1
|
Wu X, Chen R, Liang P, Zha J. Identification of Escherichia coli multidrug resistance transporters involved in anthocyanin biosynthesis. Front Microbiol 2024; 15:1357794. [PMID: 38646631 PMCID: PMC11026601 DOI: 10.3389/fmicb.2024.1357794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 03/25/2024] [Indexed: 04/23/2024] Open
Abstract
The anthocyanin compound cyanidin 3-O-glucoside (C3G) is a natural pigment widely used in food and nutraceutical industries. Its microbial synthesis by E. coli is a promising alternative to the traditional extraction methods. However, part of the synthesized C3G accumulates in the cytoplasm, thus potentially causing growth inhibition and product degradation. Therefore, it is necessary to enhance C3G secretion via exploration of native transporters facilitating C3G export. In this study, we report the screening and verification of native multidrug resistance transporters from 40 candidates in E. coli that can improve the extracellular C3G production when using catechin as the substrate. Overexpression of single transporter genes including fsr, yebQ, ynfM, mdlAB, and emrKY were found to increase C3G production by 0.5- to 4.8-fold. Genetic studies indicated that mdlAB and emrKY are vital transporters in the secretion of C3G. Our study reveals a set of new multidrug resistance transporters for the improvement of microbial biosynthesis of C3G and other anthocyanins.
Collapse
Affiliation(s)
- Xia Wu
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi’an, China
- Xi’an Key Laboratory of Antiviral and Antimicrobial-Resistant Bacteria Therapeutics Research, Xi’an, China
| | - Rongxia Chen
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi’an, China
| | - Ping Liang
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi’an, China
| | - Jian Zha
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi’an, China
- Xi’an Key Laboratory of Antiviral and Antimicrobial-Resistant Bacteria Therapeutics Research, Xi’an, China
| |
Collapse
|
2
|
Fang L, Han Z, Feng X, Hao X, Liu M, Song H, Cao Y. Identification of crucial roles of transcription factor IhfA on high production of free fatty acids in Escherichia coli. Synth Syst Biotechnol 2024; 9:144-151. [PMID: 38322110 PMCID: PMC10844884 DOI: 10.1016/j.synbio.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/07/2024] [Accepted: 01/18/2024] [Indexed: 02/08/2024] Open
Abstract
Transcription factor engineering has unique advantages in improving the performance of microbial cell factories due to the global regulation of gene transcription. Omics analyses and reverse engineering enable learning and subsequent incorporation of novel design strategies for further engineering. Here, we identify the role of the global regulator IhfA for overproduction of free fatty acids (FFAs) using CRISPRi-facilitated reverse engineering and cellular physiological characterization. From the differentially expressed genes in the ihfAL- strain, a total of 14 beneficial targets that enhance FFAs production by above 20 % are identified, which involve membrane function, oxidative stress, and others. For membrane-related genes, the engineered strains obtain lower cell surface hydrophobicity and increased average length of membrane lipid tails. For oxidative stress-related genes, the engineered strains present decreased reactive oxygen species (ROS) levels. These gene modulations enhance cellular robustness and save cellular resources, contributing to FFAs production. This study provides novel targets and strategies for engineering microbial cell factories with improved FFAs bioproduction.
