1
|
Miedes D, Ortega-Luna R, Broseta S, Martínez-Hervás S, Álvarez-Ribelles Á, Collado-Díaz V, Cilla A, Alegría A. Impact of a Plant Sterol Food Supplement on Eryptotic and Associated Cardiometabolic Parameters: A Randomized Placebo-Controlled Trial in Statin-Treated Patients. Foods 2024; 13:4108. [PMID: 39767050 PMCID: PMC11675141 DOI: 10.3390/foods13244108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/12/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
Eryptotic erythrocytes are prone to adhere to the vascular endothelium, provoking atherosclerosis. As statins do not prevent eryptosis compounds with anti-eryptotic effects could help treated hypercholesterolemic subjects in decreasing cardiovascular disease risk. Plant sterols (PSs) have shown this anti-eryptotic effect ex vivo, along with their cholesterol-lowering activity. A parallel double-blind placebo-controlled randomized trial was conducted using a PS-food supplement (2 g of PS/day) (case, n = 13) or a placebo supplement (control, n = 13) in statin-treated hypercholesterolemic subjects. Blood samples were extracted before (T0) and after (T1) a 6-week treatment, and erythrocytes were isolated for biochemical determination, phosphatidylserine externalization (EPHS), cell size and reduced glutathione (GSH) analyses, and endothelium adhesion evaluation. A reduction in glucose (4.3%) and LDL cholesterol (9.2%) was observed only in the control group, whereas in the case group, an increase in ApoA1 (6.4%) was observed. Neither EPHS, cell size nor GSH were modified by the treatment with any of the supplements, whilst endothelium adhesion was reduced (55.1%) only in the case group. These results suggest that the PS supplement may improve some cardiovascular health parameters in the target population even though eryptosis status is not modified by this treatment.
Collapse
Affiliation(s)
- Diego Miedes
- Nutrition and Food Science Area, Faculty of Pharmacy and Food Sciences, University of Valencia, 46100 Valencia, Spain; (D.M.); (S.B.); (A.A.)
| | - Raquel Ortega-Luna
- Department of Pharmacology, Faculty of Medicine, University of Valencia, 46010 Valencia, Spain; (R.O.-L.); (Á.Á.-R.); (V.C.-D.)
| | - Sonia Broseta
- Nutrition and Food Science Area, Faculty of Pharmacy and Food Sciences, University of Valencia, 46100 Valencia, Spain; (D.M.); (S.B.); (A.A.)
| | - Sergio Martínez-Hervás
- Endocrinology and Nutrition Department, Hospital Clínico Universitario, 46010 Valencia, Spain;
- Department of Medicine, University of Valencia, 46010 Valencia, Spain
- INCLIVA Institute of Health Research, 46010 Valencia, Spain
- CIBER Diabetes and Associated Metabolic Diseases (CIBERDEM), 28029 Madrid, Spain
| | - Ángeles Álvarez-Ribelles
- Department of Pharmacology, Faculty of Medicine, University of Valencia, 46010 Valencia, Spain; (R.O.-L.); (Á.Á.-R.); (V.C.-D.)
- CIBER Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain
| | - Víctor Collado-Díaz
- Department of Pharmacology, Faculty of Medicine, University of Valencia, 46010 Valencia, Spain; (R.O.-L.); (Á.Á.-R.); (V.C.-D.)
| | - Antonio Cilla
- Nutrition and Food Science Area, Faculty of Pharmacy and Food Sciences, University of Valencia, 46100 Valencia, Spain; (D.M.); (S.B.); (A.A.)
| | - Amparo Alegría
- Nutrition and Food Science Area, Faculty of Pharmacy and Food Sciences, University of Valencia, 46100 Valencia, Spain; (D.M.); (S.B.); (A.A.)
| |
Collapse
|
2
|
Abstract
Eryptosis is a regulated cell death (RCD) of mature erythrocytes initially described as a counterpart of apoptosis for enucleated cells. However, over the recent years, a growing number of studies have emphasized certain differences between both cell death modalities. In this review paper, we underline the hallmarks of eryptosis and apoptosis and highlight resemblances and dissimilarities between both RCDs. We summarize and critically discuss differences in the impact of caspase-3, Ca2+ signaling, ROS signaling pathways, opposing roles of casein kinase 1α, protein kinase C, Janus kinase 3, cyclin-dependent kinase 4, and AMP-activated protein kinase to highlight a certain degree of divergence between apoptosis and eryptosis. This review emphasizes the crucial importance of further studies that focus on deepening our knowledge of cell death machinery and identifying novel differences between cell death of nucleated and enucleated cells. This might provide evidence that erythrocytes can be defined as viable entities capable of programmed cell destruction. Additionally, the revealed cell type-specific patterns in cell death can facilitate the development of cell death-modulating therapeutic agents.
