1
|
Fabjanowicz M, Różańska A, Abdelwahab NS, Pereira-Coelho M, Haas ICDS, Madureira LADS, Płotka-Wasylka J. An analytical approach to determine the health benefits and health risks of consuming berry juices. Food Chem 2024; 432:137219. [PMID: 37647705 DOI: 10.1016/j.foodchem.2023.137219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 07/30/2023] [Accepted: 08/17/2023] [Indexed: 09/01/2023]
Abstract
Food products composition analysis is a prerequisite for verification of product quality, fulfillment of regulatory enforcements, checking compliance with national and international food standards, contracting specifications, and nutrient labeling requirements and providing quality assurance for use of the product for the supplementation of other foods. These aspects also apply to the berry fruit and berry juice. It also must be noted that even though fruit juices are generally considered healthy, there are many risks associated with mishandling both fruits and juices themselves. The review gathers information related with the health benefits and risk associated with the consumption of berry fruit juices. Moreover, the focus was paid to the quality assurance of berry fruit juice. Thus, the analytical methods used for determination of compounds influencing the sensory and nutritional characteristics of fruit juice as well as potential contaminants or adulterations.
Collapse
Affiliation(s)
- Magdalena Fabjanowicz
- Department of Analytical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, 11/12 Narutowicza Street, 80-233 Gdańsk, Poland.
| | - Anna Różańska
- Department of Analytical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, 11/12 Narutowicza Street, 80-233 Gdańsk, Poland
| | - Nada S Abdelwahab
- Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Marina Pereira-Coelho
- Departament of Chemistry, Federal University of Santa Catarina, Des. Vitor Lima Av., Trindade, 88040-900 Florianópolis, SC, Brazil
| | - Isabel Cristina da Silva Haas
- Department of Food Science and Technology, Federal University of Santa Catarina, Admar Gonzaga Rd., 1346, Itacorubi, 88034-001 Florianópolis, SC, Brazil
| | | | - Justyna Płotka-Wasylka
- Department of Analytical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, 11/12 Narutowicza Street, 80-233 Gdańsk, Poland; BioTechMed Center, Gdańsk University of Technology, 11/12 Narutowicza Street, 80-233 Gdańsk, Poland.
| |
Collapse
|
2
|
Chien HJ, Zheng YF, Wang WC, Kuo CY, Hsu YM, Lai CC. Determination of adulteration, geographical origins, and species of food by mass spectrometry. MASS SPECTROMETRY REVIEWS 2023; 42:2273-2323. [PMID: 35652168 DOI: 10.1002/mas.21780] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 04/07/2022] [Accepted: 04/12/2022] [Indexed: 06/15/2023]
Abstract
Food adulteration, mislabeling, and fraud, are rising global issues. Therefore, a number of precise and reliable analytical instruments and approaches have been proposed to ensure the authenticity and accurate labeling of food and food products by confirming that the constituents of foodstuffs are of the kind and quality claimed by the seller and manufacturer. Traditional techniques (e.g., genomics-based methods) are still in use; however, emerging approaches like mass spectrometry (MS)-based technologies are being actively developed to supplement or supersede current methods for authentication of a variety of food commodities and products. This review provides a critical assessment of recent advances in food authentication, including MS-based metabolomics, proteomics and other approaches.
Collapse
Affiliation(s)
- Han-Ju Chien
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan
| | - Yi-Feng Zheng
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan
| | - Wei-Chen Wang
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan
| | - Cheng-Yu Kuo
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan
| | - Yu-Ming Hsu
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan
| | - Chien-Chen Lai
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan
- Graduate Institute of Chinese Medical Science, China Medical University, Taichung, Taiwan
- Advanced Plant Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
- Ph.D. Program in Translational Medicine, National Chung Hsing University, Taichung, Taiwan
- Rong Hsing Research Center For Translational Medicine, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
3
|
Ge X, Zhang J, He L, Yu N, Pan C, Chen Y. Integration of metabolomics and transcriptomics analyses reveals the mechanism of nano-selenium treated to activate phenylpropanoid metabolism and enhance the antioxidant activity of peach. J Food Sci 2023; 88:4529-4543. [PMID: 37872835 DOI: 10.1111/1750-3841.16784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 07/09/2023] [Accepted: 09/13/2023] [Indexed: 10/25/2023]
Abstract
Foliar spraying to improve the quality of fruits is a general approach nowadays. In this study, 10 ppm nano-selenium (nano-Se) diluted with distilled water was sprayed on peach leaves every 10 days for a total of 7 sprays during the fruit set period. And then their fruit quality was compared with that of control group. It was found that the firmness, soluble solid concentration, total phenol, and proanthocyanidin content of the peaches were raised after the nano-Se treatment. Moreover, the ascorbic acid glutathione loop (ASA-GSH loop) was fully activated in the nano-Se treated group, and the associated antioxidant capacity and enzyme activity were significantly increased. Metabolomics revealed that nano-Se could upregulate some metabolites, such as phenylalanine, naringenin, and pinocembrin, to fully activate the metabolism of phenylpropanoids. Further, based on transcriptomics, nano-Se treatment was found to affect fruit quality by regulating genes related to phenylpropanoid metabolism, such as arogenate/prephenate dehydratase (ADT), genes related to abscisic acid metabolism such as (+)-abscisic acid 8'-hydroxylase (CYP707A), and some transcription factors such as MYB. Based on the comprehensive analysis of physicochemical indicators, metabolomics, and transcriptomics, it was found that nano-Se improved fruit quality by activating phenylpropanoid metabolism and enhancing antioxidant capacity. This work provides insights into the mechanism of the effect of nano-Se fertilizer on peach fruit quality. PRACTICAL APPLICATION: The firmness and soluble solid concentration of peaches are higher after nano-Se treatment, which is more in line with people's demand for hard soluble peaches like "Yingzui." The antioxidant capacity, antioxidant substance content, and antioxidant enzyme activity of nano-Se-treated peaches are higher, with potential storage resistance and health effects on human body. The mechanism of nano-Se affecting peach quality was analyzed by metabolomics and transcriptomics, which is a reference and guide for the research and application of nano-Se.
Collapse
Affiliation(s)
- Xuliyang Ge
- Chinese Academy of Inspection and Quarantine, Beijing, China
- School of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, China
| | - Jiukai Zhang
- Chinese Academy of Inspection and Quarantine, Beijing, China
| | - Lei He
- Chinese Academy of Inspection and Quarantine, Beijing, China
| | - Ning Yu
- Chinese Academy of Inspection and Quarantine, Beijing, China
| | - Canping Pan
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| | - Ying Chen
- Chinese Academy of Inspection and Quarantine, Beijing, China
| |
Collapse
|
4
|
Li ZQ, Yin XL, Gu HW, Zou D, Ding B, Li Z, Chen Y, Long W, Fu H, She Y. Revealing the chemical differences and their application in the storage year prediction of Qingzhuan tea by SWATH-MS based metabolomics analysis. Food Res Int 2023; 173:113238. [PMID: 37803551 DOI: 10.1016/j.foodres.2023.113238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/19/2023] [Accepted: 06/27/2023] [Indexed: 10/08/2023]
Abstract
It's generally believed that the longer the storage, the better the quality of dark tea, but the chemical differences of Qingzhuan tea (QZT) with different storage years is still unclear. Herein, in this work, an untargeted metabolomic approach based on SWATH-MS was established to investigate the differential compounds of QZT with 0-9 years' storage time. These QZT samples were roughly divided into two categories by principal component analysis (PCA). After orthogonal projections to latent structures discriminant analysis (OPLS-DA), 18 differential compounds were putatively identified as chemical markers for the storage year variation of QZT. Heatmap visualization showed that the contents of catechins, fatty acids, and some phenolic acids significantly reduced, flavonoid glycosides, triterpenoids, and 8-C N-ethyl-2-pyrrolidinone-substituted flavan-3-ols (EPSFs) increased with the increase of storage time. Furthermore, these chemical markers were verified by the peak areas corresponding to MS2 ions from SWATH-MS. Based on the extraction chromatographic peak areas of MS and MS2 ions, a duration time prediction model was built for QZT with correlation coefficient R2 of 0.9080 and 0.9701, and RMSEP value of 0.85 and 1.24, respectively. This study reveals the chemical differences of QZT with different storage years and provides a theoretical basis for the quality evaluation of stored dark tea.
