1
|
Chen Y, Shan L, Zheng W, Chen J, Deng L, Tian X, Xie R, Yang Y, Zhang L, Yang B. Global lysine succinylation analysis unveils post-translational regulation effect on phenylpropanoid metabolism remodeling during Lonicera japonica flower development. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 215:108978. [PMID: 39084169 DOI: 10.1016/j.plaphy.2024.108978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 07/23/2024] [Accepted: 07/25/2024] [Indexed: 08/02/2024]
Abstract
Lonicera japonica plays a significant role in traditional Chinese medicine and as a food source, making it a focus of studies on protein succinylation and its potential role in regulating secondary metabolism during flower development. This study aimed to clarify the regulatory mechanism of protein succinylation on phenylpropanoid-related phenotypic changes by conducting a global lysine succinylation proteomic analysis across different flowering stages. A total of 586 lysine succinylated peptides in 303 proteins were identified during early and late floral stages. Functional enrichment analysis revealed that succinylated proteins primarily participated in the tricarboxylic acid (TCA) cycle, amino acid metabolism, and secondary metabolism. The abundance of succinylated aspartate transaminase (AT), 4-coumarate-CoA ligase (4CL), and phenylalanine N-hydroxylase (CYP79A2) in phenylpropanoid metabolism varied during flower development. In vitro experiments demonstrated that succinylation increased AT activity while inhibited 4CL activity. Decreased levels of total flavonoids and phenolic acids indicated significant alterations in phenylpropanoid metabolism during later floral stages. These results suggest that succinylation of TCA cycle proteins not only influences flower development but also, together with AT-4CL-CYP79A2 co-succinylation, redirects phenylpropanoid metabolism during flower development in L. japonica.
Collapse
Affiliation(s)
- Yao Chen
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Luhuizi Shan
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Wenxi Zheng
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Jie Chen
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Linfang Deng
- The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310005, China
| | - Xu Tian
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Ruili Xie
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Yunhong Yang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Lin Zhang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| | - Bingxian Yang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| |
Collapse
|
2
|
Wang M, Zhu Q, Yao N, Liang W, Ma X, Li J, Li X, Wang L, Liang W. The Enzyme Lysine Malonylation of Calvin Cycle and Gluconeogenesis Regulated Glycometabolism in Nostoc flagelliforme to Adapt to Drought Stress. Int J Mol Sci 2023; 24:ijms24098446. [PMID: 37176152 PMCID: PMC10179182 DOI: 10.3390/ijms24098446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/06/2023] [Accepted: 05/07/2023] [Indexed: 05/15/2023] Open
Abstract
Lysine malonylation (Kmal) is an evolutionarily conserved post-translational modification (PTM) that has been demonstrated to be involved in cellular and organismal metabolism. However, the role that Kmal plays in response to drought stress of the terrestrial cyanobacteria N. flagelliforme is still unknown. In this study, we performed the first proteomic analysis of Kmal in N. flagelliforme under different drought stresses using LC-MS/MS. In total, 421 malonylated lysine residues were found in 236 different proteins. GO and KEGG enrichment analysis indicated that these malonylated proteins were highly enriched in several metabolic pathways, including carbon metabolism and photosynthesis. Decreased malonylation levels were found to hinder the reception and transmission of light energy and CO2 fixation, which led to a decrease in photosynthetic activity. Kmal was also shown to inhibit the flux of the TCA cycle and activate the gluconeogenesis pathway in response to drought stress. Furthermore, malonylated antioxidant enzymes and antioxidants were synergistically involved in reactive oxygen species (ROS) scavenging. Malonylation was involved in lipid degradation and amino acid biosynthesis as part of drought stress adaptation. This work represents the first comprehensive investigation of the role of malonylation in dehydrated N. flagelliforme, providing an important resource for understanding the drought tolerance mechanism of this organism.