Collapse
Affiliation(s)
- Anton Tkachenko
- 1st Faculty of Medicine, BIOCEV, Charles University, Průmyslová 595, 25250, Vestec, Czech Republic.
| |
Collapse
|
3
|
Restivo I, Attanzio A, Tesoriere L, Allegra M, Garcia-Llatas G, Cilla A. A Mixture of Dietary Plant Sterols at Nutritional Relevant Serum Concentration Inhibits Extrinsic Pathway of Eryptosis Induced by Cigarette Smoke Extract. Int J Mol Sci 2023; 24:ijms24021264. [PMID: 36674779 PMCID: PMC9861561 DOI: 10.3390/ijms24021264] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/05/2023] [Accepted: 01/06/2023] [Indexed: 01/11/2023] Open
Abstract
Cell death program of red blood cells (RBCs), called eryptosis, is characterized by activation of caspases and scrambling of membrane phospholipids with externalization of phosphatidylserine (PS). Excessive eryptosis confers a procoagulant phenotype and is implicated in impairment of microcirculation and increased prothrombotic risk. It has recently been reported that cigarette smokers have high levels of circulating eryptotic erythrocytes, and a possible contribution of eryptosis to the vaso-occlusive complications associated to cigarette smoke has been postulated. In this study, we demonstrate how a mixture of plant sterols (MPtS) consisting of β-sitosterol, campesterol and stigmasterol, at serum concentration reached after ingestion of a drink enriched with plant sterols, inhibits eryptosis induced by cigarette smoke extract (CSE). Isolated RBCs were exposed for 4 h to CSE (10-20% v/v). When RBCs were co-treated with CSE in the presence of 22 µM MPtS, a significant reduction of the measured hallmarks of apoptotic death like assembly of the death-inducing signaling complex (DISC), PS outsourced, ceramide production, cleaved forms of caspase 8/caspase 3, and phosphorylated p38 MAPK, was evident. The new beneficial properties of plant sterols on CSE-induced eryptosis presented in this work open new perspectives to prevent the negative physio-pathological events caused by the eryptotic red blood cells circulating in smokers.
Collapse
Affiliation(s)
- Ignazio Restivo
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Via Archirafi 28, 90123 Palermo, Italy
| | - Alessandro Attanzio
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Via Archirafi 28, 90123 Palermo, Italy
- Correspondence: ; Tel.: +39-091-2386-2434
| | - Luisa Tesoriere
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Via Archirafi 28, 90123 Palermo, Italy
| | - Mario Allegra
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Via Archirafi 28, 90123 Palermo, Italy
| | - Guadalupe Garcia-Llatas
- Nutrition and Food Science Area, Faculty of Pharmacy, University of Valencia, Avda. Vicente Andrés Estellés s/n, 46100 Burjassot, Spain
| | - Antonio Cilla
- Nutrition and Food Science Area, Faculty of Pharmacy, University of Valencia, Avda. Vicente Andrés Estellés s/n, 46100 Burjassot, Spain
| |
Collapse
|
4
|
Cruz Reina LJ, Durán-Aranguren DD, Forero-Rojas LF, Tarapuez-Viveros LF, Durán-Sequeda D, Carazzone C, Sierra R. Chemical composition and bioactive compounds of cashew (Anacardium occidentale) apple juice and bagasse from Colombian varieties. Heliyon 2022; 8:e09528. [PMID: 35663750 PMCID: PMC9156865 DOI: 10.1016/j.heliyon.2022.e09528] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 02/20/2022] [Accepted: 05/18/2022] [Indexed: 12/15/2022] Open
Abstract
Cashew nut production generates large amounts of cashew apple as residue. In Colombia, cashew cultivation is increasing together with the concerns on residue management. The objective of this study was to provide the first chemical, physical and thermal decomposition characterization of cashew apple from Colombian varieties harvested in Vichada, Colombia. This characterization was focused to identify the important bioactive and natural compounds that can be further valorized in the formulation of food, nutraceuticals, and pharmacological products. The results obtained in this study are helpful to portray the cashew apple as a potential by-product due to its renewable nature and valuable composition, instead of seeing it just as an agricultural residue. For that, cashew apples of Regional 8315 and Mapiria varieties were studied. The natural juice (cashew apple juice) that was extracted from the cashew apples and the remanent solids (cashew apple bagasse) were separately analyzed. The HPLC analytical technique was used to determine the concentration of bioactive compounds, structural carbohydrates, and soluble sugars that constitute this biomass. Spectrophotometric techniques were used to determine the concentration of tannins, carotenoids, and total polyphenols. Mineral content