1
|
Štellerová D, Michalík M, Lukeš V. Methoxylated flavones with potential therapeutic and photo-protective attributes: Theoretical investigation of substitution effect. PHYTOCHEMISTRY 2022; 203:113387. [PMID: 36055427 DOI: 10.1016/j.phytochem.2022.113387] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/04/2022] [Accepted: 08/14/2022] [Indexed: 06/15/2023]
Abstract
The molecular and electronic structure of parent flavone and 49 (poly)methoxylated flavones (P)MFs were studied theoretically. Selected group of flavonoids consists of compounds naturally occurring in citrus plants or synthetic derivatives of flavone. These compounds exhibit several bioactivities in vitro and in vivo and can protect plants from solar ultraviolet (UV) radiation. Substitution induced structural changes in (P)MFs were correlated with published experimental values of P-glycoprotein inhibition effect. We have demonstrated that the C5-C10 bond length of 1-benzopyran-4-one moiety represents a suitable structural descriptor for this bioactivity. Obtained linear equations for the compounds with substituted and non-substituted C3 position enable the prediction of the potential anti-cancer chemo-preventive effect of the rest of studied (P)MFs. Consequently, potentially more effective substances were suggested. Optical properties of (P)MFs and their relationship with the molecular structure was examined in detail for methanol environment, as well. The multiple linear regression model was applied to assess the correlation between experimental absorption and fluorescence wavelengths with the theoretically predicted ones. The UV photo-protective potential of studied derivatives was estimated from the calculated optical properties.
Collapse
Affiliation(s)
- Dagmar Štellerová
- Institute of Physical Chemistry and Chemical Physics, Slovak University of Technology in Bratislava, Radlinského 9, SK-812 37, Bratislava, Slovakia
| | - Martin Michalík
- Institute of Physical Chemistry and Chemical Physics, Slovak University of Technology in Bratislava, Radlinského 9, SK-812 37, Bratislava, Slovakia
| | - Vladimír Lukeš
- Institute of Physical Chemistry and Chemical Physics, Slovak University of Technology in Bratislava, Radlinského 9, SK-812 37, Bratislava, Slovakia.
| |
Collapse
|
2
|
Nery M, Ferreira PS, Gonçalves DR, Spolidorio LC, Manthey JA, Cesar TB. Physiological effects of tangeretin and heptamethoxyflavone on obese C57BL/6J mice fed a high-fat diet and analyses of the metabolites originating from these two polymethoxylated flavones. Food Sci Nutr 2021; 9:1997-2009. [PMID: 33841818 PMCID: PMC8020949 DOI: 10.1002/fsn3.2167] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/28/2020] [Accepted: 01/17/2021] [Indexed: 12/29/2022] Open
Abstract
Two compounds from citrus peel, tangeretin (TAN) and 3',4',3,5,6,7,8-heptamethoxyflavone (HMF), were investigated for their abilities to repair metabolic damages caused by an high-fat diet (HFD) in C57BL/6J mice. In the first 4 weeks, mice were fed either a standard diet (11% kcal from fat) for the control group, or a HFD (45% kcal from fat) to establish obesity in three experimental groups. In the following 4 weeks, two groups receiving the HFD were supplemented with either TAN or HMF at daily doses of 100 mg/kg body weight, while the two remaining groups continued to receive the standard healthy diet or the nonsupplemented HFD. Four weeks of supplementation with TAN and HMF resulted in intermediate levels of blood serum glucose, leptin, resistin, and insulin resistance compared with the healthy control and the nonsupplemented HFD groups. Blood serum peroxidation (TBARS) levels were significantly lower in the TAN and HMF groups compared with the nonsupplemented HFD group. Several differences occurred in the physiological effects of HMF versus TAN. TAN, but not HMF, reduced adipocyte size in the mice with pre-existent obesity, while HMF, but not TAN, decreased fat accumulation in the liver and also significantly increased the levels of an anti-inflammatory cytokine, IL-10. In an analysis of the metabolites of TAN and HMF, several main classes occurred, including a new set of methylglucuronide conjugates. It is suggested that contrasts between the observed physiological effects of TAN and HMF may be attributable to the differences in numbers and chemical structures of TAN and HMF metabolites.