Collapse
Affiliation(s)
- Zhi-Quan Li
- College of Life Sciences, College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou 434025, China
| | - Xiao-Li Yin
- College of Life Sciences, College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou 434025, China.
| | - Hui-Wen Gu
- College of Life Sciences, College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou 434025, China
| | - Dan Zou
- College of Life Sciences, College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou 434025, China
| | - Baomiao Ding
- College of Life Sciences, College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou 434025, China
| | - Zhenshun Li
- College of Life Sciences, College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou 434025, China
| | - Ying Chen
- College of Life Sciences, College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou 434025, China
| | - Wanjun Long
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
| | - Haiyan Fu
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China.
| | - Yuanbin She
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
5
|
Zhang J, Sun M, Elmaidomy AH, Youssif KA, Zaki AMM, Hassan Kamal H, Sayed AM, Abdelmohsen UR. Emerging trends and applications of metabolomics in food science and nutrition. Food Funct 2023; 14:9050-9082. [PMID: 37740352 DOI: 10.1039/d3fo01770b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
The study of all chemical processes involving metabolites is known as metabolomics. It has been developed into an essential tool in several disciplines, such as the study of plant physiology, drug development, human diseases, and nutrition. The field of food science, diagnostic biomarker research, etiological analysis in the field of medical therapy, and raw material quality, processing, and safety have all benefited from the use of metabolomics recently. Food metabolomics includes the use of metabolomics in food production, processing, and human diets. As a result of changing consumer habits and the rising of food industries all over the world, there is a remarkable increase in interest in food quality and safety. It requires the employment of various technologies for the food supply chain, processing of food, and even plant breeding. This can be achieved by understanding the metabolome of food, including its biochemistry and composition. Additionally, Food metabolomics can be used to determine the similarities and differences across crop kinds, as an indicator for tracking the process of ripening to increase crops' shelf life and attractiveness, and identifying metabolites linked to pathways responsible for postharvest disorders. Moreover, nutritional metabolomics is used to investigate the connection between diet and human health through detection of certain biomarkers. This review assessed and compiled literature on food metabolomics research with an emphasis on metabolite extraction, detection, and data processing as well as its applications to the study of food nutrition, food-based illness, and phytochemical analysis. Several studies have been published on the applications of metabolomics in food but further research concerning the use of standard reproducible procedures must be done. The results published showed promising uses in the food industry in many areas such as food production, processing, and human diets. Finally, metabolome-wide association studies (MWASs) could also be a useful predictor to detect the connection between certain diseases and low molecular weight biomarkers.
Collapse
Affiliation(s)
- Jianye Zhang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Mingna Sun
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Abeer H Elmaidomy
- Department of Pharmacognosy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Khayrya A Youssif
- Department of Pharmacognosy, Faculty of Pharmacy, El-Saleheya El Gadida University, Cairo, Egypt
| | - Adham M M Zaki
- Faculty of Pharmacy, Minia University, Minia 61519, Egypt
| | - Hossam Hassan Kamal
- Faculty of Pharmacy, Deraya University, 7 Universities Zone, New Minia 61111, Egypt
| | - Ahmed M Sayed
- Department of Pharmacognosy, Faculty of Pharmacy, Nahda University, 62513 Beni-Suef, Egypt.
- Department of Pharmacognosy, Faculty of Pharmacy, Almaaqal University, 61014 Basra, Iraq
| | - Usama Ramadan Abdelmohsen
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University, Minia 61519, Egypt.
- Department of Pharmacognosy, Faculty of Pharmacy, Deraya University, 7 Universities Zone, New Minia 61111, Egypt
| |
Collapse
|
6
|
Sun R, Xing R, Zhang J, Yu N, Ge Y, Zhang W, Chen Y. UPLC-QTOF-MS coupled with machine learning to discriminate between NFC and FC orange juice. Food Control 2023. [DOI: 10.1016/j.foodcont.2022.109487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
7
|
Mallet JF, Shahbazi R, Alsadi N, Saleem A, Sobiesiak A, Arnason JT, Matar C. Role of a Mixture of Polyphenol Compounds Released after Blueberry Fermentation in Chemoprevention of Mammary Carcinoma: In Vivo Involvement of miR-145. Int J Mol Sci 2023; 24:ijms24043677. [PMID: 36835085 PMCID: PMC9966222 DOI: 10.3390/ijms24043677] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/29/2023] [Accepted: 01/30/2023] [Indexed: 02/17/2023] Open
Abstract
Epigenetic mechanisms such as microRNA (miRNA) deregulation seem to exert a central role in breast cancer initiation and progression. Therefore, targeting epigenetics deregulation may be an effective strategy for preventing and halting carcinogenesis. Studies have revealed the significant role of naturally occurring polyphenolic compounds derived from fermented blueberry fruits in cancer chemoprevention by modulation of cancer stem cell development through the epigenetic mechanism and regulation of cellular signaling pathways. In this study, we first investigated the phytochemical changes during the blueberry fermentation process. Fermentation favored the release of oligomers and bioactive compounds such as protocatechuic acid (PCA), gallic acid, and catechol. Next, we investigated the chemopreventive potentials of a polyphenolic mixture containing PCA, gallic acid, and catechin found in fermented blueberry juice in a breast cancer model by measuring miRNA expression and the signaling pathways involved in breast cancer stemness and invasion. To this end, 4T1 and MDA-MB-231 cell lines were treated with different doses of the polyphenolic mixture for 24 h. Additionally, female Balb/c mice were fed with this mixture for five weeks; two weeks before and three weeks after receiving 4T1 cells. Mammosphere formation was assayed in both cell lines and the single-cell suspension obtained from the tumor. Lung metastases were counted by isolating 6-thioguanine-resistant cells present in the lungs. In addition, we conducted RT-qPCR and Western blot analysis to validate the expression of targeted miRNAs and proteins, respectively. We found a significant reduction in mammosphere formation in both cell lines treated with the mixture and in tumoral primary cells isolated from mice treated with the polyphenolic compound. The number of colony-forming units of 4T1 cells in the lungs was significantly lower in the treatment group compared to the control group. miR-145 expression significantly increased in the tumor samples of mice treated with the polyphenolic mixture compared to the control group. Furthermore, a significant increase in FOXO1 levels was noted in both cell lines treated with the mixture. Overall, our results show that phenolic compounds found in fermented blueberry delay the formation of tumor-initiating cells in vitro and in vivo and reduce the spread of metastatic cells. The protective mechanisms seem to be related, at least partly, to the epigenetic modulation of mir-145 and its signaling pathways.
Collapse
Affiliation(s)
- Jean-François Mallet
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
| | - Roghayeh Shahbazi
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
| | - Nawal Alsadi
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
| | - Ammar Saleem
- Laboratory for the Analysis of Natural and Synthetic Environmental Toxins, Department of Biology, University of Ottawa, 30 Marie Curie Private, Ottawa, ON K1N 6N5, Canada
| | - Agnes Sobiesiak
- Laboratory for the Analysis of Natural and Synthetic Environmental Toxins, Department of Biology, University of Ottawa, 30 Marie Curie Private, Ottawa, ON K1N 6N5, Canada
| | - John Thor Arnason
- Laboratory for the Analysis of Natural and Synthetic Environmental Toxins, Department of Biology, University of Ottawa, 30 Marie Curie Private, Ottawa, ON K1N 6N5, Canada
| | - Chantal Matar
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
- Correspondence: ; Tel.: +613-562-5800 (ext. 8322)
| |
Collapse
|
8
|
Krstić ĐD, Ristivojević PM, Gašić UM, Lazović M, Fotirić Akšić MM, Milivojević J, Morlock GE, Milojković-Opsenica DM, Trifković JĐ. Authenticity assessment of cultivated berries via phenolic profiles of seeds. Food Chem 2023; 402:134184. [DOI: 10.1016/j.foodchem.2022.134184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 08/28/2022] [Accepted: 09/06/2022] [Indexed: 10/14/2022]
|
9
|
Avula B, Katragunta K, Osman AG, Ali Z, John Adams S, Chittiboyina AG, Khan IA. Advances in the Chemistry, Analysis and Adulteration of Anthocyanin Rich-Berries and Fruits: 2000-2022. Molecules 2023; 28:560. [PMID: 36677615 PMCID: PMC9865467 DOI: 10.3390/molecules28020560] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 01/09/2023] Open
Abstract
Anthocyanins are reported to exhibit a wide variety of remedial qualities against many human disorders, including antioxidative stress, anti-inflammatory activity, amelioration of cardiovascular diseases, improvement of cognitive decline, and are touted to protect against neurodegenerative disorders. Anthocyanins are water soluble naturally occurring polyphenols containing sugar moiety and are found abundantly in colored fruits/berries. Various chromatographic (HPLC/HPTLC) and spectroscopic (IR, NMR) techniques as standalone or in hyphenated forms such as LC-MS/LC-NMR are routinely used to gauge the chemical composition and ensure the overall quality of anthocyanins in berries, fruits, and finished products. The major emphasis of the current review is to compile and disseminate various analytical methodologies on characterization, quantification, and chemical profiling of the whole array of anthocyanins in berries, and fruits within the last two decades. In addition, the factors affecting the stability of anthocyanins, including pH, light exposure, solvents, metal ions, and the presence of other substances, such as enzymes and proteins, were addressed. Several sources of anthocyanins, including berries and fruit with their botanical identity and respective yields of anthocyanins, were covered. In addition to chemical characterization, economically motivated adulteration of anthocyanin-rich fruits and berries due to increasing consumer demand will also be the subject of discussion. Finally, the health benefits and the medicinal utilities of anthocyanins were briefly discussed. A literature search was performed using electronic databases from PubMed, Science Direct, SciFinder, and Google Scholar, and the search was conducted covering the period from January 2000 to November 2022.