and antioxidant activity (DPPH and ABTS assays) were determined in the biomass. Also, the thermal decomposition under an inert atmosphere or pyrolysis was performed on cashew apple bagasse. The varieties of cashew apple studied in this work showed similar content of bioactive compounds, total phenolic content, and structural carbohydrates. However, the Mapiria variety showed values slightly higher than the Regional 8315. Regarding cashew apple juice, it is rich in tannins and ascorbic acid with values of 191 mg/100 mL and 70 mg/100 mL, respectively, for Mapiria variety. Additionally, the principal reservoir of bioactive compounds and constitutive carbohydrates was the cashew apple bagasse. About 50 wt.% of it was composed of cellulose and hemicellulose. Also, in the bagasse, the ascorbic acid content was in a range of 180–200 mg/100 g, which is higher than other fruits and vegetables. Moreover, alkaloids were identified in cashew apples. The maximum value of antioxidant activity (DPPH assay: 405 TEs/g) was observed in the bagasse of Mapiria variety. The bagasse thermal decomposition started around 150 °C when the structural carbohydrates and other constitutive substances started to degrade. After thermogravimetric analysis, a remanent of 20% of the initial weight suggested the formation of a rich-carbon solid, which could correspond to biochar. Therefore, the cashew apple harvested in Vichada is a valuable reservoir of a wide range of biomolecules that potentially could be valorized into energy, foods, and pharmacologic applications. Nevertheless, future work is necessary to describe the complex compounds of this residual biomass that are still unknown.
Collapse
Affiliation(s)
- Luis J. Cruz Reina
- Product and Processes Design Group, Department of Chemical and Food Engineering, Universidad de Los Andes, Carrera 1 No. 18A-10, Bogotá 111711, Colombia
- Corresponding author.
| | - Daniel David Durán-Aranguren
- Product and Processes Design Group, Department of Chemical and Food Engineering, Universidad de Los Andes, Carrera 1 No. 18A-10, Bogotá 111711, Colombia
| | - Laura Fernanda Forero-Rojas
- Product and Processes Design Group, Department of Chemical and Food Engineering, Universidad de Los Andes, Carrera 1 No. 18A-10, Bogotá 111711, Colombia
| | - Luisa Fernanda Tarapuez-Viveros
- Product and Processes Design Group, Department of Chemical and Food Engineering, Universidad de Los Andes, Carrera 1 No. 18A-10, Bogotá 111711, Colombia
| | - Dinary Durán-Sequeda
- Product and Processes Design Group, Department of Chemical and Food Engineering, Universidad de Los Andes, Carrera 1 No. 18A-10, Bogotá 111711, Colombia
| | - Chiara Carazzone
- Laboratory of Advanced Analytical Techniques in Natural Products, Department of Chemistry, Universidad de Los Andes, Carrera 1 No. 18A-10, Bogotá 111711, Colombia
| | - Rocío Sierra
- Product and Processes Design Group, Department of Chemical and Food Engineering, Universidad de Los Andes, Carrera 1 No. 18A-10, Bogotá 111711, Colombia
| |
Collapse
|
5
|
Anti-Eryptotic Activity of Food-Derived Phytochemicals and Natural Compounds. Int J Mol Sci 2022; 23:ijms23063019. [PMID: 35328440 PMCID: PMC8951285 DOI: 10.3390/ijms23063019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/07/2022] [Accepted: 03/09/2022] [Indexed: 01/05/2023] Open
Abstract
Human red blood cells (RBCs), senescent or damaged due to particular stress, can be removed by programmed suicidal death, a process called eryptosis. There are various molecular mechanisms underlying eryptosis. The most frequent is the increase in the cytoplasmic concentration of Ca2+ ions, later exposure of erythrocytes to oxidative stress, hyperosmotic shock, ceramide formation, stimulation of caspases, and energy depletion. Phosphatidylserine (PS) exposed by eryptotic RBCs due to interaction with endothelial CXC-Motiv-Chemokin-16/Scavenger-receptor, causes the RBCs to adhere to vascular wall with consequent damage to the microcirculation. Eryptosis can be triggered by various xenobiotics and endogenous molecules, such as high cholesterol levels. The possible diseases associated with eryptosis are various, including anemia, chronic kidney disease, liver failure, diabetes, hypertension, heart failure, thrombosis, obesity, metabolic syndrome, arthritis, and lupus. This review addresses and collates the existing ex vivo and animal studies on the inhibition of eryptosis by food-derived phytochemicals and natural compounds including phenolic compounds (PC), alkaloids, and other substances that could be a therapeutic and/or co-adjuvant option in eryptotic-driven disorders, especially if they are introduced through the diet.