Collapse
Affiliation(s)
- Marina Nery
- Department of Food and NutritionLaboratory of NutritionFaculty of Pharmaceutical SciencesSão Paulo State University (UNESP)AraraquaraBrazil
| | - Paula S. Ferreira
- Department of Food and NutritionLaboratory of NutritionFaculty of Pharmaceutical SciencesSão Paulo State University (UNESP)AraraquaraBrazil
- U.S. Horticultural Research LaboratoryAgricultural Research ServiceUSDAFort PierceFLUSA
| | - Danielle R. Gonçalves
- Department of Food and NutritionLaboratory of NutritionFaculty of Pharmaceutical SciencesSão Paulo State University (UNESP)AraraquaraBrazil
- U.S. Horticultural Research LaboratoryAgricultural Research ServiceUSDAFort PierceFLUSA
| | - Luis C. Spolidorio
- Department of Physiology and PathologySchool of DentistrySão Paulo State University (UNESP)AraraquaraBrazil
| | - John A. Manthey
- U.S. Horticultural Research LaboratoryAgricultural Research ServiceUSDAFort PierceFLUSA
| | - Thais B. Cesar
- Department of Food and NutritionLaboratory of NutritionFaculty of Pharmaceutical SciencesSão Paulo State University (UNESP)AraraquaraBrazil
| |
Collapse
|
3
|
Ferreira PS, Manthey JA, Nery MS, Cesar TB. Pharmacokinetics and Biodistribution of Eriocitrin in Rats. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:1796-1805. [PMID: 33533607 DOI: 10.1021/acs.jafc.0c04553] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Eriocitrin plays a role in the reduction of oxidative stress and inflammation linked to the development of diabetes mellitus and atherosclerosis. We investigated the pharmacokinetics and distribution of eriocitrin metabolites in rats orally administered with eriocitrin. Plasma, urine, and organs were collected at 12 different time points from 0 to 24 h and analyzed by HPLC-PDA-MS. For the first time, the metabolism and distribution of orally administered eriocitrin were shown. Nine metabolites of eriocitrin were identified in rat urine, and seven in various tissues (eriodictyol, homoeriodictyol, hesperetin, and glucuronidated metabolites), and preliminary identifications of these metabolites are suggested. Overall, eriocitrin metabolites were widely distributed in the rat tissues, where homoeriodictyol and homoeriodictyol-7-O-glucuronide were the major metabolites. The half-lives of the metabolites in plasma were between 3 and 3.2 h, and the total bioavailability of eriocitrin was less than 1%.
Collapse
Affiliation(s)
- Paula S Ferreira
- Universidade Estadual Paulista (UNESP), Faculdade de Ciências Farmacêuticas, Araraquara, Departamento de Alimentos e Nutrição, Rodovia Araraquara-Jau, km 1, Araraquara, SP 14802-901, Brazil
| | - John A Manthey
- U.S. Horticultural Research Laboratory, Agricultural Research Service, USDA, 2001 South Rock Road, Port Fierce, Florida 34945, United States
| | - Marina S Nery
- Universidade Estadual Paulista (UNESP), Faculdade de Ciências Farmacêuticas, Araraquara, Departamento de Alimentos e Nutrição, Rodovia Araraquara-Jau, km 1, Araraquara, SP 14802-901, Brazil
| | - Thais B Cesar
- Universidade Estadual Paulista (UNESP), Faculdade de Ciências Farmacêuticas, Araraquara, Departamento de Alimentos e Nutrição, Rodovia Araraquara-Jau, km 1, Araraquara, SP 14802-901, Brazil
| |
Collapse
|
4
|
Huang X, Zhu J, Wang L, Jing H, Ma C, Kou X, Wang H. Inhibitory mechanisms and interaction of tangeretin, 5-demethyltangeretin, nobiletin, and 5-demethylnobiletin from citrus peels on pancreatic lipase: Kinetics, spectroscopies, and molecular dynamics simulation. Int J Biol Macromol 2020; 164:1927-1938. [DOI: 10.1016/j.ijbiomac.2020.07.305] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 07/11/2020] [Accepted: 07/29/2020] [Indexed: 12/21/2022]
|
5
|
Chen J, Wang Y, Zhu T, Yang S, Cao J, Li X, Wang LS, Sun C. Beneficial Regulatory Effects of Polymethoxyflavone-Rich Fraction from Ougan ( Citrus reticulata cv. Suavissima) Fruit on Gut Microbiota and Identification of Its Intestinal Metabolites in Mice. Antioxidants (Basel) 2020; 9:antiox9090831. [PMID: 32899916 PMCID: PMC7555910 DOI: 10.3390/antiox9090831] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/03/2020] [Accepted: 09/04/2020] [Indexed: 02/06/2023] Open
Abstract
Polymethoxyflavones (PMFs) are special flavonoids in citrus fruits that have been suggested to be beneficial to human health. However, whether PMFs in citrus fruit alter human gut microbiota is not well understood. The aim of the present study was to investigate the effects of PMF-rich fraction from Ougan (Citrus reticulata cv. Suavissima) on gut microbiota and evaluate the intestinal metabolic profile of PMFs in Institute of Cancer Research mice. The main components of the PMF-rich fraction were nobiletin, tangeretin, and 5-demethylnobiletin. The composition of the gut microbiota was analyzed using 16S ribosomal DNA sequencing. The results showed that after oral administration, the composition of mice gut microbiota was significantly altered. The relative abundance of two probiotics, Lactobacillus and Bifidobacterium, were found to increase significantly. A total of 21 metabolites of PMFs were detected in mice intestinal content by high performance liquid chromatography electrospray ionization tandem mass spectrometry, and they were generated through demethylation, demethoxylation, hydroxylation, and glucuronidation. Our results provided evidence that PMFs have potential beneficial regulatory effects on gut microbiota that in turn metabolize PMFs, which warrants further investigation in human clinical trials.
