1
|
Fogarin HM, Murillo-Franco SL, Santos MCM, Silva DDV, Dussán KJ. Acid hydrolysis pretreatment for extraction of oligosaccharides derived from spent coffee grounds: valorization of a promising biomass. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025:10.1007/s11356-025-36417-0. [PMID: 40240662 DOI: 10.1007/s11356-025-36417-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 04/11/2025] [Indexed: 04/18/2025]
Abstract
The coffee industry generates approximately 6 million tons of waste annually, primarily spent coffee grounds (SCGs), whose disposal in landfills poses environmental risks. Therefore, new valorization strategies must be implemented to mitigate their environmental impact. In this sense, the objective of this study was to characterize SCGs and to optimize the dilute sulfuric acid pretreatment process for extracting oligosaccharides (OS). Optimal extraction conditions were determined using response surface methodology (RSM) with a Box-Behnken (BB) 33 design that included five central points for improved accuracy. The factors evaluated were temperature (140-190 °C), solid/liquid (S/L) ratio (1:40-1:4 g/mL), reaction time (20-120 min), and sulfuric acid concentration (0-2% v/v). Hemicellulose was identified as the predominant component, consisting mainly of mannose. OS extraction yields varied from 1.65 to 22.40 g per 100 g dry SCGs, depending on the process conditions. The quadratic model yielded an R2 value of 0.91128, indicating that the S/L ratio was the most influential factor, while reaction time had no significant effect. The optimized conditions-S/L ratio of 1:40 (g/mL), reaction time of 20 min, and H₂SO₄ concentration of 1.43% v/v at 168.57 °C-were experimentally validated and showed a margin of error of less than 9%. MALDI-TOF-MS analysis revealed oligosaccharide structures composed of hexose and pentose chains with up to eight sugar units. This study advances the understanding of OS extraction from SCGs via dilute acid pretreatment and provides valuable insight into waste valorization through process optimization and engineering approaches.
Collapse
Affiliation(s)
- Henrique Maziero Fogarin
- Department of Chemical Engineering, Institute of Chemistry, São Paulo State University (Unesp), Av. Prof. Francisco Degni, 55 - Jardim Quitandinha,, Araraquara, São Paulo, 14800 - 900, Brazil
- Bioenergy Research Institute (IPBEN), São Paulo State University (Unesp), Araraquara, São Paulo, Brazil
| | - Sarha Lucia Murillo-Franco
- Department of Chemical Engineering, Institute of Chemistry, São Paulo State University (Unesp), Av. Prof. Francisco Degni, 55 - Jardim Quitandinha,, Araraquara, São Paulo, 14800 - 900, Brazil
- Bioenergy Research Institute (IPBEN), São Paulo State University (Unesp), Araraquara, São Paulo, Brazil
| | - Matheus Costa Monteiro Santos
- Department of Chemical Engineering, Institute of Chemistry, São Paulo State University (Unesp), Av. Prof. Francisco Degni, 55 - Jardim Quitandinha,, Araraquara, São Paulo, 14800 - 900, Brazil
- Bioenergy Research Institute (IPBEN), São Paulo State University (Unesp), Araraquara, São Paulo, Brazil
| | - Debora Danielle Virginio Silva
- Department of Biochemistry and Organic Chemistry, Institute of Chemistry, São Paulo State University (Unesp), Araraquara, São Paulo, Brazil
| | - Kelly Johana Dussán
- Department of Chemical Engineering, Institute of Chemistry, São Paulo State University (Unesp), Av. Prof. Francisco Degni, 55 - Jardim Quitandinha,, Araraquara, São Paulo, 14800 - 900, Brazil.
- Bioenergy Research Institute (IPBEN), São Paulo State University (Unesp), Araraquara, São Paulo, Brazil.
- Center for Monitoring and Research of the Quality of Fuels, Biofuels, Crude Oil, and Derivatives (CEMPEQC), Institute of Chemistry, São Paulo State University (Unesp), Araraquara, São Paulo, Brazil.