Collapse
Affiliation(s)
- Meng Wang
- School of Life Sciences, Ningxia University, Yinchuan 750021, China
| | - Qiang Zhu
- School of Life Sciences, Ningxia University, Yinchuan 750021, China
| | - Ning Yao
- School of Life Sciences, Ningxia University, Yinchuan 750021, China
| | - Wangli Liang
- School of Life Sciences, Ningxia University, Yinchuan 750021, China
| | - Xiaoxia Ma
- School of Life Sciences, Ningxia University, Yinchuan 750021, China
| | - Jingjing Li
- School of Life Sciences, Ningxia University, Yinchuan 750021, China
| | - Xiaoxu Li
- School of Life Sciences, Ningxia University, Yinchuan 750021, China
| | - Lingxia Wang
- School of Life Sciences, Ningxia University, Yinchuan 750021, China
| | - Wenyu Liang
- School of Life Sciences, Ningxia University, Yinchuan 750021, China
| |
Collapse
|
3
|
Luo W, He M, Luo Q, Li Y. Proteome-wide analysis of lysine β-hydroxybutyrylation in the myocardium of diabetic rat model with cardiomyopathy. Front Cardiovasc Med 2023; 9:1066822. [PMID: 36698951 PMCID: PMC9868477 DOI: 10.3389/fcvm.2022.1066822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 12/13/2022] [Indexed: 01/10/2023] Open
Abstract
Lysine ß-hydroxybutyrylation (kbhb), a novel modification of lysine residues with the ß-hydroxybuty group, is associated with ketone metabolism in numerous species. However, its potential role in diabetes, especially in diabetic cardiomyopathy (DCM), remains largely unexplored. In this study, using affinity enrichment and liquid chromatography-mass spectrometry (LC-MS/MS) method, we quantitatively analyze the kbhb residues on heart tissues of a DCM model rat. A total of 3,520 kbhb sites in 1,089 proteins were identified in this study. Further analysis showed that 336 kbhb sites in 143 proteins were differentially expressed between the heart tissues of DCM and wild-type rats. Among them, 284 kbhb sites in 96 proteins were upregulated, while 52 kbhb sites in 47 proteins were downregulated. Bioinformatic analysis of the proteomic results revealed that these kbhb-modified proteins were widely distributed in various components and involved in a wide range of cellular functions and biological processes (BPs). Functional analysis showed that the kbhb-modified proteins were involved in the tricarboxylic acid cycle, oxidative phosphorylation, and propanoate metabolism. Our findings demonstrated how kbhb is related to many metabolic pathways and is mainly involved in energy metabolism. These results provide the first global investigation of the kbhb profile in DCM progression and can be an essential resource to explore DCM's pathogenesis further.
Collapse
Affiliation(s)
- Weiguang Luo
- Department of Clinical Laboratory, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Mei He
- Henan Medical Key Laboratory of Arrhythmia, The 7th People’s Hospital of Zhengzhou, Zhengzhou Cardiovascular Hospital, Zhengzhou, China
| | - Qizhi Luo
- Department of Immunology, Basic Medical School of Central South University, Changsha, Hunan, China
| | - Yi Li
- Department of Clinical Laboratory, Henan Provincial People’s Hospital, Henan University People’s Hospital, Zhengzhou, Henan, China,*Correspondence: Yi Li,
| |
Collapse
|
4
|
Zhang B, Chen Z, Sun Q, Liu J. Proteome-wide analyses reveal diverse functions of protein acetylation and succinylation modifications in fast growing stolons of bermudagrass (Cynodon dactylon L.). BMC PLANT BIOLOGY 2022; 22:503. [PMID: 36289454 PMCID: PMC9608919 DOI: 10.1186/s12870-022-03885-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Bermudagrass (Cynodon dactylon L.) is an important warm-season turfgrass species with well-developed stolons, which lay the foundation for the fast propagation of bermudagrass plants through asexual clonal growth. However, the growth and development of bermudagrass stolons are still poorly understood at the molecular level. RESULTS In this study, we comprehensively analyzed the acetylation and succinylation modifications of proteins in fast-growing stolons of the bermudagrass cultivar Yangjiang. A total of 4657 lysine acetylation sites on 1914 proteins and 226 lysine succinylation sites on 128 proteins were successfully identified using liquid chromatography coupled to tandem mass spectrometry, respectively. Furthermore, 78 proteins and 81 lysine sites were found to be both acetylated and succinylated. Functional enrichment analysis revealed that acetylated proteins regulate diverse reactions of carbohydrate metabolism and protein turnover, whereas succinylated proteins mainly regulate the citrate cycle. These results partly explained the different growth disturbances of bermudagrass stolons under treatment with sodium butyrate and sodium malonate, which interfere with protein acetylation and succinylation, respectively. Moreover, 140 acetylated proteins and 42 succinylated proteins were further characterized having similarly modified orthologs in other grass species. Site-specific mutations combined with enzymatic activity assays indicated that the conserved acetylation of catalase and succinylation of malate dehydrogenase both inhibited their activities, further implying important regulatory roles of the two modifications. CONCLUSION In summary, our study implied that lysine acetylation and succinylation of proteins possibly play important regulatory roles in the fast growth of bermudagrass stolons. The results not only provide new insights into clonal growth of bermudagrass but also offer a rich resource for functional analyses of protein lysine acetylation and succinylation in plants.