Collapse
|
6
|
Makran M, Barberá R, Cilla A. Gene-diet interaction in plasma lipid response to plant sterols and stanols: A review of clinical trials. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104751] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
7
|
Cilla A, López-García G, Collado-Díaz V, Amparo Blanch-Ruiz M, Garcia-Llatas G, Barberá R, Martinez-Cuesta MA, Real JT, Álvarez Á, Martínez-Hervás S. Hypercholesterolemic patients have higher eryptosis and erythrocyte adhesion to human endothelium independently of statin therapy. Int J Clin Pract 2021; 75:e14771. [PMID: 34473881 DOI: 10.1111/ijcp.14771] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 07/30/2021] [Accepted: 08/30/2021] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Phosphatidylserine (PS) externalization out of the membrane facilitates the eryptotic erythrocytes (EE) binding to endothelial cells (EC), potentially leading to atherosclerosis. Thus, the levels of eryptosis and interactions of EE-EC in hypercholesterolemic patients, either non-medicated or medicated, compared with healthy subjects were studied. METHODS A total of 56 subjects clustered into three groups: (control (n = 20), hypercholesterolemic non-treated (HCNT) (n = 15), and statin-treated (HCT) (n = 21)) were enrolled in this cross-sectional study. Biochemical parameters were determined with validated and standard methods. PS exposure was estimated from annexin-V-binding, cell volume from forward scatter (FSC), and GSH from CMFDA fluorescence by flow cytometry. The erythrocyte-EC adhesion assay was performed by using the parallel-plate flow chamber technique. RESULTS Higher PS externalization and adhesion of erythrocytes to EC (P < .05) was found in hypercholesterolemic subjects, regardless of statin treatment, compared with the control group. Although no correlation between FSC and PS externalization with other parameters was found, GSH was inversely correlated with erythrocyte adhesion, which was significantly correlated with total cholesterol, LDL-c, and apolipoprotein B. CONCLUSION The link between hypercholesterolemia and eryptosis suggests a possible detrimental impact of this binomial on endothelial function with possible further development of atherosclerosis and microcirculation problems in hypercholesterolemic patients, independently of statin therapy.