| |
Collapse
|
2
|
Chacón-Figueroa IH, Dórame-Miranda RF, López-Ahumada GA, Del-Toro-Sánchez CL, Ovando-Martínez M, Gámez-Meza N, Martínez-Bustos F, Rodríguez-Figueroa JC, Gerardo-Rodríguez JE, Whitney K, Bernal-Mercado AT, Plascencia-Jatomea M, Herrera-Jiménez VM. Microencapsulation of Spent Coffee Extract Within Saccharomyces cerevisiae Cells via Spray Drying and Evaluation of Its In Vitro Bioaccessibility. Foods 2025; 14:1053. [PMID: 40232073 PMCID: PMC11941878 DOI: 10.3390/foods14061053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 03/14/2025] [Accepted: 03/17/2025] [Indexed: 04/16/2025] Open
Abstract
Spent coffee is rich in bioactive compounds, including chlorogenic acid, caffeic acid, and caffeine, which offer health benefits. However, digestive processes can degrade these compounds; therefore, microencapsulation within Saccharomyces cerevisiae yeast cells offers a novel method to stabilize these bioactive compounds during digestion. In fact, it is important to mention that this technique of microencapsulation in Saccharomyces cerevisiae has not been previously applied to spent coffee extract. As a result, in this study, spent coffee extract was microencapsulated in non-plasmolyzed (NPCs) and plasmolyzed (PCs) yeast cells using the spray drying method. The physicochemical properties of the extract and the microencapsulates were characterized, and the bioaccessibility of the bioactive compounds was evaluated with digestion in vitro. Encapsulation efficiency (EE) was 38.62% for NPCs and 55.78% for PCs, with loading capacities (LCs) of 126.36 and 242 g/kg, respectively (according to Equations (1) and (2)). The presence of antioxidant compounds, identified by HPLC in spent coffee, was confirmed in the microencapsulates using FTIR. In vitro digestion assays revealed higher bioaccessibility of bioactive compounds in the intestinal phase, greater than 90%, and increased antioxidant activity in beer made with plasmolyzed microcapsules (BPM). These results suggest that yeast microencapsulation effectively stabilizes the bioactive compounds of spent coffee extract, releasing them throughout the gastrointestinal tract in vitro, mainly in the intestinal phase. Thus, microencapsulated compounds could serve as functional additives with a good percentage of intestinal bioaccessibility.
Collapse
Affiliation(s)
- Isabel H. Chacón-Figueroa
- Department of Food Research and Graduate Program (DIPA), University of Sonora, Hermosillo C.P. 83000, Sonora, Mexico; (I.H.C.-F.); (G.A.L.-A.); (C.L.D.-T.-S.); (J.E.G.-R.); (A.T.B.-M.); (M.P.-J.)
| | - Ramón F. Dórame-Miranda
- Department of Food Research and Graduate Program (DIPA), University of Sonora, Hermosillo C.P. 83000, Sonora, Mexico; (I.H.C.-F.); (G.A.L.-A.); (C.L.D.-T.-S.); (J.E.G.-R.); (A.T.B.-M.); (M.P.-J.)
| | - Guadalupe A. López-Ahumada
- Department of Food Research and Graduate Program (DIPA), University of Sonora, Hermosillo C.P. 83000, Sonora, Mexico; (I.H.C.-F.); (G.A.L.-A.); (C.L.D.-T.-S.); (J.E.G.-R.); (A.T.B.-M.); (M.P.-J.)
| | - Carmen L. Del-Toro-Sánchez
- Department of Food Research and Graduate Program (DIPA), University of Sonora, Hermosillo C.P. 83000, Sonora, Mexico; (I.H.C.-F.); (G.A.L.-A.); (C.L.D.-T.-S.); (J.E.G.-R.); (A.T.B.-M.); (M.P.-J.)
| | - Maribel Ovando-Martínez
- Department of Scientific and Technological Research (DICTUS), University of Sonora, Hermosillo C.P. 83000, Sonora, Mexico; (M.O.-M.); (N.G.-M.)
| | - Nohemí Gámez-Meza
- Department of Scientific and Technological Research (DICTUS), University of Sonora, Hermosillo C.P. 83000, Sonora, Mexico; (M.O.-M.); (N.G.-M.)
| | - Fernando Martínez-Bustos
- Centro de Investigación y de Estudios Avanzados, Instituto Politécnico Nacional, Libramiento Norponiente, Fracc. Real de Juriquilla, Querétaro C.P. 76230, Querétaro, Mexico;
| | - José C. Rodríguez-Figueroa
- Department of Chemical Engineering and Metallurgy, University of Sonora, Hermosillo C.P. 83000, Sonora, Mexico;
| | - Jesús Enrique Gerardo-Rodríguez
- Department of Food Research and Graduate Program (DIPA), University of Sonora, Hermosillo C.P. 83000, Sonora, Mexico; (I.H.C.-F.); (G.A.L.-A.); (C.L.D.-T.-S.); (J.E.G.-R.); (A.T.B.-M.); (M.P.-J.)
| | - Kristin Whitney
- Whistler Center for Carbohydrate Research, Department of Food Science, Purdue University, West Lafayette, IN 47907, USA;
| | - Ariadna Thalía Bernal-Mercado
- Department of Food Research and Graduate Program (DIPA), University of Sonora, Hermosillo C.P. 83000, Sonora, Mexico; (I.H.C.-F.); (G.A.L.-A.); (C.L.D.-T.-S.); (J.E.G.-R.); (A.T.B.-M.); (M.P.-J.)
| | - Maribel Plascencia-Jatomea
- Department of Food Research and Graduate Program (DIPA), University of Sonora, Hermosillo C.P. 83000, Sonora, Mexico; (I.H.C.-F.); (G.A.L.-A.); (C.L.D.-T.-S.); (J.E.G.-R.); (A.T.B.-M.); (M.P.-J.)