Collapse
Affiliation(s)
- Bharathi Avula
- National Center for Natural Products Research, University, MS 38677, USA
| | - Kumar Katragunta
- National Center for Natural Products Research, University, MS 38677, USA
| | - Ahmed G. Osman
- National Center for Natural Products Research, University, MS 38677, USA
| | - Zulfiqar Ali
- National Center for Natural Products Research, University, MS 38677, USA
| | | | | | - Ikhlas A. Khan
- National Center for Natural Products Research, University, MS 38677, USA
- Division of Pharmacognosy, Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, MS 38677, USA
| |
Collapse
|
10
|
Dang L, Zhang C, Su B, Ning N, Huang Q, Zhou S, Wu M, Ma W, Wang M, Cui P, Li Y, Wang S. Mechanisms of action of Zishen Yutai pills in treating premature ovarian failure determined by integrating UHPLC-Q-TOF-MS and network pharmacology analysis. BMC Complement Med Ther 2022; 22:281. [PMID: 36289509 PMCID: PMC9597968 DOI: 10.1186/s12906-022-03763-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 10/14/2022] [Indexed: 11/23/2022] Open
Abstract
Background Zishen Yutai (ZSYT) pill, a patent Chinese medicine, has been widely used in the treatment of infertility, abortion, and adjunctive treatment of in vitro fertilization (IVF) for decades. Recently, the results of clinical observations showed that premature ovarian failure (POF) patients exhibited improved expression of steroids and clinical symptoms associated with hormone disorders after treatment with Zishen Yutai pills. However, the pharmacological mechanism of action of these pills remains unclear. Methods The compounds of Zishen Yutai pills found in blood circulation were identified via ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UHPLC-Q-TOF-MS) technique in the serum of POF mice after oral administration of Zishen Yutai pills. The potential targets of compounds were screened using Traditional Chinese Medicine Systems Pharmacology Database, Traditional Chinese Medicine Database@Taiwan, Drugbank Database, PubChem, HIT, Pharmapper, and Swiss Target Prediction. The target genes associated with POF were collected from Online Mendelian Inheritance in Man Database, PharmGkb, Genecards, Therapeutic Target Database, and Genetic Association Database. The overlapping genes between the potential targets of Zishen Yutai pills’ compounds and the target genes associated with POF were clarified via protein-protein interaction (PPI), pathway, and network analysis. Results Nineteen compounds in Zishen Yutai pills were detected in the serum of POF mice after oral administration. A total of 695 Zishen Yutai (ZSYT) pill-related targets were screened, and 344 POF-related targets were collected. From the results of Zishen Yutai (ZSYT) pill-POF PPI analysis, CYP19A1, AKR1C3, ESR1, AR, and SRD5A2 were identified as key targets via network analysis, indicating their core role in the treatment of POF with Zishen Yutai pills. Moreover, the pathway enrichment results suggested that Zishen Yutai pills treated POF primarily by regulating neuroactive ligand-receptor interaction, steroid hormone biosynthesis, and ovarian steroidogenesis. Conclusions Via virtual screening, we found that regulation of neuroactive ligand-receptor interaction, steroid hormone biosynthesis, and ovarian steroidogenesis was the potential therapeutic mechanism of Zishen Yutai pills in treating POF. Our study suggested that combining the analysis of Zishen Yutai pills’ compounds in blood in vivo in the POF model and network pharmacology prediction might offer a tool to characterize the mechanism of Zishen Yutai pills in the POF. Supplementary Information The online version contains supplementary material available at 10.1186/s12906-022-03763-2.
Collapse
Affiliation(s)
- Lei Dang
- grid.33199.310000 0004 0368 7223Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei China ,Post-Doctoral Research Center of Guangzhou Pharmaceutical Holdings Ltd, Guangzhou, Guangdong China ,Guangzhou Baiyunshan Zhongyi Pharmaceutical Co. Ltd, Guangzhou, Guangdong China
| | - Chunbo Zhang
- Post-Doctoral Research Center of Guangzhou Pharmaceutical Holdings Ltd, Guangzhou, Guangdong China ,Guangzhou Baiyunshan Zhongyi Pharmaceutical Co. Ltd, Guangzhou, Guangdong China
| | - Biru Su
- Guangzhou Baiyunshan Zhongyi Pharmaceutical Co. Ltd, Guangzhou, Guangdong China
| | - Na Ning
- Guangzhou Baiyunshan Zhongyi Pharmaceutical Co. Ltd, Guangzhou, Guangdong China
| | - Qiuling Huang
- Guangzhou Baiyunshan Zhongyi Pharmaceutical Co. Ltd, Guangzhou, Guangdong China
| | - Su Zhou
- grid.33199.310000 0004 0368 7223Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei China
| | - Meng Wu
- grid.33199.310000 0004 0368 7223Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei China
| | - Wenqing Ma
- grid.33199.310000 0004 0368 7223Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei China
| | - Man Wang
- grid.33199.310000 0004 0368 7223Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei China
| | - Pengfei Cui
- grid.33199.310000 0004 0368 7223Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei China
| | - Yan Li
- grid.33199.310000 0004 0368 7223Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei China
| | - Shixuan Wang
- grid.33199.310000 0004 0368 7223Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei China
| |
Collapse
|
11
|
Mialon N, Roig B, Capodanno E, Cadiere A. Untargeted metabolomic approaches in food authenticity: a review that showcases biomarkers. Food Chem 2022; 398:133856. [DOI: 10.1016/j.foodchem.2022.133856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 08/01/2022] [Accepted: 08/02/2022] [Indexed: 11/26/2022]
|
12
|
Li K, Tang B, Zhang W, Tu X, Ma J, Xing S, Shao Y, Zhu J, Lei F, Zhang H. A novel approach for authentication of shellac resin in the shellac-based edible coatings: Contain shellac or not in the fruit wax preservative coating. Food Chem X 2022; 14:100349. [PMID: 35663597 PMCID: PMC9156870 DOI: 10.1016/j.fochx.2022.100349] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 05/23/2022] [Accepted: 05/23/2022] [Indexed: 12/18/2022] Open
Abstract
A novel approach based on targeted metabolomics for the authentication of shellac resin in shellac-based coating solution was established for the first time. The authentication of shellac resin was skillfully transformed by means of taking monomer compounds constituting shellac resin (fatty acids and terpenic acids) as targeted metabolites. The feasibility of the authenticated approach of shellac resin in commercial coating solution products for fruit preservation was verified by taking common metabolites as the biomarkers.
As an edible coating substrate, the detection of shellac resin has always been an intractable problem. In this paper, an authentication method of shellac resin in shellac-based edible coatings was established. Results showed that the authentication of shellac resin could be skillfully transformed as the identification of 13 targeted metabolites which were monomer compounds of shellac resin. The 13 targeted metabolites were further divided into 6 differential metabolites and 7 common metabolites with the metabonomic method and difference analysis of targeted metabolite contents. Then, four commercial soi-disant shellac-based coating solutions were selected to verify the feasibility of this method, and 7 common metabolites were detected in only one commercial sample, highly consistent with the results of shellac resin. All the above results indicated that the targeted metabolomics approach established in this study could provide a scientific basis for the qualitative authentication of shellac resin in the preservation coating.
