1
|
Yu Q, Chi Y, Chi Y. Interventional effect of compound sugar and salt on the thermal instability behavior of liquid egg yolk. J Food Sci 2023; 88:5108-5121. [PMID: 37889108 DOI: 10.1111/1750-3841.16792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/12/2023] [Accepted: 09/25/2023] [Indexed: 10/28/2023]
Abstract
In this study, the influence of compound sugar (glucose, sucrose, trehalose, and arabinose) and compound sugar and salt (glucose, sucrose, trehalose, arabinose, and NaCl) on the thermal stability of heat-treated liquid egg yolk was explored. The results showed that the addition of 4% compound sugar or 4% compound sugar salt could significantly enhance the heat resistance of liquid egg yolk and increase the denaturation temperature of liquid egg yolk to above 77°C. Moreover, the addition of sugar and salt could improve the functional properties of liquid egg yolk to varying degrees, allowing it to maintain excellent emulsification and soluble protein content after heat treatment. Further analysis using Fourier transform infrared spectroscopy showed that the increase in α-helix content in liquid egg yolk treated with sugar salt also contributes to improving the thermal stability of egg yolk. The method of inhibiting egg yolk aggregation caused by heat treatment provided in this study provides a selective method and theoretical basis for the commercial production of heat-resistant liquid egg yolk.
Collapse
Affiliation(s)
- Qian Yu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Yujie Chi
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Yuan Chi
- College of Engineering, Northeast Agricultural University, Harbin, Heilongjiang, China
| |
Collapse
|
2
|
Wang J, Ossemond J, Jardin J, Briard-Bion V, Henry G, Le Gouar Y, Ménard O, Lê S, Madadlou A, Dupont D, Pédrono F. Encapsulation of DHA oil with heat-denatured whey protein in Pickering emulsion improves its bioaccessibility. Food Res Int 2022; 162:112112. [DOI: 10.1016/j.foodres.2022.112112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/28/2022] [Accepted: 10/30/2022] [Indexed: 11/05/2022]
|
3
|
Wang S, Liu X, Zhao G, Li Y, Yang L, Zhu L, Liu H. Protease-induced soy protein isolate (SPI) characteristics and structure evolution on the oil–water interface of emulsion. J FOOD ENG 2022. [DOI: 10.1016/j.jfoodeng.2021.110849] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
4
|
Zhang T, Zhao Y, Tian X, Liu J, Ye H, Shen X. Effect of ultrasound pretreatment on structural, physicochemical, rheological and gelation properties of transglutaminase cross-linked whey protein soluble aggregates. ULTRASONICS SONOCHEMISTRY 2021; 74:105553. [PMID: 33892260 PMCID: PMC8091057 DOI: 10.1016/j.ultsonch.2021.105553] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/20/2021] [Accepted: 04/06/2021] [Indexed: 05/30/2023]
Abstract
A solution (10%, w/v) of whey protein soluble aggregates (WPISA) was pretreated with high-intensity ultrasound (HUS, 20 kHz) for different durations (10-40 min) before incubation with transglutaminase (TGase) to investigate the effect of HUS on the structural, physicochemical, rheological, and gelation properties of TGase cross-linked WPISA. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) results showed that HUS increased the amounts of high-molecular-weight polymers/aggregates in WPISA after incubation with TGase. HUS significantly increased (P < 0.05) the degree of TGase-mediated cross-linking in WPISA, as demonstrated by a reduction in free amino group contents. HUS significantly increased (P < 0.05) the particle size, intrinsic fluorescence intensity, and surface hydrophobicity of TGase cross-linked WPISA, but had no significant impact (P > 0.05) on the zeta-potential or total free sulfhydryl group content of TGase cross-linked WPISA. The apparent viscosity and the consistency index of TGase cross-linked WPISA were significantly increased by HUS (P < 0.05), which indicated that HUS facilitated the formation of more high-molecular-weight polymers. HUS significantly increased (P < 0.05) the water holding capacity and gel strength of glucono-δ-lactone (GDL)-induced TGase cross-linked WPISA gels. The results indicated that HUS could be an efficient tool for modifying WPISA to improve its degree of TGase-mediated cross-linking, which would lead to improved rheological and gelation properties.