Collapse
Affiliation(s)
- Antonio Cilla
- Nutrition and Food Science Area, Faculty of Pharmacy, University of Valencia, Valencia, Spain
| | - Gabriel López-García
- Nutrition and Food Science Area, Faculty of Pharmacy, University of Valencia, Valencia, Spain
| | - Víctor Collado-Díaz
- Department of Pharmacology, Faculty of Medicine, University of Valencia, Valencia, Spain
| | | | - Guadalupe Garcia-Llatas
- Nutrition and Food Science Area, Faculty of Pharmacy, University of Valencia, Valencia, Spain
| | - Reyes Barberá
- Nutrition and Food Science Area, Faculty of Pharmacy, University of Valencia, Valencia, Spain
| | | | - José T Real
- Endocrinology and Nutrition Department, Hospital Clínico Universitario, Department of Medicine, University of Valencia, Valencia, Spain
| | - Ángeles Álvarez
- Department of Pharmacology, Faculty of Medicine, University of Valencia, Valencia, Spain
- CIBERehd, Valencia, Spain
| | - Sergio Martínez-Hervás
- Endocrinology and Nutrition Department, Hospital Clínico Universitario, Department of Medicine, University of Valencia, Valencia, Spain
- INCLIVA Institute of Health Research, Valencia, Spain
- CIBER Diabetes and Associated Metabolic Diseases (CIBERDEM), Madrid, Spain
| |
Collapse
|
8
|
Wang H, Zhou G, Zhuang M, Wang W, Fu X. Utilizing network pharmacology and molecular docking to explore the underlying mechanism of Guizhi Fuling Wan in treating endometriosis. PeerJ 2021; 9:e11087. [PMID: 33859874 PMCID: PMC8020871 DOI: 10.7717/peerj.11087] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 02/19/2021] [Indexed: 12/12/2022] Open
Abstract
Background Guizhi Fuling Wan (GZFLW) is a widely used classical Chinese herbal formulae prescribed for the treatment of endometriosis (EMs). This study aimed to predict the key targets and mechanisms of GZFLW in the treatment of EMs by network pharmacology and molecular docking. Methods Firstly, related compounds and targets of GZFLW were identified through the TCMSP, BATMAN-TCM and CASC database. Then, the EMs target database was built by GeneCards. The overlapping targets between GZFLW and EMs were screened out, and then data of the PPI network was obtained by the STRING Database to analyze the interrelationship of these targets. Furthermore, a topological analysis was performed to screen the hub targets. After that, molecular docking technology was used to confirm the binding degree of the main active compounds and hub targets. Finally, the DAVID database and Metascape database were used for GO and KEGG enrichment analysis. Results A total of 89 GZFLW compounds and 284 targets were collected. One hundred one matching targets were picked out as the correlative targets of GZFLW in treating EMs. Among these, 25 significant hub targets were recognized by the PPI network. Coincidently, molecular docking simulation indicated that the hub targets had a good bonding activity with most active compounds (69.71%). Furthermore, 116 items, including the inflammatory reaction, RNA polymerase, DNA transcription, growth factor activity, and steroid-binding, were selected by GO enrichment analysis. Moreover, the KEGG enrichment analysis results included 100 pathways focused on the AGE-RAGE pathway, HIF pathway, PI3K Akt pathway, MAPK pathway, and TP53 pathway, which exposed the potential mechanisms of GZFLW in treating EMs. Also, the MTT colorimetric assay indicated that the cell proliferation could be inhibited by GZFLW. Compared with the control group, the protein levels of P53, BAX, and caspase3 in the drug groups were all increased in Western blotting results. The results of flow cytometry showed that the percentage of apoptotic cells in the GZFLW group was significantly higher than that in the control group. Conclusion Through the exploration of network pharmacology and molecular docking technology, GZFLW has a therapeutic effect on EMs through multi-target mechanism. This study provided a good foundation for further experimental research.
Collapse
Affiliation(s)
- Haoxian Wang
- Medical College, China Three Gorges University, Yichang, China
| | - Gang Zhou
- College of Traditional Chinese Medicine, Three Gorges University & Yichang Hospital of Traditional Chinese Medicine, Yichang, China
| | - Mingyan Zhuang
- Maternity and Child Health Care Hospital, Three Gorges University, Yichang, China
| | - Wei Wang
- College of Traditional Chinese Medicine, Three Gorges University & Yichang Hospital of Traditional Chinese Medicine, Yichang, China
| | - Xianyun Fu
- Medical College, China Three Gorges University, Yichang, China
| |
Collapse
|
9
|
Salehi B, Quispe C, Sharifi-Rad J, Cruz-Martins N, Nigam M, Mishra AP, Konovalov DA, Orobinskaya V, Abu-Reidah IM, Zam W, Sharopov F, Venneri T, Capasso R, Kukula-Koch W, Wawruszak A, Koch W. Phytosterols: From Preclinical Evidence to Potential Clinical Applications. Front Pharmacol 2021; 11:599959. [PMID: 33519459 PMCID: PMC7841260 DOI: 10.3389/fphar.2020.599959] [Citation(s) in RCA: 125] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 10/14/2020] [Indexed: 12/30/2022] Open
Abstract
Phytosterols (PSs) are plant-originated steroids. Over 250 PSs have been isolated, and each plant species contains a characteristic phytosterol composition. A wide number of studies have reported remarkable pharmacological effects of PSs, acting as chemopreventive, anti-inflammatory, antioxidant, antidiabetic, and antiatherosclerotic agents. However, PS bioavailability is a key issue, as it can be influenced by several factors (type, source, processing, preparation, delivery method, food matrix, dose, time of administration into the body, and genetic factors), and the existence of a close relationship between their chemical structures (e.g., saturation degree and side-chain length) and low absorption rates has been stated. In this sense, the present review intends to provide in-depth data on PS therapeutic potential for human health, also emphasizing their preclinical effects and bioavailability-related issues.