Collapse
Affiliation(s)
- Bing Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China.
| | - Zhuoting Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Qixue Sun
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Jianxiu Liu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China
| |
Collapse
|
5
|
Li X, Yang D, Yang Y, Jin G, Yin X, Zheng Y, Xu J, Yang Y. Quantitative Succinyl-Proteome Profiling of Turnip ( Brassica rapa var. rapa) in Response to Cadmium Stress. Cells 2022; 11:cells11121947. [PMID: 35741076 PMCID: PMC9221971 DOI: 10.3390/cells11121947] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/30/2022] [Accepted: 06/15/2022] [Indexed: 01/25/2023] Open
Abstract
Protein post-translational modification (PTM) is an efficient biological mechanism to regulate protein structure and function, but its role in plant responses to heavy metal stress is poorly understood. The present study performed quantitative succinyl-proteome profiling using liquid chromatography−mass spectrometry analysis to explore the potential roles of lysine succinylation modification in turnip seedlings in response to cadmium (Cd) stress (20 μM) under hydroponic conditions over a short time period (0−8 h). A total of 547 succinylated sites on 256 proteins were identified in the shoots of turnip seedlings. These succinylated proteins participated in various biological processes (e.g., photosynthesis, tricarboxylic acid cycle, amino acid metabolism, and response to stimulation) that occurred in diverse cellular compartments according to the functional classification, subcellular localization, and protein interaction network analysis. Quantitative analysis showed that the intensities of nine succinylation sites on eight proteins were significantly altered (p < 0.05) in turnip shoots after 8 h of Cd stress. These differentially succinylated sites were highly conserved in Brassicaceae species and mostly located in the conserved domains of the proteins. Among them, a downregulated succinylation site (K150) in the glycolate oxidase protein (Gene0282600.1), an upregulated succinylation site (K396) in the catalase 3 protein (Gene0163880.1), and a downregulated succinylation site (K197) in the glutathione S-transferase protein (Gene0315380.1) may have contributed to the altered activity of the corresponding enzymes, which suggests that lysine succinylation affects the Cd detoxification process in turnip by regulating the H2O2 accumulation and glutathione metabolism. These results provide novel insights into understanding Cd response mechanisms in plants and important protein modification information for the molecular-assisted breeding of Brassica varieties with distinct Cd tolerance and accumulation capacities.
Collapse
Affiliation(s)
- Xiong Li
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (X.L.); (D.Y.); (Y.Y.); (G.J.); (X.Y.); (Y.Z.)
- Yunnan Key Laboratory for Wild Plant Resources, Department of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- Center for Mountain Futures, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Danni Yang
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (X.L.); (D.Y.); (Y.Y.); (G.J.); (X.Y.); (Y.Z.)
| | - Yunqiang Yang
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (X.L.); (D.Y.); (Y.Y.); (G.J.); (X.Y.); (Y.Z.)
| | - Guihua Jin
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (X.L.); (D.Y.); (Y.Y.); (G.J.); (X.Y.); (Y.Z.)
| | - Xin Yin
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (X.L.); (D.Y.); (Y.Y.); (G.J.); (X.Y.); (Y.Z.)
| | - Yan Zheng
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (X.L.); (D.Y.); (Y.Y.); (G.J.); (X.Y.); (Y.Z.)
| | - Jianchu Xu
- Yunnan Key Laboratory for Wild Plant Resources, Department of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- Center for Mountain Futures, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- Correspondence: (J.X.); (Y.Y.)
| | - Yongping Yang
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (X.L.); (D.Y.); (Y.Y.); (G.J.); (X.Y.); (Y.Z.)
- Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Xishuangbanna 666303, China
- Correspondence: (J.X.); (Y.Y.)
| |
Collapse
|
6
|
Wu J, Meng X, Jiang W, Wang Z, Zhang J, Meng F, Yao X, Ye M, Yao L, Wang L, Yu N, Peng D, Xing S. Qualitative Proteome-Wide Analysis Reveals the Diverse Functions of Lysine Crotonylation in Dendrobium huoshanense. FRONTIERS IN PLANT SCIENCE 2022; 13:822374. [PMID: 35251091 PMCID: PMC8888884 DOI: 10.3389/fpls.2022.822374] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 01/18/2022] [Indexed: 06/14/2023]
Abstract
The lysine crotonylation of histone proteins is a newly identified posttranslational modification with diversified cellular functions. However, there are few reports on lysine crotonylation of non-histone proteins in medicinal plant cells. By using high-resolution liquid chromatography-mass spectrometry (LC-MS) coupled with highly sensitive-specific immune-affinity antibody analysis, a whole crotonylation proteome analysis of Dendrobium huoshanense was performed. In total, 1,591 proteins with 4,726 lysine crotonylation sites were identified; among them, 11 conserved motifs were identified. Bioinformatic analyses linked crotonylated proteins to the drought stress response and multiple metabolic pathways, including secondary metabolite biosynthesis, transport and catabolism, energy production and conversion, carbohydrate transport and metabolism, translation, and ribosomal structure and biogenesis. This study contributes toward understanding the regulatory mechanism of polysaccharide biosynthesis at the crotonylation level even under abiotic stress.
Collapse
Affiliation(s)
- Jing Wu
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Institute of Traditional Chinese Medicine Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei, China
| | - Xiaoxi Meng
- Department of Horticultural Science, University of Minnesota, Saint Paul, MN, United States
| | - Weimin Jiang
- Hunan Key Laboratory for Conservation and Utilization of Biological Resources in the Nanyue Mountainous Region, College of Life Sciences and Environment, Hengyang Normal University, Hengyang, China
| | - Zhaojian Wang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Jing Zhang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Fei Meng
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Xiaoyan Yao
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Mengjuan Ye
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Liang Yao
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Longhai Wang
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Nianjun Yu
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Institute of Traditional Chinese Medicine Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei, China
| | - Daiyin Peng
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Institute of Traditional Chinese Medicine Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei, China
- Synergetic Innovation Center of Anhui Authentic Chinese Medicine Quality Improvement, Hefei, China
| | - Shihai Xing
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Institute of Traditional Chinese Medicine Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Research and Development of Chinese Medicine, Hefei, China
| |
Collapse
|
7
|
Huang Z, He L, Sang W, Wang L, Huang Q, Lei C. Potential role of lysine succinylation in the response of moths to artificial light at night stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 220:112334. [PMID: 34020284 DOI: 10.1016/j.ecoenv.2021.112334] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 04/14/2021] [Accepted: 05/09/2021] [Indexed: 06/12/2023]
Abstract
Artificial light at night (ALAN) is a widespread environmental pollutant and stressor. Many nocturnal insects have been shown to experience ALAN stress. However, few studies have been conducted to uncover the mechanism by which nocturnal insects respond to ALAN stress. Previous studies suggest that lysine succinylation (Ksuc) is a potential mechanism that coordinates energy metabolism and antioxidant activity under stressful conditions. Mythimna separata (Walker) (M. separata) is a nocturnal insect that has been stressed by ALAN. In this study, we quantified the relative proteomic Ksuc levels in ALAN-stressed M. separata. Of the 466 identified Ksuc-modified proteins, 103 were hypersuccinylated/desuccinylated in ALAN-stressed moths. The hypersuccinylated/desuccinylated proteins were shown to be involved in various biological processes. In particular, they were enriched in metabolic processes, reactive oxygen species (ROS) homeostasis and the neuromuscular system. Furthermore, we demonstrated that Ksuc might affect moth locomotion by intervening with and coordinating these systems under ALAN stress. These findings suggest that Ksuc plays a vital role in the moth response to ALAN stress and moth locomotion behavior and provide a new perspective on the impact of ALAN on nocturnal insect populations and species communities.
