxilic acids was evaluated through in-silico studies using semiempirical quantum mechanical calculations. According to the theoretical studies, the nanopore of PVA cross-linked with malic acid (CLPH-MA) showed the best interaction energy with dimethoate. Later, using all-atom molecular dynamics simulations, three hydrogels with different proportions of PVA:MA (10:2, 10:4, and 10:6) were used to evaluate their interactions with dimethoate. These results showed that the suitable crosslinking degree for improving the affinity for the pesticide was with 20% (W%) of the cross-linker. In the experimental absorption study, the synthesized CLPH-MA20 recovered 100% of dimethoate from aqueous solutions. Therefore, the theoretical data were correlated with the experimental studies. Surface morphology of CLPH-MA20 by Scanning Electron Microscopy (SEM) was analyzed. In conclusion, the ability of CLPH-MA20 to remove dimethoate could be used as a technological alternative for the treatment of contaminated water.
Collapse
Affiliation(s)
- Fabian Avila-Salas
- Centro de Nanotecnología Aplicada, Facultad de Ciencias, Universidad Mayor, Huechuraba 8580000, Chile.
- Centro de Bioinformática y Simulación Molecular, Facultad de Ingeniería, Universidad de Talca, Talca 3460000, Chile.
| | - Adolfo Marican
- Instituto de Química de Recursos Naturales, Universidad de Talca, Talca 3460000, Chile.
| | - Jorge Villaseñor
- Instituto de Química de Recursos Naturales, Universidad de Talca, Talca 3460000, Chile.
| | - Mauricio Arenas-Salinas
- Centro de Bioinformática y Simulación Molecular, Facultad de Ingeniería, Universidad de Talca, Talca 3460000, Chile.
| | - Yerko Argandoña
- Centro de Bioinformática y Simulación Molecular, Facultad de Ingeniería, Universidad de Talca, Talca 3460000, Chile.
| | - Julio Caballero
- Centro de Bioinformática y Simulación Molecular, Facultad de Ingeniería, Universidad de Talca, Talca 3460000, Chile.
| | - Esteban F Durán-Lara
- Instituto de Química de Recursos Naturales, Universidad de Talca, Talca 3460000, Chile.
- Biomaterials and Drug Delivery Laboratory, Núcleo Científico Multidisciplinario, Dirección de Investigación, Universidad de Talca, Talca 3460000, Chile.
| |
Collapse
|