Collapse
Affiliation(s)
- Kun Li
- Xinyang Agriculture and Forestry University, Xinyang 464000, China
| | - Baoshan Tang
- Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming, Yunnan 650233, China
| | - Wenwen Zhang
- Xinyang Agriculture and Forestry University, Xinyang 464000, China
| | - Xinghao Tu
- Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming, Yunnan 650233, China
| | - Jinju Ma
- Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming, Yunnan 650233, China
| | - Shujie Xing
- Xinyang Agriculture and Forestry University, Xinyang 464000, China
| | - Ying Shao
- Xinyang Agriculture and Forestry University, Xinyang 464000, China
| | - Jing Zhu
- Xinyang Agriculture and Forestry University, Xinyang 464000, China
| | - Fuhou Lei
- Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi University for Nationalities, Nanning 530006, China
| | - Hong Zhang
- Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming, Yunnan 650233, China
| |
Collapse
|
13
|
Headspace Solid-Phase Micro-extraction for Determination of Volatile Organic Compounds in Apple Using Gas Chromatography–Mass Spectrometry. FOOD ANAL METHOD 2022. [DOI: 10.1007/s12161-022-02324-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
14
|
Ramabulana T, Ndlovu M, Mosa RA, Sonopo MS, Selepe MA. Phytochemical Profiling and Isolation of Bioactive Compounds from Leucosidea sericea (Rosaceae). ACS OMEGA 2022; 7:11964-11972. [PMID: 35449904 PMCID: PMC9016878 DOI: 10.1021/acsomega.2c00096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/17/2022] [Indexed: 06/14/2023]
Abstract
In the study, ultraperformance liquid chromatography-quadrupole time-of-flight-mass spectrometry analysis of Leucosidea sericea leaf and stem extracts led to the identification of various classes of compounds. Further chromatographic purifications resulted in the isolation of 22 compounds that consisted of a new triterpenoid named leucosidic acid A (1), an acetophenone derivative 2, a phloroglucinol derivative 3, three chromones 4-6, seven pentacyclic triterpenoids 7-13, a phytosterol glucoside 14, a flavonoid 15, and seven flavonoid glycosides 16-22. Nineteen of these compounds including the previously undescribed triterpenoid 1 are isolated for the first time from L. sericea. The structures of the isolated compounds were assigned based on their high-resolution mass spectrometry and nuclear magnetic resonance data. Some of the isolated triterpenoids were evaluated for inhibitory activity against α-amylase, α-glucosidase, and pancreatic lipase. Of the tested compounds, 1-hydroxy-2-oxopomolic acid (7) and pomolic acid (13) showed higher potency on α-glucosidase than acarbose, which is used as a positive control in this study. The two compounds inhibited α-glucosidase with IC50 values of 192.1 ± 13.81 and 85.5 ± 6.87 μM, respectively.
Collapse
Affiliation(s)
- Tshifhiwa Ramabulana
- Department
of Chemistry, University of Pretoria, Lynnwood Road, Hatfield, Pretoria 0002, South Africa
| | - Musawenkosi Ndlovu
- Department
of Biochemistry, Genetics and Microbiology, University of Pretoria, Lynnwood Road, Hatfield, Pretoria 0002, South Africa
| | - Rebamang A. Mosa
- Department
of Biochemistry, Genetics and Microbiology, University of Pretoria, Lynnwood Road, Hatfield, Pretoria 0002, South Africa
| | - Molahlehi S. Sonopo
- Radiochemistry, South African Nuclear Energy Corporation Limited, Pelindaba, Brits 0240, South Africa
| | - Mamoalosi A. Selepe
- Department
of Chemistry, University of Pretoria, Lynnwood Road, Hatfield, Pretoria 0002, South Africa
| |
Collapse
|
15
|
Simultaneous Determination of Fifteen Polyphenols in Fruit Juice Using Ultrahigh-Performance Liquid Chromatography-Tandem Mass Spectrometry Combining Dispersive Liquid-Liquid Microextraction. Int J Anal Chem 2022; 2022:5486290. [PMID: 35371261 PMCID: PMC8967586 DOI: 10.1155/2022/5486290] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/01/2022] [Accepted: 03/08/2022] [Indexed: 02/07/2023] Open
Abstract
Polyphenols are secondary metabolites of plants and used as effective antioxidants in dietary supplements, whose main sources are fruits, vegetables, and grains. To clarify the content and distribution of polyphenols in different fruit species samples accurately, a rapid and sensitive ultrahigh-pressure liquid chromatography-electrospray ionization-tandem mass spectrometry (UPLC-ESI-MS/MS) method combining dispersive liquid-liquid microextraction (DLLME) was developed for quantitative determination of fifteen polyphenol compounds in fruit juice. In this method, the targets were first extracted from 1 g of fruit juice sample using 10 mL of 80% ethanol solution by ultrasonic-assisted extraction (UAE). Then, 1.0 mL of UAE extracted solution, 60 μL of n-octanol and 2.0 mL of H2O were performed in the following DLLME procedure. A C18 reversed-phase column, ZORBAX SB (100 × 4.6 mm, 3.5 μm), was proposed under gradient elution with 0.1% formic acid aqueous solution and methanol mobile phases for the determination of 15 polyphenols, allowing us to obtain polyphenolic profiles in less than 23.0 min. Under the optimum conditions, the enrichment factors ranged from 162 to 194. The results showed that the 15 polyphenols had linear correlation coefficients (R2) more than 0.99. The limits of detection (LODs) were between 18.3 and 103.5 ng/g, and the average recoveries were between 96.9 and 116.3% with interday relative standard deviations (RSDs) ranging from 4.4 to 8.2% in all cases. The method was successfully applied to the analysis of real fruit juice samples and presented itself as a simple, rapid, practical, and environment-friendly technique.
Collapse
|
16
|
Hu Q, Zhang J, Xing R, Yu N, Chen Y. Integration of lipidomics and metabolomics for the authentication of camellia oil by ultra-performance liquid chromatography quadrupole time-of-flight mass spectrometry coupled with chemometrics. Food Chem 2022; 373:131534. [PMID: 34801288 DOI: 10.1016/j.foodchem.2021.131534] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 10/06/2021] [Accepted: 11/02/2021] [Indexed: 12/22/2022]
Abstract
The integration of lipidomics and metabolomics approaches, based on UPLC-QTOF-MS technology coupled with chemometrics, was established to authenticate camellia oil adulterated with rapeseed oil, peanut oil, and soybean oil. Lipidomics revealed that the glyceride profile provides a prospective authentication of camellia oil, but no characteristic markers were available. Sixteen characteristic markers were identified by metabolomics. For camellia oil, all six markers were sapogenins of oleanane-type triterpene saponins. Lariciresinol, sinapic acid, doxercalciferol, and an unknown compound were identified as markers for rapeseed oil. Characteristic markers in peanut oil were formononetin, sativanone, and medicarpin. In the case of soybean oil, the characteristic markers were dimethoxyflavone, daidzein, and genistein. The established OPLS-DA and OPLS prediction models were highly accurate in the qualitative and quantitative analyses of camellia oil adulterated with 5% other oils. These results indicate that the integration of lipidomics and metabolomics approaches has great potential for the authentication of edible oils.
Collapse
Affiliation(s)
- Qian Hu
- Chinese Academy of Inspection and Quarantine, Beijing 100176, People's Republic of China; School of Food and Health, Beijing Technology and Business University, Beijing 100048, People's Republic of China
| | - Jiukai Zhang
- Chinese Academy of Inspection and Quarantine, Beijing 100176, People's Republic of China
| | - Ranran Xing
- Chinese Academy of Inspection and Quarantine, Beijing 100176, People's Republic of China
| | - Ning Yu
- Chinese Academy of Inspection and Quarantine, Beijing 100176, People's Republic of China
| | - Ying Chen
- Chinese Academy of Inspection and Quarantine, Beijing 100176, People's Republic of China.