Collapse
Affiliation(s)
- Jiebiao Chen
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, China; (J.C.); (Y.W.); (T.Z.); (S.Y.); (J.C.); (X.L.)
| | - Yue Wang
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, China; (J.C.); (Y.W.); (T.Z.); (S.Y.); (J.C.); (X.L.)
| | - Tailin Zhu
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, China; (J.C.); (Y.W.); (T.Z.); (S.Y.); (J.C.); (X.L.)
| | - Sijia Yang
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, China; (J.C.); (Y.W.); (T.Z.); (S.Y.); (J.C.); (X.L.)
| | - Jinping Cao
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, China; (J.C.); (Y.W.); (T.Z.); (S.Y.); (J.C.); (X.L.)
| | - Xian Li
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, China; (J.C.); (Y.W.); (T.Z.); (S.Y.); (J.C.); (X.L.)
| | - Li-Shu Wang
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA;
| | - Chongde Sun
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, China; (J.C.); (Y.W.); (T.Z.); (S.Y.); (J.C.); (X.L.)
- Correspondence: ; Tel.: +86-0571-88982229
| |
Collapse
|
6
|
Ference CM, Manthey JA, Narciso JA, Jones JB, Baldwin EA. Detection of Phenylpropanoids in Citrus Leaves Produced in Response to Xanthomonas citri subsp. citri. PHYTOPATHOLOGY 2020; 110:287-296. [PMID: 31713458 DOI: 10.1094/phyto-06-19-0219-r] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Citrus canker (CC), caused by the bacterial pathogen Xanthomonas citri subsp. citri, impacts citrus production in many areas of the world by reducing yields, degrading tree health, and severely blemishing the outer peels of fresh fruit. The relative susceptibility to CC among different species of Citrus varies from the highly susceptible lime (Citrus × aurantifolia), sweet orange (C. × sinensis), and grapefruit (C. × paradisi) to the much less susceptible calamondin (C. × microcarpa) and kumquat (C. japonica). This investigation compares the responses to infection with X. citri subsp. citri of these five genotypes with respect to phenylpropanoid compound profiles and relative increases or decreases of specific compounds postinoculation. In response to X. citri subsp. citri infection, all hosts possessed increased concentrations of phenylpropanoids in leaf tissue, whereas the similarly treated nonhost orange jessamine (Murraya paniculata) did not. Several of the tested genotypes exhibited notably increased production of fluorescent phenylpropanoids, including umbelliferone, herniarin, auraptene, scoparone, and others. The profiles of these compounds and their levels of production varied among the tested species yet all investigated Citrus genotypes exhibited increased concentrations of phenylpropanoids regardless of their degree of susceptibility to X. citri subsp. citri. Kumquat and calamondin, the tested genotypes least susceptible to X. citri subsp. citri, also exhibited the highest levels of the dihydrochalcone 3',5'-di-C-glucosyl phloretin, the aglycone portion of which, phloretin, is a known antibiotic, although levels of this compound were not affected by inoculation with X. citri subsp. citri.
Collapse
Affiliation(s)
- Christopher M Ference
- United States Department of Agriculture-Agricultural Research Service, U.S. Horticultural Research Laboratory, Ft. Pierce, FL 34945
- University of Florida, Department of Plant Pathology, Gainesville, FL
| | - John A Manthey
- United States Department of Agriculture-Agricultural Research Service, U.S. Horticultural Research Laboratory, Ft. Pierce, FL 34945
| | - Jan A Narciso
- United States Department of Agriculture-Agricultural Research Service, U.S. Horticultural Research Laboratory, Ft. Pierce, FL 34945
| | - Jeffrey B Jones
- University of Florida, Department of Plant Pathology, Gainesville, FL
| | - Elizabeth A Baldwin
- United States Department of Agriculture-Agricultural Research Service, U.S. Horticultural Research Laboratory, Ft. Pierce, FL 34945
| |
Collapse
|
7
|
Enhancement of epithelial cell autophagy induced by sinensetin alleviates epithelial barrier dysfunction in colitis. Pharmacol Res 2019; 148:104461. [DOI: 10.1016/j.phrs.2019.104461] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 08/27/2019] [Accepted: 09/18/2019] [Indexed: 12/19/2022]
|