Collapse
Affiliation(s)
- Lixia Fang
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Frontiers Research Institute for Synthetic Biology, Tianjin University, China
| | - Ziyi Han
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Frontiers Research Institute for Synthetic Biology, Tianjin University, China
| | - Xueru Feng
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Frontiers Research Institute for Synthetic Biology, Tianjin University, China
| | - Xueyan Hao
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Frontiers Research Institute for Synthetic Biology, Tianjin University, China
| | - Mengxiao Liu
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Frontiers Research Institute for Synthetic Biology, Tianjin University, China
| | - Hao Song
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Frontiers Research Institute for Synthetic Biology, Tianjin University, China
| | - Yingxiu Cao
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Frontiers Research Institute for Synthetic Biology, Tianjin University, China
| |
Collapse
|
3
|
Park WS, Shin KS, Jung HW, Lee Y, Sathesh-Prabu C, Lee SK. Combinatorial Metabolic Engineering Strategies for the Enhanced Production of Free Fatty Acids in Escherichia coli. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:13913-13921. [PMID: 36200488 DOI: 10.1021/acs.jafc.2c04621] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
In this study, we evaluated the effects of several metabolic engineering strategies in a systematic and combinatorial manner to enhance the free fatty acid (FFA) production in Escherichia coli. The strategies included (i) overexpression of mutant thioesterase I ('TesAR64C) to efficiently release the FFAs from fatty acyl-ACP; (ii) coexpression of global regulatory protein FadR; (iii) heterologous expression of methylmalonyl-CoA carboxyltransferase and phosphoenolpyruvate carboxylase to synthesize fatty acid precursor molecule malonyl-CoA; and (iv) disruption of genes associated with membrane proteins (GusC, MdlA, and EnvR) to improve the cellular state and export the FFAs outside the cell. The synergistic effects of these genetic modifications in strain SBF50 yielded 7.2 ± 0.11 g/L FFAs at the shake flask level. In fed-batch cultivation under nitrogen-limiting conditions, strain SBF50 produced 33.6 ± 0.02 g/L FFAs with a productivity of 0.7 g/L/h from glucose, which is the maximum titer reported in E. coli to date. Combinatorial metabolic engineering approaches can prove to be highly useful for the large-scale production of FA-derived chemicals and fuels.
Collapse
Affiliation(s)
- Woo Sang Park
- School of Energy & Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Kwang Soo Shin
- School of Energy & Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Hyun Wook Jung
- School of Energy & Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Yongjoo Lee
- School of Energy & Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Chandran Sathesh-Prabu
- School of Energy & Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Sung Kuk Lee
- School of Energy & Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| |
Collapse
|
4
|
Sawant N, Singh H, Appukuttan D. Overview of the Cellular Stress Responses Involved in Fatty Acid Overproduction in E. coli. Mol Biotechnol 2021; 64:373-387. [PMID: 34796451 DOI: 10.1007/s12033-021-00426-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 11/10/2021] [Indexed: 12/29/2022]
Abstract
Research on microbial fatty acid metabolism started in the late 1960s, and till date, various developments have aided in elucidating the fatty acid metabolism in great depth. Over the years, synthesis of microbial fatty acid has drawn industrial attention due to its diverse applications. However, fatty acid overproduction imparts various stresses on its metabolic pathways causing a bottleneck to further increase the fatty acid yields. Numerous strategies to increase fatty acid titres in Escherichia coli by pathway modulation have already been published, but the stress generated during fatty acid overproduction is relatively less studied. Stresses like pH, osmolarity and oxidative stress, not only lower fatty acid titres, but also alter the cell membrane composition, protein expression and membrane fluidity. This review discusses an overview of fatty acid synthesis pathway and presents a panoramic view of various stresses caused due to fatty acid overproduction in E. coli. It also addresses how certain stresses like high temperature and nitrogen limitation can boost fatty acid production. This review paper also highlights the interconnections that exist between these stresses.
Collapse
Affiliation(s)
- Neha Sawant
- Department of Biological Sciences, Sunandan Divatia School of Science, NMIMS Deemed to be University, Vile Parle (West), Mumbai, 400056, India
| | - Harinder Singh
- Department of Biological Sciences, Sunandan Divatia School of Science, NMIMS Deemed to be University, Vile Parle (West), Mumbai, 400056, India.
| | - Deepti Appukuttan
- Biosystems Engineering Lab, Department of Chemical Engineering, IIT Bombay, Powai, Mumbai, 400076, India.