| |
Collapse
|
17
|
Zhong P, Wei X, Li X, Wei X, Wu S, Huang W, Koidis A, Xu Z, Lei H. Untargeted metabolomics by liquid chromatography‐mass spectrometry for food authentication: A review. Compr Rev Food Sci Food Saf 2022; 21:2455-2488. [DOI: 10.1111/1541-4337.12938] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 02/20/2022] [Accepted: 02/21/2022] [Indexed: 12/17/2022]
Affiliation(s)
- Peng Zhong
- Guangdong Provincial Key Laboratory of Food Quality and Safety / National–Local Joint Engineering Research Center for Precision Machining and Safety of Livestock and Poultry Products, College of Food Science South China Agricultural University Guangzhou 510642 China
| | - Xiaoqun Wei
- Guangdong Provincial Key Laboratory of Food Quality and Safety / National–Local Joint Engineering Research Center for Precision Machining and Safety of Livestock and Poultry Products, College of Food Science South China Agricultural University Guangzhou 510642 China
| | - Xiangmei Li
- Guangdong Provincial Key Laboratory of Food Quality and Safety / National–Local Joint Engineering Research Center for Precision Machining and Safety of Livestock and Poultry Products, College of Food Science South China Agricultural University Guangzhou 510642 China
| | - Xiaoyi Wei
- Guangdong Provincial Key Laboratory of Food Quality and Safety / National–Local Joint Engineering Research Center for Precision Machining and Safety of Livestock and Poultry Products, College of Food Science South China Agricultural University Guangzhou 510642 China
| | - Shaozong Wu
- Guangdong Provincial Key Laboratory of Food Quality and Safety / National–Local Joint Engineering Research Center for Precision Machining and Safety of Livestock and Poultry Products, College of Food Science South China Agricultural University Guangzhou 510642 China
| | - Weijuan Huang
- Guangdong Provincial Key Laboratory of Food Quality and Safety / National–Local Joint Engineering Research Center for Precision Machining and Safety of Livestock and Poultry Products, College of Food Science South China Agricultural University Guangzhou 510642 China
| | - Anastasios Koidis
- Institute for Global Food Security Queen's University Belfast Belfast UK
| | - Zhenlin Xu
- Guangdong Provincial Key Laboratory of Food Quality and Safety / National–Local Joint Engineering Research Center for Precision Machining and Safety of Livestock and Poultry Products, College of Food Science South China Agricultural University Guangzhou 510642 China
| | - Hongtao Lei
- Guangdong Provincial Key Laboratory of Food Quality and Safety / National–Local Joint Engineering Research Center for Precision Machining and Safety of Livestock and Poultry Products, College of Food Science South China Agricultural University Guangzhou 510642 China
- Guangdong Laboratory for Lingnan Modern Agriculture South China Agricultural University Guangzhou 510642 China
| |
Collapse
|
18
|
Urbonaviciene D, Bobinaite R, Viskelis P, Bobinas C, Petruskevicius A, Klavins L, Viskelis J. Geographic Variability of Biologically Active Compounds, Antioxidant Activity and Physico-Chemical Properties in Wild Bilberries ( Vaccinium myrtillus L.). Antioxidants (Basel) 2022; 11:antiox11030588. [PMID: 35326238 PMCID: PMC8945452 DOI: 10.3390/antiox11030588] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 03/14/2022] [Accepted: 03/16/2022] [Indexed: 02/02/2023] Open
Abstract
The aim of this study was to characterize the variation in biologically active compounds, antioxidant activity and physico-chemical properties in naturally grown bilberries gathered from different sites in Northern Europe. The variability in the biologically active compounds, antioxidant capacity and physico-chemical properties, as well as the development of tools for the authenticity and quality control of wild bilberries (V. myrtillus L.) in different geographical locations was evaluated. The berries of bilberries were handpicked during the summers of 2019 and 2020 during the time periods when they are typically harvested for commercial purposes in Northern Europe (Norway (NOR), Finland (FIN), Latvia (LVA) and Lithuania (LTU)). Berries from locations in NOR were distinguished by their higher mean TPC (791 mg/100 g FW, average), whereas the mean TPC of samples from the most southern country, LTU, was the lowest (587 mg/100 g FW). The TPC of bilberries ranged from 452 to 902 mg/100 g FW. The TAC values of investigated bilberry samples varied from 233 to 476 mg/100 g FW. A high positive correlation was found between TPC and antioxidant activity of the bilberry samples (R = 0.88 and 0.91 (FRAP and ABTS assays, respectively)), whereas the correlation between TAC and antioxidant activity was lower (R = 0.65 and 0.60). There were variations in the TPC and TAC values of investigated berries, suggesting that genotype also affects the TPC and TAC in berries. In 2020, the pH values and TSS contents of berries were significantly lower than in 2019. To the best of our knowledge, this is the first comprehensive reported evaluation of the biologically active compounds in wild bilberries from different Northern European countries using one laboratory-validated method.
Collapse
Affiliation(s)
- Dalia Urbonaviciene
- Lithuanian Research Centre for Agriculture and Forestry, Institute of Horticulture, 54333 Babtai, Lithuania; (R.B.); (P.V.); (C.B.); (A.P.); (J.V.)
- Correspondence: ; Tel.: +370-683-08157
| | - Ramune Bobinaite
- Lithuanian Research Centre for Agriculture and Forestry, Institute of Horticulture, 54333 Babtai, Lithuania; (R.B.); (P.V.); (C.B.); (A.P.); (J.V.)
| | - Pranas Viskelis
- Lithuanian Research Centre for Agriculture and Forestry, Institute of Horticulture, 54333 Babtai, Lithuania; (R.B.); (P.V.); (C.B.); (A.P.); (J.V.)
| | - Ceslovas Bobinas
- Lithuanian Research Centre for Agriculture and Forestry, Institute of Horticulture, 54333 Babtai, Lithuania; (R.B.); (P.V.); (C.B.); (A.P.); (J.V.)
| | - Aistis Petruskevicius
- Lithuanian Research Centre for Agriculture and Forestry, Institute of Horticulture, 54333 Babtai, Lithuania; (R.B.); (P.V.); (C.B.); (A.P.); (J.V.)
| | - Linards Klavins
- Department of Environmental Science, University of Latvia, 1004 Riga, Latvia;
| | - Jonas Viskelis
- Lithuanian Research Centre for Agriculture and Forestry, Institute of Horticulture, 54333 Babtai, Lithuania; (R.B.); (P.V.); (C.B.); (A.P.); (J.V.)
| |
Collapse
|
19
|
Abraham EJ, Kellogg JJ. Chemometric-Guided Approaches for Profiling and Authenticating Botanical Materials. Front Nutr 2021; 8:780228. [PMID: 34901127 PMCID: PMC8663772 DOI: 10.3389/fnut.2021.780228] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 10/31/2021] [Indexed: 01/08/2023] Open
Abstract
Botanical supplements with broad traditional and medicinal uses represent an area of growing importance for American health management; 25% of U.S. adults use dietary supplements daily and collectively spent over $9. 5 billion in 2019 in herbal and botanical supplements alone. To understand how natural products benefit human health and determine potential safety concerns, careful in vitro, in vivo, and clinical studies are required. However, botanicals are innately complex systems, with complicated compositions that defy many standard analytical approaches and fluctuate based upon a plethora of factors, including genetics, growth conditions, and harvesting/processing procedures. Robust studies rely upon accurate identification of the plant material, and botanicals' increasing economic and health importance demand reproducible sourcing, as well as assessment of contamination or adulteration. These quality control needs for botanical products remain a significant problem plaguing researchers in academia as well as the supplement industry, thus posing a risk to consumers and possibly rendering clinical data irreproducible and/or irrelevant. Chemometric approaches that analyze the small molecule composition of materials provide a reliable and high-throughput avenue for botanical authentication. This review emphasizes the need for consistent material and provides insight into the roles of various modern chemometric analyses in evaluating and authenticating botanicals, focusing on advanced methodologies, including targeted and untargeted metabolite analysis, as well as the role of multivariate statistical modeling and machine learning in phytochemical characterization. Furthermore, we will discuss how chemometric approaches can be integrated with orthogonal techniques to provide a more robust approach to authentication, and provide directions for future research.
Collapse
Affiliation(s)
- Evelyn J Abraham
- Intercollege Graduate Degree Program in Plant Biology, The Pennsylvania State University (PSU), University Park, PA, United States
| | - Joshua J Kellogg
- Intercollege Graduate Degree Program in Plant Biology, The Pennsylvania State University (PSU), University Park, PA, United States.,Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, United States
| |
Collapse
|
20
|
Selamat J, Rozani NAA, Murugesu S. Application of the Metabolomics Approach in Food Authentication. Molecules 2021; 26:molecules26247565. [PMID: 34946647 PMCID: PMC8706891 DOI: 10.3390/molecules26247565] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/28/2021] [Accepted: 11/03/2021] [Indexed: 02/04/2023] Open
Abstract
The authentication of food products is essential for food quality and safety. Authenticity assessments are important to ensure that the ingredients or contents of food products are legitimate and safe to consume. The metabolomics approach is an essential technique that can be utilized for authentication purposes. This study aimed to summarize food authentication through the metabolomics approach, to study the existing analytical methods, instruments, and statistical methods applied in food authentication, and to review some selected food commodities authenticated using metabolomics-based methods. Various databases, including Google Scholar, PubMed, Scopus, etc., were used to obtain previous research works relevant to the objectives. The review highlights the role of the metabolomics approach in food authenticity. The approach is technically implemented to ensure consumer protection through the strict inspection and enforcement of food labeling. Studies have shown that the study of metabolomics can ultimately detect adulterant(s) or ingredients that are added deliberately, thus compromising the authenticity or quality of food products. Overall, this review will provide information on the usefulness of metabolomics and the techniques associated with it in successful food authentication processes, which is currently a gap in research that can be further explored and improved.