Collapse
Affiliation(s)
- Bahare Salehi
- Medical Ethics and Law Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Cristina Quispe
- Facultad de Ciencias de la Salud, Universidad Arturo Prat, Iquique, Chile
| | - Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Facultad de Medicina, Universidad del Azuay, Cuenca, Ecuador
| | - Natália Cruz-Martins
- Faculty of Medicine, University of Porto, Porto, Portugal
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal
- Laboratory of Neuropsychophysiology, Faculty of Psychology and Education Sciences, University of Porto, Porto, Portugal
| | - Manisha Nigam
- Department of Biochemistry, H. N. B. Garhwal (A Central) University, Srinagar Garhwal, India
| | - Abhay Prakash Mishra
- Adarsh Vijendra Institute of Pharmaceutical Sciences, School of Pharmacy, Shobhit University, Gangoh, India
| | - Dmitryi Alexeevich Konovalov
- Department of Pharmacognosy, Botany and Technology of Phytopreparations, Pyatigorsk Medical-Pharmaceutical Institute, Branch of Volgograd State Medical University, Ministry of Health of Russia, Pyatigorsk, Russia
| | - Valeriya Orobinskaya
- Institute of Service, Tourism and Design (Branch) of North-Caucasus Federal University in Pyatigorsk, Pyatigorsk, Russia
| | - Ibrahim M. Abu-Reidah
- Department of Environmental Science/Boreal Ecosystem Research Initiative, Memorial University of Newfoundland, Corner Brook, NL, Canada
| | - Wissam Zam
- Department of Analytical and Food Chemistry, Faculty of Pharmacy, Al-Andalus University for Medical Sciences, Tartous, Syria
| | - Farukh Sharopov
- “Chinese-Tajik Innovation Center for Natural Products”, Academy of Sciences of the Republic of Tajikistan, Dushanbe, Tajikistan
| | - Tommaso Venneri
- Department of Pharmacy, University of Napoli Federico II, Napoli, Italy
| | - Raffaele Capasso
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | | | - Anna Wawruszak
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Lublin, Poland
| | - Wojciech Koch
- Chair and Department of Food and Nutrition, Medical University of Lublin, Lublin, Poland
| |
Collapse
|
10
|
López-García G, Cilla A, Barberá R, Alegría A. Anti-Inflammatory and Cytoprotective Effect of Plant Sterol and Galactooligosaccharides-Enriched Beverages in Caco-2 Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:1862-1870. [PMID: 31290324 DOI: 10.1021/acs.jafc.9b03025] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Plant sterol (PS) (1 g/100 mL) enriched milk-based fruit beverages with or without galactooligosaccharides (GOS) (1.8 g/100 mL) were used in differentiated Caco-2 cells. Their potential cytopreventive effect against oxidative stress induced by cholesterol oxidation products (COPs) and their anti-inflammatory properties were evaluated. Preincubation (24 h) with bioaccessible fractions from beverages without and with GOS (MfB and MfB-G) completely prevented the COPs (60 μM/4 h) induced oxidative stress independent to GOS presence with exception to calcium influx and GSH content, where a partial protective effect was observed. Besides, MfB produced a significant (p < 0.05) reduction of IL-8 (40%) and IL-6 (50%) after IL-1β-induction (1 ng/mL/24 h) through the inhibition of NF-κB p65 translocation into the nucleus (16%) compared to control cells, while GOS presence compromised their anti-inflammatory effect. Therefore, PS-enriched milk-based fruit beverage could be an interesting strategy to prevent intestinal injury produced by COPs and to attenuate the pro-inflammatory process in intestinal human diseases. GOS addition had no extra beneficial antioxidant effect and even reduced their anti-inflammatory properties.