Collapse
Affiliation(s)
- Zhijuan Huang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Li He
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Wen Sang
- Department of Entomology, South China Agricultural University, Guangzhou 510640, China.
| | - Lijun Wang
- College of Life Sciences, Yantai University, Yantai 264005, China.
| | - Qiuying Huang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Chaoliang Lei
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
8
|
Xu M, Tian X, Ku T, Wang G, Zhang E. Global Identification and Systematic Analysis of Lysine Malonylation in Maize ( Zea mays L.). FRONTIERS IN PLANT SCIENCE 2021; 12:728338. [PMID: 34490025 PMCID: PMC8417889 DOI: 10.3389/fpls.2021.728338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 08/02/2021] [Indexed: 05/27/2023]
Abstract
Lysine malonylation is a kind of post-translational modifications (PTMs) discovered in recent years, which plays an important regulatory role in plants. Maize (Zea mays L.) is a major global cereal crop. Immunoblotting revealed that maize was rich in malonylated proteins. We therefore performed a qualitative malonylome analysis to globally identify malonylated proteins in maize. In total, 1,722 uniquely malonylated lysine residues were obtained in 810 proteins. The modified proteins were involved in various biological processes such as photosynthesis, ribosome and oxidative phosphorylation. Notably, a large proportion of the modified proteins (45%) were located in chloroplast. Further functional analysis revealed that 30 proteins in photosynthesis and 15 key enzymes in the Calvin cycle were malonylated, suggesting an indispensable regulatory role of malonylation in photosynthesis and carbon fixation. This work represents the first comprehensive survey of malonylome in maize and provides an important resource for exploring the function of lysine malonylation in physiological regulation of maize.
Collapse
Affiliation(s)
- Min Xu
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | - Xiaomin Tian
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | - Tingting Ku
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | - Guangyuan Wang
- Shandong Province Key Laboratory of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Enying Zhang
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
9
|
Fang X, Chai W, Li S, Zhang L, Yu H, Shen J, Xiao W, Liu A, Zhou B, Zhang X. HSP17.4 mediates salicylic acid and jasmonic acid pathways in the regulation of resistance to Colletotrichum gloeosporioides in strawberry. MOLECULAR PLANT PATHOLOGY 2021; 22:817-828. [PMID: 33951267 PMCID: PMC8232031 DOI: 10.1111/mpp.13065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 03/19/2021] [Accepted: 03/19/2021] [Indexed: 05/04/2023]
Abstract
In this study, we used virus-mediated gene silencing technology and found that the HSP17.4 gene-silenced cultivar Sweet Charlie plants were more susceptible to Colletotrichum gloeosporioides than the wild-type Sweet Charlie, and the level of infection was even higher than that of the susceptible cultivar Benihopp. The results of differential quantitative proteomics showed that after infection with the pathogen, the expression of the downstream response genes NPR1, TGA, and PR-1 of the salicylic acid (SA) signalling pathway was fully up-regulated in the wild-type Sweet Charlie, and the expression of the core transcription factor MYC2 of the jasmonic acid (JA) pathway was significantly down-regulated. The expression of the proteins encoded by these genes did not change significantly in the HSP17.4-silenced Sweet Charlie, indicating that the expression of HSP17.4 activated the up-regulation of downstream signals of SA and inhibited the JA signal pathway. The experiments that used SA, methyl jasmonate, and their inhibitors to treat plants provide additional evidence that the antagonism between SA and JA regulates the resistance of strawberry plants to C. gloeosporioides.