Collapse
Affiliation(s)
- Jinap Selamat
- Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang 43400, Malaysia;
- Institute of Tropical Agriculture and Food Security (ITAFoS), Universiti Putra Malaysia, Serdang 43400, Malaysia;
- Correspondence: or ; Tel.: +603-97691146
| | | | - Suganya Murugesu
- Institute of Tropical Agriculture and Food Security (ITAFoS), Universiti Putra Malaysia, Serdang 43400, Malaysia;
| |
Collapse
|
21
|
Metabolite differentiation and antiobesity effects between different grades of Yuexi Cuilan green tea. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104794] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
|
22
|
Wang X, Cheng K, Liu Z, Sun Y, Zhou L, Xu M, Dai X, Xiong Y, Zhang H. Bioactive constituents of Mosla chinensis-cv. Jiangxiangru ameliorate inflammation through MAPK signaling pathways and modify intestinal microbiota in DSS-induced colitis mice. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 93:153804. [PMID: 34735907 DOI: 10.1016/j.phymed.2021.153804] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 09/13/2021] [Accepted: 10/17/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Mosla chinensis Maxim. cv. Jiangxiangru (JXR), a traditional Chinese medicine, commonly used for the therapy of cold, fever, diarrhea, digestive disorders, and other diseases. Inflammatory bowel disease (IBD) is a chronic disorder of the human gastrointestinal tract. Research about the effect of JXR on IBD and the active ingredient composition of JXR remains deficiency. PURPOSE This study aims to determine the phytochemical composition and the anti-inflammatory property of JXR, as well as the possible anti-inflammatory mechanisms. METHODS The bioactive profile of JXR extracts was determined by UPLC-LTQ-Orbitrap-MS. A DSS induced colitis mouse model was applied to explore the anti-inflammatory activity of JXR. The body weight, colon length and histopathological status of colon tissue were evaluated. The content of inflammatory mediators (nitric oxide (NO), prostaglandin E2 (PGE2)) and cytokines (tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and interleukin-1β (IL-1β)), corresponding mRNA and protein expression levels were analyzed. Oxidation pressure and gut microbial composition were also explored. RESULTS Totally 63 constitutes were identified from JXR, among them, phenolic acids and flavonoids comprised a large part, and rosmarinic acid (RA) was the main compound. The results of DSS-induced colitis mice model indicated that JXR effectively ameliorated inflammation, restore the redox balance in the gut. JXR treatment significantly reduced the production of reactive oxygen species (ROS), increased the activity of antioxidative enzyme, suppressed the secretion of inflammatory mediators (NO, PGE2) and cytokines (TNF-α, IL-6, IL-1β). JXR also restrained the activation of mitogen-activated protein kinases (MAPKs) signaling pathway. Furthermore, JXR could restore the microbial diversity by suppressing Bacteroidaceae, increasing Bifidobacteriales and Melainabacteria in DSS colitis mouse model. CONCLUSIONS This study demonstrated that JXR composed with various bioactive compounds, effectively ameliorated colitis, restored the redox balance and regulated gut microbiota. Results from the present study provide an insight of therapeutic potential of JXR in IBD based on its anti-inflammatory and antioxidant properties, also provide a scientific basis for using JXR as a functional ingredient to promote colon health.
Collapse
Affiliation(s)
- Xiaoya Wang
- Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, Jiangxi, China; State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, Jiangxi, China
| | - Kejun Cheng
- Chemical Biology Center, Lishui Institute of Agricultural Sciences, Lishui 323000, Zhejiang, China
| | - Zhiyong Liu
- Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, Jiangxi, China
| | - Yong Sun
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, Jiangxi, China
| | - Lifen Zhou
- Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, Jiangxi, China
| | - Mengtian Xu
- Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, Jiangxi, China
| | - Xiuxiu Dai
- Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, Jiangxi, China
| | - Yaokun Xiong
- Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, Jiangxi, China.
| | - Hua Zhang
- Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, Jiangxi, China.
| |
Collapse
|
23
|
Wang C, Zhang Y, Ding H, Song M, Yin J, Yu H, Li Z, Han L, Zhang Z. Authentication of Zingiber Species Based on Analysis of Metabolite Profiles. FRONTIERS IN PLANT SCIENCE 2021; 12:705446. [PMID: 34880881 PMCID: PMC8647842 DOI: 10.3389/fpls.2021.705446] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 10/11/2021] [Indexed: 05/10/2023]
Abstract
Zingiber corallinum and Zingiber montanum, which belong to the Zingiberaceae family, are traditional Chinese folk medicinal herbs in Guizhou and Yunnan Province of China. They share great similarities in morphology, chemical constituent, and DNA barcoding sequence. The taxonomy of the two Zingiber species is controversial and discrimination of traditional Chinese medicines directly affects the pharmacological and clinical effects. In the present study, we performed a systemic analysis of "super-barcode" and untargeted metabolomics between Z. corallinum and Z. montanum using chloroplast (cp) genome sequencing and gas chromatography-mass spectrometry (GC-MS) analysis. Comparison and phylogenetic analysis of cp genomes of the two Zingiber species showed that the cp genome could not guarantee the accuracy of identification. An untargeted metabolomics strategy combining GC-MS with chemometric methods was proposed to distinguish the Zingiber samples of known variety. A total of 51 volatile compounds extracted from Z. corallinum and Z. montanum were identified, and nine compounds were selected as candidate metabolic markers to reveal the significant difference between Z. corallinum and Z. montanum. The performance of the untargeted metabolomic approach was verified with unknown Zingiber samples. Although the cp genomes could not be used to identify Zingiber species in this study, it will still provide a valuable genomics resource for population studies in the Zingiberaceae family, and the GC-MS based metabolic fingerprint is more promising for species identification and safe application of Z. corallinum and Z. montanum.
Collapse
Affiliation(s)
- Chenxi Wang
- Tianjin State Key Laboratory of Component-Based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yue Zhang
- Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan Branch of Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Jinghong, China
| | - Hui Ding
- Tianjin State Key Laboratory of Component-Based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Meifang Song
- Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan Branch of Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Jinghong, China
| | - Jiaxin Yin
- Tianjin State Key Laboratory of Component-Based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Heshui Yu
- Tianjin State Key Laboratory of Component-Based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zheng Li
- Tianjin State Key Laboratory of Component-Based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lifeng Han
- Tianjin State Key Laboratory of Component-Based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhonglian Zhang
- Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan Branch of Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Jinghong, China
| |
Collapse
|
24
|
Wang K, Xu L, Wang X, Chen A, Xu Z. Discrimination of beef from different origins based on lipidomics: A comparison study of DART-QTOF and LC-ESI-QTOF. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
25
|
Salo HM, Nguyen N, Alakärppä E, Klavins L, Hykkerud AL, Karppinen K, Jaakola L, Klavins M, Häggman H. Authentication of berries and berry-based food products. Compr Rev Food Sci Food Saf 2021; 20:5197-5225. [PMID: 34337851 DOI: 10.1111/1541-4337.12811] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/16/2021] [Accepted: 06/30/2021] [Indexed: 12/15/2022]
Abstract
Berries represent one of the most important and high-valued group of modern-day health-beneficial "superfoods" whose dietary consumption has been recognized to be beneficial for human health for a long time. In addition to being delicious, berries are rich in nutrients, vitamins, and several bioactive compounds, including carotenoids, flavonoids, phenolic acids, and hydrolysable tannins. However, due to their high value, berries and berry-based products are often subject to fraudulent adulteration, commonly for economical gain, but also unintentionally due to misidentification of species. Deliberate adulteration often comprises the substitution of high-value berries with lower value counterparts and mislabeling of product contents. As adulteration is deceptive toward customers and presents a risk for public health, food authentication through different methods is applied as a countermeasure. Although many authentication methods have been developed in terms of fast, sensitive, reliable, and low-cost analysis and have been applied in the authentication of a myriad of food products and species, their application on berries and berry-based products is still limited. The present review provides an overview of the development and application of analytical chemistry methods, such as isotope ratio analysis, liquid and gas chromatography, spectroscopy, as well as DNA-based methods and electronic sensors, for the authentication of berries and berry-based food products. We provide an overview of the earlier use and recent advances of these methods, as well as discuss the advances and drawbacks related to their application.