Collapse
Affiliation(s)
- Tiehua Zhang
- Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Yanli Zhao
- Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Xiner Tian
- Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Jing Liu
- Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Haiqing Ye
- Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Xue Shen
- Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| |
Collapse
|
5
|
Zha F, Rao J, Chen B. Modification of pulse proteins for improved functionality and flavor profile: A comprehensive review. Compr Rev Food Sci Food Saf 2021; 20:3036-3060. [PMID: 33798275 DOI: 10.1111/1541-4337.12736] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 02/05/2021] [Accepted: 02/06/2021] [Indexed: 12/16/2022]
Abstract
Consumers' preference to have a healthy eating pattern has led to an increasing demand for more nutrient-dense and healthier plant-based foods. Pulse proteins are exceptional quality ingredients with potential nutritional benefits, and might act as health-promoting agents for addressing the new-generation foods. However, the utilization of pulse protein in foods has been hampered by its relatively poor functionality and unpleasant flavor. Protein structure modification has been proved to be a useful means to improve the functionality and flavor profile of pulse protein. This paper begins with a brief introduction of hierarchical structure of pulse protein materials to better understand the structure characteristics. A comprehensive review is presented on the current techniques including chemical and enzymatic modifications and molecular breeding on pulse protein structure and functionality/flavor. The mechanism and the limitations and the toxicological concerns of these approaches are discussed. We conclude that understanding protein structure-functionality relationship is extremely valuable in tailoring proteins for specific functional outcomes and expanding the availability of pulse proteins. Furthermore, selective protein modification is a valuable in-depth toolkit for generating novel protein constructs with preferable functional attributes and flavor profiles. Innovative structure modification with special focus on the molecular basis for the exquisite protein designs is a pillar of pulse protein access to the desired functionality.
Collapse
Affiliation(s)
- Fengchao Zha
- Department of Plant Sciences, North Dakota State University, Fargo, North Dakota, USA
| | - Jiajia Rao
- Department of Plant Sciences, North Dakota State University, Fargo, North Dakota, USA
| | - Bingcan Chen
- Department of Plant Sciences, North Dakota State University, Fargo, North Dakota, USA
| |
Collapse
|
6
|
Hu G, Batool Z, Cai Z, Liu Y, Ma M, Sheng L, Jin Y. Production of self-assembling acylated ovalbumin nanogels as stable delivery vehicles for curcumin. Food Chem 2021; 355:129635. [PMID: 33780798 DOI: 10.1016/j.foodchem.2021.129635] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 02/28/2021] [Accepted: 03/13/2021] [Indexed: 12/22/2022]
Abstract
In this study, we evaluated potential usage of acylated ovalbumin (AOVA) nanogels fabricated via acylation modification and heat-induced self-assembly process as novel delivery systems for curcumin. Compared to native ovalbumin (NOVA) nanogels without chemical acylation, the obtained AOVA nanogels have shown smaller average hydrodynamic diameter (155.73 nm), relatively uniform size distribution (polydispersity index around 0.28), enhanced negative surface charge (-24.3 mV), and an improved stability under the conditions of high ionic strength, different pH and storage time. Moreover, AOVA nanogels exhibited a remarkable conformational change in secondary and tertiary structures, improved surface hydrophobicity, and increased free sulfhydryl content compared with NOVA nanogels. Moreover, curcumin encapsulated in AOVA nanogels displayed higher encapsulation efficiency (93.64%) and slower sustained release under simulated gastrointestinal conditions as compared with NOVA nanogels. Hence, we have suggested that AOVA nanogels successfully fabricated with improved physicochemical properties as a novel ideal carrier for hydrophobic active compounds.