Collapse
Affiliation(s)
- Gabriel López-García
- Nutrition and Food Science Area, Faculty of Pharmacy , University of Valencia , Avenida Vicente Andrés Estellés/n , Burjassot, Valencia 46100 , Spain
| | - Antonio Cilla
- Nutrition and Food Science Area, Faculty of Pharmacy , University of Valencia , Avenida Vicente Andrés Estellés/n , Burjassot, Valencia 46100 , Spain
| | - Reyes Barberá
- Nutrition and Food Science Area, Faculty of Pharmacy , University of Valencia , Avenida Vicente Andrés Estellés/n , Burjassot, Valencia 46100 , Spain
| | - Amparo Alegría
- Nutrition and Food Science Area, Faculty of Pharmacy , University of Valencia , Avenida Vicente Andrés Estellés/n , Burjassot, Valencia 46100 , Spain
| |
Collapse
|
11
|
Gómez LJ, Gómez NA, Zapata JE, López-García G, Cilla A, Alegría A. In-vitro antioxidant capacity and cytoprotective/cytotoxic effects upon Caco-2 cells of red tilapia (Oreochromis spp.) viscera hydrolysates. Food Res Int 2019; 120:52-61. [PMID: 31000267 DOI: 10.1016/j.foodres.2019.02.029] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 01/21/2019] [Accepted: 02/17/2019] [Indexed: 02/04/2023]
Abstract
The antioxidant capacity of red tilapia viscera hydrolysates (RTVH) with different degrees of hydrolysis (DH) as well as their ultrafiltration membrane fractions, were analyzed using different chemical assays. Their protective effects against oxidative stress were evaluated using H2O2-stressed human intestinal differentiated Caco-2. The highest antioxidant capacity was obtained with a DH of 42.5% (RTVH-A) and its <1 kDa fraction (FRTVH-V). RTVH-A and FRTVH-V did not show cytotoxic effects at a concentration of ≤0.5 mg/mL,prevented the decrease in cell viability, and suppressed intracellular reactive oxygen species (ROS) accumulation induced by H2O2. However, pretreatment with RTVH-A after adding H2O2, showed a greater decrease in glutathione levels. Moreover, FRTVH-V allowed for a recovery close to that of control levels of cell proportions in the G1 and G2/M cell cycle phases; and a decrease in the cell proportion in late apoptosis. These results suggest that RTVH-A and FRTVH-V can be beneficial ingredients with antioxidant properties and can have protective effects against ROS-mediated intestinal injuries.
Collapse
Affiliation(s)
- Leidy J Gómez
- Department of Food, Faculty of Pharmaceutical and Food Sciences, University of Antioquia, Medellin 050010, Colombia.
| | - Nathalia A Gómez
- Department of Food, Faculty of Pharmaceutical and Food Sciences, University of Antioquia, Medellin 050010, Colombia
| | - José E Zapata
- Department of Food, Faculty of Pharmaceutical and Food Sciences, University of Antioquia, Medellin 050010, Colombia.
| | - Gabriel López-García
- Nutrition and Food Science Area, Faculty of Pharmacy, University of Valencia, Avda. Vicente Andrés Estellés s/n, Burjassot, Valencia 46100, Spain.
| | - Antonio Cilla
- Nutrition and Food Science Area, Faculty of Pharmacy, University of Valencia, Avda. Vicente Andrés Estellés s/n, Burjassot, Valencia 46100, Spain.
| | - Amparo Alegría
- Nutrition and Food Science Area, Faculty of Pharmacy, University of Valencia, Avda. Vicente Andrés Estellés s/n, Burjassot, Valencia 46100, Spain.