| |
Collapse
|
5
|
Construction of a "nutrition supply-detoxification" coculture consortium for medium-chain-length polyhydroxyalkanoate production with a glucose-xylose mixture. J Ind Microbiol Biotechnol 2020; 47:343-354. [PMID: 32140930 DOI: 10.1007/s10295-020-02267-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 02/23/2020] [Indexed: 10/24/2022]
Abstract
In this study, we constructed a coculture consortium comprising engineered Pseudomonas putida KT2440 and Escherichia coli MG1655. Provision of "related" carbon sources and synthesis of medium-chain-length polyhydroxyalkanoates (mcl-PHAs) were separately assigned to these strains via a modular construction strategy. To avoid growth competition, a preference for the use of a carbon source was constructed. Further, the main intermediate metabolite acetate played an important role in constructing the expected "nutrition supply-detoxification" relationship between these strains. The coculture consortium showed a remarkable increase in the mcl-PHA titer (0.541 g/L) with a glucose-xylose mixture (1:1). Subsequently, the titer of mcl-PHA produced by the coculture consortium when tested with actual lignocellulosic hydrolysate (0.434 g/L) was similar to that achieved with laboratory sugars' mixture (0.469 g/L). These results indicate a competitive potential of the engineered E. coli-P. putida coculture consortium for mcl-PHA production with lignocellulosic hydrolysate.
Collapse
|
6
|
Lim JW, Shin KS, Ryu YS, Lee Y, Lee SK, Kim T. High-Throughput Screening of Acyl-CoA Thioesterase I Mutants Using a Fluid Array Platform. ACS OMEGA 2019; 4:21848-21854. [PMID: 31891062 PMCID: PMC6933594 DOI: 10.1021/acsomega.9b02826] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 11/26/2019] [Indexed: 06/10/2023]
Abstract
Screening target microorganisms from a mutated recombinant library plays a crucial role in advancing synthetic biology and metabolic engineering. However, conventional screening tools have several limitations regarding throughput, cost, and labor. Here, we used the fluid array platform to conduct high-throughput screening (HTS) that identified Escherichia coli 'TesA thioesterase mutants producing elevated yields of free fatty acids (FFAs) from a large (106) mutant library. A growth-based screening method using a TetA-RFP fusion sensing mechanism and a reporter-based screening method using high-level FFA producing mutants were employed to identify these mutants via HTS. The platform was able to cover >95% of the mutation library, and it screened target cells from many arrays of the fluid array platform so that a post-analysis could be conducted by gas chromatography. The 'TesA mutation of each isolated mutant showing improved FFA production in E. coli was characterized, and its enhanced FFA production capability was confirmed.
Collapse
Affiliation(s)
- Ji Won Lim
- Department
of Biomedical Engineering, Department of Mechanical Engineering, and Department of
Chemical Engineering, Ulsan National Institute
of Science and Technology, 50 UNIST-gil, Eonyang-eup, Ulsan 44919, Republic
of Korea
| | - Kwang Soo Shin
- Department
of Biomedical Engineering, Department of Mechanical Engineering, and Department of
Chemical Engineering, Ulsan National Institute
of Science and Technology, 50 UNIST-gil, Eonyang-eup, Ulsan 44919, Republic
of Korea
| | - Young Shin Ryu
- Department
of Biomedical Engineering, Department of Mechanical Engineering, and Department of
Chemical Engineering, Ulsan National Institute
of Science and Technology, 50 UNIST-gil, Eonyang-eup, Ulsan 44919, Republic
of Korea
| | - Yongjoo Lee
- Department
of Biomedical Engineering, Department of Mechanical Engineering, and Department of
Chemical Engineering, Ulsan National Institute
of Science and Technology, 50 UNIST-gil, Eonyang-eup, Ulsan 44919, Republic
of Korea
| | - Sung Kuk Lee
- Department
of Biomedical Engineering, Department of Mechanical Engineering, and Department of
Chemical Engineering, Ulsan National Institute
of Science and Technology, 50 UNIST-gil, Eonyang-eup, Ulsan 44919, Republic
of Korea
| | - Taesung Kim
- Department
of Biomedical Engineering, Department of Mechanical Engineering, and Department of
Chemical Engineering, Ulsan National Institute
of Science and Technology, 50 UNIST-gil, Eonyang-eup, Ulsan 44919, Republic
of Korea
| |
Collapse
|