Collapse
Affiliation(s)
- Heikki M Salo
- Ecology and Genetics Research Unit, University of Oulu, Oulu, Finland
| | - Nga Nguyen
- Ecology and Genetics Research Unit, University of Oulu, Oulu, Finland
| | - Emmi Alakärppä
- Ecology and Genetics Research Unit, University of Oulu, Oulu, Finland
| | - Linards Klavins
- The Natural Resource Research Centre, University of Latvia, Riga, Latvia
| | - Anne Linn Hykkerud
- Department of Horticulture, Norwegian Institute of Bioeconomy Research (NIBIO), Ås, Norway
| | - Katja Karppinen
- Department of Horticulture, Norwegian Institute of Bioeconomy Research (NIBIO), Ås, Norway.,Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Tromsø, Norway
| | - Laura Jaakola
- Department of Horticulture, Norwegian Institute of Bioeconomy Research (NIBIO), Ås, Norway.,Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Tromsø, Norway
| | - Maris Klavins
- The Natural Resource Research Centre, University of Latvia, Riga, Latvia
| | - Hely Häggman
- Ecology and Genetics Research Unit, University of Oulu, Oulu, Finland
| |
Collapse
|
26
|
Sun W, Zhang J, Zhou C, Yan B, Cai Q, He H, Duan X, Fan H. Differential Analysis of Serum Principal Components Treated with Compound Sophora Decoction and Related Compounds Based on High-Resolution Mass Spectrometry (HRMS). EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2020; 2020:7518479. [PMID: 33062021 PMCID: PMC7545453 DOI: 10.1155/2020/7518479] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 08/11/2020] [Accepted: 09/16/2020] [Indexed: 01/14/2023]
Abstract
OBJECTIVE To compare the differences in the serum principal components in ulcerative colitis- (UC-) induced rats, treated with compound Sophora decoction, matrine, oxymatrine monomer mixture, and indirubin monomer, and to provide a modern scientific basis for elucidating the clinical efficacy of compound Sophora decoction for the treatment of UC. METHODS The serum samples of rats from each group were obtained after drug administration, and the serum principal components of each group were analyzed by high-resolution mass spectrometry. Agilent Eclipse XDB C18 chromatographic column (100 mm × 2.1 mm, 3.5 m) was used for separation. The mobile phase was water (A) and methanol (B) (0.1% formic acid) gradient elution, 0-3 min (B: 20%-40%), 3-10 min (B: 40%-54%), 10-25 min (B: 54%), 25-35 min (B: 54%-70%), 35-45 min (B: 70%-80%), 45-50 min (B: 80%), 50-60 min (B: 80%-100%), 70-72 min (B: 100%-20%), and 72-77 min (B: 20%); flow rate, 300 μL/min; column temperature, 40°C; and injection volume, 10 μL. ESI source was selected and scanned in the positive and negative ion modes. The scanning range was 70-1500 m/z; ion-source gas 1 (GS1): 55 psi; ion-source gas 2 (GS2): 60 psi; CUR: 30 psi; ion-source temperature (TEM): 550°C; ion-source voltage (ISVF) : 5500 V/-4500 V; decluster voltage (DP): 100 V; collision energy (CE): 35 V/-35 V; collision energy gain (CES) : 15 V/-15 V; and data acquisition mode: IDA. After the data from each group were imported into MarkView 1.3, the molecular weights and retention times of different substances were obtained and qualitatively analyzed by ChemSpider and PeakView 2.0. RESULTS In the negative ion mode, 26 differential compounds were identified in the compound Sophora decoction group (FFKST) compared to the model group (M), and 18 differential compounds were identified in the matrine and oxymatrine group (KST) compared to the model group (M). In the positive ion mode, 11 and 7 differential compounds were identified in the compound Sophora decoction group (FFKST) and the matrine and oxymatrine group (KST) compared to the model group (M), respectively. The responses of all compounds in each group were compared with each other. As the different principal component substances in the indirubin group (DYH) displayed little correlation with other groups, the different components in this group were not researched thoroughly. CONCLUSION By comparing the differences in the serum principal components from each administration group, we found that the FFKST group exhibited enhanced synthesis of the serum principal components; however, the compound doses of matrine and oxymatrine monomers did not exhibit the same changes in the serum principal components of UC-induced rats. Finally, the traditional Chinese medicine compound is more advantageous than monomers.
Collapse
Affiliation(s)
- Wanjin Sun
- Department of Pharmacy, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan 430061, China
- Department of Pharmacy, Hubei Province Academy of Traditional Chinese Medicine, Wuhan 430074, China
| | - Junjie Zhang
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 300000, China
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Conghui Zhou
- Department of Pharmacy, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan 430061, China
- Department of Pharmacy, Hubei Province Academy of Traditional Chinese Medicine, Wuhan 430074, China
| | - Bin Yan
- Department of Pharmacy, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan 430061, China
- Department of Pharmacy, Hubei Province Academy of Traditional Chinese Medicine, Wuhan 430074, China
| | - Quan Cai
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Hongxia He
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xueyun Duan
- Department of Pharmacy, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan 430061, China
- Department of Pharmacy, Hubei Province Academy of Traditional Chinese Medicine, Wuhan 430074, China
| | - Heng Fan
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
27
|
Fialova L, Romanovska D, Marova I. A Comparative Study of Some Procedures for Isolation of Fruit DNA of Sufficient Quality for PCR-Based Assays. Molecules 2020; 25:molecules25184317. [PMID: 32962310 PMCID: PMC7570663 DOI: 10.3390/molecules25184317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/18/2020] [Accepted: 09/18/2020] [Indexed: 11/25/2022] Open
Abstract
Food fraud has been and still is a problem in the food industry. It is detectable by several approaches, such as high performance liquid chromatography (HPLC), chemometric assays, or DNA-based techniques, each with its own drawbacks. This work addresses one major drawback of DNA-based methods, in particular their sensitivity to inhibitors contained in particular matrices from which DNA is isolated. We tested five commercial kits and one in-house method characterized by different ways of sample homogenization and DNA capture and purification. Using these methods, DNA was isolated from 10 different fruit species commonly used in plant-based foodstuffs. The quality of the DNA was evaluated by UV-VIS spectrophotometry. Two types of qPCR assays were used for DNA quality testing: (i) Method specific for plant ITS2 region, (ii) methods specific for individual fruit species. Based mainly on the results of real-time PCR assays, we were able to find two column-based kits and one magnetic carrier-based kit, which consistently provided fruit DNA isolates of sufficient quality for PCR-based assays useful for routine analysis and identification of individual fruit species in food products.
Collapse
|
28
|
Xu L, Shi Q, Lu D, Wei L, Fu HY, She Y, Xie S. Simultaneous detection of multiple frauds in kiwifruit juice by fusion of traditional and double-quantum-dots enhanced fluorescent spectroscopic techniques and chemometrics. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105105] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
29
|
Li S, Hu Y, Liu W, Chen Y, Wang F, Lu X, Zheng W. Untargeted volatile metabolomics using comprehensive two-dimensional gas chromatography-mass spectrometry – A solution for orange juice authentication. Talanta 2020; 217:121038. [DOI: 10.1016/j.talanta.2020.121038] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/09/2020] [Accepted: 04/11/2020] [Indexed: 12/30/2022]
|
30
|
Cao G, Li K, Guo J, Lu M, Hong Y, Cai Z. Mass Spectrometry for Analysis of Changes during Food Storage and Processing. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:6956-6966. [PMID: 32516537 DOI: 10.1021/acs.jafc.0c02587] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Many physicochemical changes occur during food storage and processing, such as rancidity, hydrolysis, oxidation, and aging, which may alter the taste, flavor, and texture of food products and pose risks to public health. Analysis of these changes has become of great interest to many researchers. Mass spectrometry is a promising technique for the study of food and nutrition domains as a result of its excellent ability in molecular profiling, food authentication, and marker detection. In this review, we summarized recent advances in mass spectrometry techniques and their applications in food storage and processing. Furthermore, current technical challenges associated with these methodologies were discussed.
Collapse
Affiliation(s)
- Guodong Cao
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Kowloon, Hong Kong Special Administrative Region of the People's Republic of China
| | - Kun Li
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Kowloon, Hong Kong Special Administrative Region of the People's Republic of China
- State Key Laboratory of Cotton Biology, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, Henan 475004, People's Republic of China
| | - Jinggong Guo
- State Key Laboratory of Cotton Biology, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, Henan 475004, People's Republic of China
| | - Minghua Lu
- State Key Laboratory of Cotton Biology, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, Henan 475004, People's Republic of China
| | - Yanjun Hong
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Kowloon, Hong Kong Special Administrative Region of the People's Republic of China
- HKBU Institute of Research and Continuing Education, Shenzhen, Guangdong 518057, People's Republic of China
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Kowloon, Hong Kong Special Administrative Region of the People's Republic of China
| |
Collapse
|
31
|
De Caris MG, Grieco M, Maggi E, Francioso A, Armeli F, Mosca L, Pinto A, D’Erme M, Mancini P, Businaro R. Blueberry Counteracts BV-2 Microglia Morphological and Functional Switch after LPS Challenge. Nutrients 2020; 12:nu12061830. [PMID: 32575571 PMCID: PMC7353350 DOI: 10.3390/nu12061830] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/04/2020] [Accepted: 06/16/2020] [Indexed: 01/11/2023] Open
Abstract
Microglia, the innate immune cells of the CNS, respond to brain injury by activating and modifying their morphology. Our study arises from the great interest that has been focused on blueberry (BB) for the antioxidant and pharmacological properties displayed by its components. We analyzed the influence of hydroalcoholic BB extract in resting or lipopolysaccharide (LPS)-stimulated microglia BV-2 cells. BB exerted a protective effect against LPS-induced cytotoxicity, as indicated by cell viability. BB was also able to influence the actin cytoskeleton organization, to recover the control phenotype after LPS insult, and also to reduce LPS-driven migration. We evaluated the activity of Rho and Rac1 GTPases, which regulate both actin cytoskeletal organization and migratory capacity. LPS caused an increase in Rac1 activity, which was counteracted by BB extract. Furthermore, we demonstrated that, in the presence of BB, mRNA expression of pro-inflammatory cytokines IL-1β, IL-6 and TNF-α decreased, as did the immunofluorescence signal of iNOS, whereas that of Arg-1 was increased. Taken together, our results show that, during the inflammatory response, BB extract shifts the M1 polarization towards the M2 phenotype through an actin cytoskeletal rearrangement. Based on that, we might consider BB as a nutraceutical with anti-inflammatory activities.