Collapse
Affiliation(s)
- Gan Hu
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Zahra Batool
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Zhaoxia Cai
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Yuanyuan Liu
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Meihu Ma
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China.
| | - Long Sheng
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Yongguo Jin
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| |
Collapse
|
7
|
Effects of acetyl grafting on the structural and functional properties of whey protein microgels. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106443] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
8
|
CaCl2 supplementation of hydrophobised whey proteins: Assessment of protein particles and consequent emulsions. Int Dairy J 2020. [DOI: 10.1016/j.idairyj.2020.104815] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
9
|
Karbasi M, Sánchez-Ferrer A, Adamcik J, Askari G, Madadlou A, Mezzenga R. Covalent β-lactoglobulin-maltodextrin amyloid fibril conjugate prepared by the Maillard reaction. Food Chem 2020; 342:128388. [PMID: 33172603 DOI: 10.1016/j.foodchem.2020.128388] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 09/21/2020] [Accepted: 10/10/2020] [Indexed: 01/10/2023]
Abstract
The surface modification of β-lactoglobulin amyloid fibrils (AFs) was investigated by performing the Maillard reaction with the free anomeric carbon of the maltodextrin in water at pH 9.0 and 90 °C. The bonding of maltodextrin to fibrils was confirmed by determining the free amino group content and the presence of final products from the Maillard reaction. The secondary structure of AFs was preserved as observed by circular dichroism analysis. Atomic force microscopy evidenced that prolonged heat treatment caused hydrolysis of the attached polysaccharide and consequently lowered the height of the fibrils from 8.0 nm (after 1 h) to 6.0 nm (after 24 h), which led to the reduction of hydrophilicity of resulting conjugate. Increasing the reaction time, however, resulted in the improvement of colloidal stability and decrease in turbidity ascribed to the increment of glycation degree, as well as, a decrease in the isoelectric point of the protein-based supramolecular object.
Collapse
Affiliation(s)
- Mehri Karbasi
- Department of Food Science and Engineering, University College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran; Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland.
| | | | - Jozef Adamcik
- Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Gholamreza Askari
- Department of Food Science and Engineering, University College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran.
| | - Ashkan Madadlou
- Food Quality and Design Group, Department of Agrotechnology and Food Sciences, Wageningen University and Research Centre, Wageningen, the Netherlands
| | - Raffaele Mezzenga
- Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland; Department of Materials, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
10
|
Functional properties of chickpea protein-pectin interfacial complex in buriti oil emulsions and spray dried microcapsules. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.105929] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
11
|
All-aqueous emulsions as miniaturized chemical reactors in the food and bioprocess technology. Curr Opin Food Sci 2020. [DOI: 10.1016/j.cofs.2020.06.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
12
|
Tailor it up! How we are rolling towards designing the functionality of emulsions in the mouth and gastrointestinal tract. Curr Opin Food Sci 2020. [DOI: 10.1016/j.cofs.2020.06.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
13
|
Madadlou A, Famelart MH, Pezennec S, Rousseau F, Floury J, Dupont D. Interfacial and (emulsion) gel rheology of hydrophobised whey proteins. Int Dairy J 2020. [DOI: 10.1016/j.idairyj.2019.104556] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
14
|
Madadlou A, Saint-Jalmes A, Guyomarc'h F, Floury J, Dupont D. Development of an aqueous two-phase emulsion using hydrophobized whey proteins and erythritol. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2019.02.031] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
15
|
Surface decoration of whey protein microgels through the Maillard conjugation with maltodextrin. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2019.01.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
16
|
Meydani B, Vahedifar A, Askari G, Madadlou A. Influence of the Maillard reaction on the properties of cold-set whey protein and maltodextrin binary gels. Int Dairy J 2019. [DOI: 10.1016/j.idairyj.2018.11.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|