Collapse
Affiliation(s)
- Xianping Fang
- Institute of Forestry and PomologyShanghai Academy of Agricultural SciencesShanghaiChina
| | - Weiguo Chai
- Institute of BiotechnologyHangzhou Academy of Agricultural SciencesHangzhouChina
| | - Shuigen Li
- Institute of Forestry and PomologyShanghai Academy of Agricultural SciencesShanghaiChina
| | - Liqing Zhang
- Institute of Forestry and PomologyShanghai Academy of Agricultural SciencesShanghaiChina
| | - Hong Yu
- Institute of BiotechnologyHangzhou Academy of Agricultural SciencesHangzhouChina
| | | | - Wenfei Xiao
- Institute of BiotechnologyHangzhou Academy of Agricultural SciencesHangzhouChina
| | - Aichun Liu
- Institute of BiotechnologyHangzhou Academy of Agricultural SciencesHangzhouChina
| | - Boqiang Zhou
- Institute of Forestry and PomologyShanghai Academy of Agricultural SciencesShanghaiChina
| | - Xueying Zhang
- Institute of Forestry and PomologyShanghai Academy of Agricultural SciencesShanghaiChina
| |
Collapse
|
10
|
Mao M, Xue Y, He Y, Zhou X, Rafique F, Hu H, Liu J, Feng L, Yang W, Li X, Sun L, Huang Z, Ma J. Systematic identification and comparative analysis of lysine succinylation between the green and white parts of chimeric leaves of Ananas comosus var. bracteatus. BMC Genomics 2020; 21:383. [PMID: 32493214 PMCID: PMC7268518 DOI: 10.1186/s12864-020-6750-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 04/21/2020] [Indexed: 01/26/2023] Open
Abstract
Background Lysine succinylation, an important protein posttranslational modification (PTM), is widespread and conservative. The regulatory functions of succinylation in leaf color has been reported. The chimeric leaves of Ananas comosus var. bracteatus are composed of normal green parts and albino white parts. However, the extent and function of lysine succinylation in chimeric leaves of Ananas comosus var. bracteatus has yet to be investigated. Results Compared to the green (Gr) parts, the global succinylation level was increased in the white (Wh) parts of chimeric leaves according to the Western blot and immunohistochemistry analysis. Furthermore, we quantitated the change in the succinylation profiles between the Wh and Gr parts of chimeric leaves using label-free LFQ intensity. In total, 855 succinylated sites in 335 proteins were identified, and 593 succinylated sites in 237 proteins were quantified. Compared to the Gr parts, 232 (61.1%) sites in 128 proteins were quantified as upregulated targets, and 148 (38.9%) sites in 70 proteins were quantified as downregulated targets in the Wh parts of chimeric leaves using a 1.5-fold threshold (P < 0.05). These proteins with altered succinylation level were mainly involved in crassulacean acid metabolism (CAM) photosynthesis, photorespiration, glycolysis, the citric acid cycle (CAC) and pyruvate metabolism. Conclusions Our results suggested that the changed succinylation level in proteins might function in the main energy metabolism pathways—photosynthesis and respiration. Succinylation might provide a significant effect in the growth of chimeric leaves and the relationship between the Wh and Gr parts of chimeric leaves. This study not only provided a basis for further characterization on the function of succinylated proteins in chimeric leaves of Ananas comosus var. bracteatus but also provided a new insight into molecular breeding for leaf color chimera.
Collapse
Affiliation(s)
- Meiqin Mao
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Yanbin Xue
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Yehua He
- Horticultural Biotechnology College, South China Agricultural University, Guangzhou, China
| | - Xuzixing Zhou
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Fatima Rafique
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Hao Hu
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Jiawen Liu
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Lijun Feng
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Wei Yang
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Xi Li
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Lingxia Sun
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Zhuo Huang
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Jun Ma
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China.
| |
Collapse
|
11
|
Wang G, Xu L, Yu H, Gao J, Guo L. Systematic analysis of the lysine succinylome in the model medicinal mushroom Ganoderma lucidum. BMC Genomics 2019; 20:585. [PMID: 31311503 PMCID: PMC6636155 DOI: 10.1186/s12864-019-5962-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Accepted: 07/09/2019] [Indexed: 01/08/2023] Open
Abstract
Background Ganoderma lucidum, one of the best-known medicinal mushrooms in the world, produces more than 400 different bioactive compounds. However, the regulation of these bioactive compounds biosynthesis is still unclear. Lysine succinylation is a critical post-translational modification and has many important functions in all aspects of eukaryotic and prokaryotic cells. Although it has been studied for a long time, its function is still unclear in G. lucidum. In this study, a global investigation was carried out on the succinylome in G. lucidum. Results In total, 382 modified proteins which contain 742 lysine succinylated sites were obtained. The proteomics data are available through ProteomeXchange with the dataset accession number PXD013954. Bioinformatics analysis revealed that the succinylated proteins were distributed in various cellular biological processes and participated in a great variety of metabolic pathways including carbon metabolism and biosynthesis of secondary metabolites. Notably, a total of 47 enzymes associated with biosynthesis of triterpenoids and polysaccharides were found to be succinylated. Furthermore, two succinylated sites K90 and K106 were found in the conserved Fve region of immunomodulatory protein LZ8. These observations show that lysine succinylation plays an indispensable role in metabolic regulation of bioactive compounds in G. lucidum. Conclusions These findings indicate that lysine succinylation is related to many metabolic pathways, especially pharmacologically bioactive compounds metabolism. This study provides the first global investigation of lysine succinylation in G. lucidum and the succinylome dataset provided in this study serves as a resource to further explore the physiological roles of these modifications in secondary metabolism. Electronic supplementary material The online version of this article (10.1186/s12864-019-5962-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Guangyuan Wang
- Shandong Province Key Laboratory of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Changcheng Road, No.700, Qingdao, 266109, China
| | - Lili Xu
- Shandong Province Key Laboratory of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Changcheng Road, No.700, Qingdao, 266109, China
| | - Hao Yu
- Shandong Province Key Laboratory of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Changcheng Road, No.700, Qingdao, 266109, China
| | - Jie Gao
- Shandong Province Key Laboratory of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Changcheng Road, No.700, Qingdao, 266109, China
| | - Lizhong Guo
- Shandong Province Key Laboratory of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Changcheng Road, No.700, Qingdao, 266109, China.