| |
Collapse
|
12
|
Attanzio A, Frazzitta A, Vasto S, Tesoriere L, Pintaudi AM, Livrea MA, Cilla A, Allegra M. Increased eryptosis in smokers is associated with the antioxidant status and C-reactive protein levels. Toxicology 2018; 411:43-48. [PMID: 30385265 DOI: 10.1016/j.tox.2018.10.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 10/18/2018] [Accepted: 10/26/2018] [Indexed: 01/10/2023]
Abstract
Cigarette smoking has been linked with oxidative stress and inflammation. In turn, eryptosis, the suicidal erythrocyte death similar to apoptosis that can be triggered by oxidative stress, has been associated with chronic inflammatory diseases including atherosclerosis. However, the link between smoking and eryptosis has not been explored so far. The aim of the present study was to determine the level of eryptotic erythrocytes in healthy male smokers (n = 21) compared to non-smokers (n = 21) and assess its relationship with systemic inflammation (CRP) as well as with antioxidant defense (GSH) and their resistance to ex-vivo induced hemolysis. Smoking caused an increase in phosphatidylserine translocation outside the erythrocyte membrane (hallmark of eryptosis), significantly correlated to the plasma level of CRP (r = 0.546) and GSH concentration in erythrocytes (r=-0.475). With respect to non-smokers, smokers show a marginal increase of total leucocytes and erythrocyte volume, no modifications of the RBC resistance to oxidative stress-induced hemolysis and hematological and lipid parameters unvaried. We conclude that the inflammatory status (high CRP levels) and RBC oxidative stress (low GSH levels) caused by cigarette smoking are associated with an increase of eryptotic erythrocytes, a yet unknown relationship potentially involved with atherosclerosis and cardiovascular disease in smokers.
Collapse
Affiliation(s)
- Alessandro Attanzio
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 28, 90123, Palermo, Italy
| | - Anna Frazzitta
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 28, 90123, Palermo, Italy
| | - Sonya Vasto
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 28, 90123, Palermo, Italy
| | - Luisa Tesoriere
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 28, 90123, Palermo, Italy
| | - Anna Maria Pintaudi
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 28, 90123, Palermo, Italy
| | - Maria Antonia Livrea
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 28, 90123, Palermo, Italy
| | - Antonio Cilla
- Nutrition and Food Science Area, Faculty of Pharmacy, University of Valencia, Avda. Vicente Andrés Estellés s/n, 46100, Burjassot (Valencia), Spain.
| | - Mario Allegra
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 28, 90123, Palermo, Italy
| |
Collapse
|
13
|
Bissinger R, Bhuyan AAM, Qadri SM, Lang F. Oxidative stress, eryptosis and anemia: a pivotal mechanistic nexus in systemic diseases. FEBS J 2018; 286:826-854. [PMID: 30028073 DOI: 10.1111/febs.14606] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 06/15/2018] [Accepted: 07/18/2018] [Indexed: 12/21/2022]
Abstract
The average lifespan of circulating erythrocytes usually exceeds hundred days. Prior to that, however, erythrocytes may be exposed to oxidative stress in the circulation which could cause injury and trigger their suicidal death or eryptosis. Oxidative stress activates Ca2+ -permeable nonselective cation channels in the cell membrane, thus, stimulating Ca2+ entry and subsequent cell membrane scrambling resulting in phosphatidylserine exposure and activation of Ca2+ -sensitive K+ channels leading to K+ exit, hyperpolarization, Cl- exit, and ultimately cell shrinkage due to loss of KCl and osmotically driven water. While the mechanistic link between oxidative stress and anemia remains ill-defined, several diseases such as diabetes, hepatic failure, malignancy, chronic kidney disease and inflammation have been identified to display both increased oxidative stress as well as eryptosis. Recent compelling evidence suggests that oxidative stress is an important perpetrator in accelerating erythrocyte loss in different systemic conditions and an underlying mechanism for anemia associated with these pathological states. In the present review, we discuss the role of oxidative stress in reducing erythrocyte survival and provide novel insights into the possible use of antioxidants as putative antieryptotic and antianemic agents in a variety of systemic diseases.
Collapse
Affiliation(s)
- Rosi Bissinger
- Department of Internal Medicine III, Eberhard-Karls-University Tübingen, Germany
| | - Abdulla Al Mamun Bhuyan
- Department of Vegetative & Clinical Physiology, Institute of Physiology, Eberhard-Karls-University Tübingen, Germany
| | - Syed M Qadri
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada.,Centre for Innovation, Canadian Blood Services, Hamilton, ON, Canada
| | - Florian Lang
- Department of Vegetative & Clinical Physiology, Institute of Physiology, Eberhard-Karls-University Tübingen, Germany.,Department of Molecular Medicine II, Heinrich Heine University, Düsseldorf, Germany
| |
Collapse
|