Collapse
Affiliation(s)
- Maria Giovanna De Caris
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy; (M.G.D.C.); (A.P.)
| | - Maddalena Grieco
- Department of Biochemical Sciences, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (M.G.); (A.F.); (L.M.); (M.D.)
| | - Elisa Maggi
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica 79, 04100 Latina, Italy; (E.M.); (F.A.); (R.B.)
| | - Antonio Francioso
- Department of Biochemical Sciences, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (M.G.); (A.F.); (L.M.); (M.D.)
| | - Federica Armeli
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica 79, 04100 Latina, Italy; (E.M.); (F.A.); (R.B.)
| | - Luciana Mosca
- Department of Biochemical Sciences, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (M.G.); (A.F.); (L.M.); (M.D.)
| | - Alessandro Pinto
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy; (M.G.D.C.); (A.P.)
| | - Maria D’Erme
- Department of Biochemical Sciences, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (M.G.); (A.F.); (L.M.); (M.D.)
| | - Patrizia Mancini
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy; (M.G.D.C.); (A.P.)
- Correspondence: ; Tel.: +39-064461526
| | - Rita Businaro
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica 79, 04100 Latina, Italy; (E.M.); (F.A.); (R.B.)
| |
Collapse
|
32
|
Bos TS, Knol WC, Molenaar SR, Niezen LE, Schoenmakers PJ, Somsen GW, Pirok BW. Recent applications of chemometrics in one- and two-dimensional chromatography. J Sep Sci 2020; 43:1678-1727. [PMID: 32096604 PMCID: PMC7317490 DOI: 10.1002/jssc.202000011] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 02/20/2020] [Accepted: 02/21/2020] [Indexed: 12/28/2022]
Abstract
The proliferation of increasingly more sophisticated analytical separation systems, often incorporating increasingly more powerful detection techniques, such as high-resolution mass spectrometry, causes an urgent need for highly efficient data-analysis and optimization strategies. This is especially true for comprehensive two-dimensional chromatography applied to the separation of very complex samples. In this contribution, the requirement for chemometric tools is explained and the latest developments in approaches for (pre-)processing and analyzing data arising from one- and two-dimensional chromatography systems are reviewed. The final part of this review focuses on the application of chemometrics for method development and optimization.
Collapse
Affiliation(s)
- Tijmen S. Bos
- Division of Bioanalytical ChemistryAmsterdam Institute for Molecules, Medicines and SystemsVrije Universiteit AmsterdamAmsterdamThe Netherlands
- Centre for Analytical Sciences Amsterdam (CASA)AmsterdamThe Netherlands
| | - Wouter C. Knol
- Analytical Chemistry Groupvan ’t Hoff Institute for Molecular Sciences, Faculty of ScienceUniversity of AmsterdamAmsterdamThe Netherlands
- Centre for Analytical Sciences Amsterdam (CASA)AmsterdamThe Netherlands
| | - Stef R.A. Molenaar
- Analytical Chemistry Groupvan ’t Hoff Institute for Molecular Sciences, Faculty of ScienceUniversity of AmsterdamAmsterdamThe Netherlands
- Centre for Analytical Sciences Amsterdam (CASA)AmsterdamThe Netherlands
| | - Leon E. Niezen
- Analytical Chemistry Groupvan ’t Hoff Institute for Molecular Sciences, Faculty of ScienceUniversity of AmsterdamAmsterdamThe Netherlands
- Centre for Analytical Sciences Amsterdam (CASA)AmsterdamThe Netherlands
| | - Peter J. Schoenmakers
- Analytical Chemistry Groupvan ’t Hoff Institute for Molecular Sciences, Faculty of ScienceUniversity of AmsterdamAmsterdamThe Netherlands
- Centre for Analytical Sciences Amsterdam (CASA)AmsterdamThe Netherlands
| | - Govert W. Somsen
- Division of Bioanalytical ChemistryAmsterdam Institute for Molecules, Medicines and SystemsVrije Universiteit AmsterdamAmsterdamThe Netherlands
- Centre for Analytical Sciences Amsterdam (CASA)AmsterdamThe Netherlands
| | - Bob W.J. Pirok
- Analytical Chemistry Groupvan ’t Hoff Institute for Molecular Sciences, Faculty of ScienceUniversity of AmsterdamAmsterdamThe Netherlands
- Centre for Analytical Sciences Amsterdam (CASA)AmsterdamThe Netherlands
| |
Collapse
|
33
|
Sikorska E, Włodarska K, Khmelinskii I. Application of multidimensional and conventional fluorescence techniques for classification of beverages originating from various berry fruit. Methods Appl Fluoresc 2020; 8:015006. [DOI: 10.1088/2050-6120/ab6367] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
34
|
Belwal T, Huang H, Li L, Duan Z, Zhang X, Aalim H, Luo Z. Optimization model for ultrasonic-assisted and scale-up extraction of anthocyanins from Pyrus communis 'Starkrimson' fruit peel. Food Chem 2019; 297:124993. [PMID: 31253336 DOI: 10.1016/j.foodchem.2019.124993] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 06/10/2019] [Accepted: 06/10/2019] [Indexed: 10/26/2022]
Abstract
Ultrasonic effect on extraction of cyanidin-3-galactoside (Cy3-gal) from pear fruit peel was investigated and compared with conventional extraction (CE) method. Different process factors were tested to determine the optimum conditions for ultrasonic-assisted extraction (UAE). Results revealed that under optimized UAE conditions (ultrasonic power = 162 W, temperature = 71 °C, trifluoroacetic acid = 3%, ethanol = 57%, ultrasonication time = 11 min, and sample to solvent ratio = 1:30 g/ml), Cy3-gal yield was significantly higher (0.34 3± 0.005 mg/g) than from CE (0.266 ± 0.004 mg/g), whereas the extract viscosity during UAE showed a negative impact. UPLC-Triple-TOF/MS analysis detected a total number of 13 anthocyanin compounds, out of which 8 were identified and that mainly consisted of cyanidin, delphinidin and petunidin compounds. Higher yield of Cy3-gal under UAE compared to CE was also justified by higher deformations in the cell structure. The possible mechanism of ultrasonication effect during the extraction process is also proposed in the present study. During scale-up UAE process, the extraction yield of Cy3-gal was recorded higher under batch scale-up compared to continuous operation. The present study is an attempt to optimize UAE of valuable anthocyanins from Pyrus communis 'Starkrimson' fruit peel and further scaled-up for higher volume extraction which can be utilized for industrial applications.
Collapse
Affiliation(s)
- Tarun Belwal
- Zhejiang University, College of Biosystems Engineering and Food Science, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agri-Food Processing, Hangzhou 310058, People's Republic of China
| | - Hao Huang
- Zhejiang University, College of Biosystems Engineering and Food Science, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agri-Food Processing, Hangzhou 310058, People's Republic of China
| | - Li Li
- Zhejiang University, College of Biosystems Engineering and Food Science, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agri-Food Processing, Hangzhou 310058, People's Republic of China
| | - Zhenhua Duan
- Institute of Food Science and Engineering, Hezhou University, Hezhou, People's Republic of China.
| | - Xuebing Zhang
- Hangzhou Wanxiang Polytechnic, Huawu Road 3, Hangzhou 310023, People's Republic of China
| | - Halah Aalim
- Zhejiang University, College of Biosystems Engineering and Food Science, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agri-Food Processing, Hangzhou 310058, People's Republic of China
| | - Zisheng Luo
- Zhejiang University, College of Biosystems Engineering and Food Science, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agri-Food Processing, Hangzhou 310058, People's Republic of China.
| |
Collapse
|