| |
Collapse
|
12
|
Wang X, Chen X, Li J, Zhou X, Liu Y, Zhong L, Tang Y, Zheng H, Liu J, Zhan R, Chen L. Global analysis of lysine succinylation in patchouli plant leaves. HORTICULTURE RESEARCH 2019; 6:133. [PMID: 31814986 PMCID: PMC6885049 DOI: 10.1038/s41438-019-0216-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 09/25/2019] [Accepted: 10/23/2019] [Indexed: 05/03/2023]
Abstract
Lysine succinylation is a novel, naturally occurring posttranslational modification (PTM) in living organisms. Global lysine succinylation identification has been performed at the proteomic level in various species; however, the study of lysine succinylation in plant species is relatively limited. Patchouli plant (P. cablin (Blanco) Benth., Lamiaceae) is a globally important industrial plant and medicinal herb. In the present study, lysine succinylome analysis was carried out in patchouli plants to determine the potential regulatory role of lysine succinylation in patchouli growth, development, and physiology. The global succinylation sites and proteins in patchouli plants were screened with an immunoprecipitation affinity enrichment technique and advanced mass spectrometry-based proteomics. Several bioinformatic analyses, such as function classification and enrichment, subcellular location predication, metabolic pathway enrichment and protein-protein interaction networking, were conducted to characterize the functions of the identified sites and proteins. In total, 1097 succinylation sites in 493 proteins were detected in patchouli plants, among which 466 succinylation sites in 241 proteins were repeatedly identified within three independent experiments. The functional characterization of these proteins indicated that the tricarboxylic acid (TCA) cycle, oxidative phosphorylation, photosynthesis processes, and amino acid biosynthesis may be regulated by lysine succinylation. In addition, these succinylated proteins showed a wide subcellular location distribution, although the chloroplast and cytoplasm were the top two preferred cellular components. Our study suggested the important role of lysine succinylation in patchouli plant physiology and biology and could serve as a useful reference for succinylation studies in other medicinal plants.
Collapse
Affiliation(s)
- Xiaobing Wang
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine; Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education; Joint Laboratory of National Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, Guangzhou, Guangdong, 510006 P. R. China
| | - Xiuzhen Chen
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine; Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education; Joint Laboratory of National Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, Guangzhou, Guangdong, 510006 P. R. China
| | - Junren Li
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine; Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education; Joint Laboratory of National Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, Guangzhou, Guangdong, 510006 P. R. China
| | - Xuanxuan Zhou
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine; Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education; Joint Laboratory of National Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, Guangzhou, Guangdong, 510006 P. R. China
| | - Yanting Liu
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine; Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education; Joint Laboratory of National Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, Guangzhou, Guangdong, 510006 P. R. China
| | - Liting Zhong
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine; Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education; Joint Laboratory of National Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, Guangzhou, Guangdong, 510006 P. R. China
| | - Yun Tang
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine; Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education; Joint Laboratory of National Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, Guangzhou, Guangdong, 510006 P. R. China
| | - Hai Zheng
- Guangdong Institute of Traditional Chinese Medicine, Guangzhou, Guangdong, 510520 P. R. China
| | - Jiyun Liu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361005 P.R. China
| | - Ruoting Zhan
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine; Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education; Joint Laboratory of National Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, Guangzhou, Guangdong, 510006 P. R. China
| | - Likai Chen
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine; Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education; Joint Laboratory of National Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, Guangzhou, Guangdong, 510006 P. R. China
| |
Collapse
|