| | | |
Collapse
|
3
|
Oba PM, De La Guardia-Hidrogo VM, Swanson OR, Mioto JC, Koutsos EA, Adams D, Pavlovsky G, Keating SCJ, Steelman AJ, Swanson KS. Effects of black soldier fly larvae on the fecal characteristics, skin and coat health markers, immune function, and oral health measures of healthy adult cats. J Anim Sci 2025; 103:skaf063. [PMID: 40042979 DOI: 10.1093/jas/skaf063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 02/28/2025] [Indexed: 05/08/2025] Open
Abstract
Black soldier fly larvae (BSFL) is a recently approved alternative protein source for dog and cat foods and treats in the United States, but research in cats remains limited. The objective of this study was to determine the effects of BSFL on the serum chemistry, hematology, skin and coat health markers, fecal characteristics, immune function, and oral health measures of healthy adult cats. Twenty-five adult cats (17 females and 8 males; 6.28 ± 0.27 yr; 4.50 ± 0.18 kg) were used in a completely randomized design. The study was composed of a 21-d baseline period and a 70-d experimental period. During the baseline period, all cats were fed a chicken meal-based control diet (35% of diet). After baseline, cats were assigned to 1 of 2 experimental diets: control diet (n = 12) or a BSFL-containing diet (20% whole BSFL meal and 24% chicken meal; n = 13). At baseline, teeth were cleaned by a veterinarian. Breath samples were analyzed for odor components, salivary pH was measured, and blood samples were collected after baseline cleaning, day 35, and day 70. Feces were scored, fecal samples were collected, skin was assessed, and hair was collected at baseline and day 70. Oral health indicators were assessed by a board-certified veterinarian at day 70. Data were analyzed using the mixed models procedure of SAS, testing for effects of diet (oral microbiota) or diet, time, and diet*time (variables measured over time), with P < 0.05 being significant. Diet*time interactions (P < 0.05) were noted for blood calcium, cholesterol, and triglyceride concentrations and fecal characteristics, metabolite concentrations, and microbiota populations. Some hematologic measures were affected by time, but none were impacted by diet. Cats fed BSFL had lower (P < 0.05) fecal pH, dry matter, and phenol, indole, and branched-chain fatty acid concentrations, and greater (P < 0.05) fecal scores and short-chain fatty acid concentrations. Fecal microbiota populations were affected by BSFL, with alpha diversity, beta diversity, and >20 bacterial genera being different between groups. Immune markers, skin and hair measures, salivary pH, breath odor, and oral microbiota and health measures were unaffected by the diet. In conclusion, a 20% dietary BSFL inclusion had clear effects on the fecal characteristics, metabolites, and microbiota of healthy adult cats, shifting most outcomes in a positive direction. Inclusion of BSFL had mild effects on serum metabolites and did not significantly affect the other variables measured.
Collapse
Affiliation(s)
- Patrícia M Oba
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | | | - Olivia R Swanson
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Julio C Mioto
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | | | | | - Gene Pavlovsky
- Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Stephanie C J Keating
- Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Andrew J Steelman
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Kelly S Swanson
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
4
|
Saygili S, Hegde S, Shi XZ. Effects of Coffee on Gut Microbiota and Bowel Functions in Health and Diseases: A Literature Review. Nutrients 2024; 16:3155. [PMID: 39339755 PMCID: PMC11434970 DOI: 10.3390/nu16183155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/12/2024] [Accepted: 09/14/2024] [Indexed: 09/30/2024] Open
Abstract
Background and objectives: As one of the most popular beverages in the world, coffee has long been known to affect bowel functions such as motility, secretion, and absorption. Recent evidence obtained in human and animal studies suggests that coffee has modulating impacts on gut microbiota. We aim to present an overview of the specific effects of coffee on gut microbiota composition, diversity, and growth. We will also critically review the impacts of coffee on bowel functions in health and diseases and discuss whether gut microbiota play a role in the coffee-associated functional changes in the gastrointestinal tract. Methods: We searched the literature up to June 2024 through PubMed, Web of Science, and other sources using search terms such as coffee, caffeine, microbiota, gastrointestinal infection, motility, secretion, gut-brain axis, absorption, and medication interaction. Clinical research in patients and preclinical studies in rodent animals were included. Results: A majority of the studies found that moderate consumption of coffee (<4 cups a day) increased the relative abundance of beneficial bacterial phyla such as Firmicutes and Actinobacteria and decreased Bacteroidetes. Moderate coffee consumption also increased Bifidobacterium spp. and decreased the abundance of Enterobacteria. Coffee consumption is reported to increase gut microbiota diversity. Although the effects of coffee on bowel functions have been known for a long time, it is not until recently that we have recognized that some of the effects of coffee may be partly due to its impacts on microbiota. Conclusions: The current literature suggests that moderate coffee consumption has beneficial effects on oral and gut microbiota and motility function. However, excessive coffee intake (>5 cups a day) is implicated in reflux disorders, periodontal diseases, and progression of Crohn's disease. Further research in the field is needed, as there are many conflicting results regarding the impacts of coffee in the gastrointestinal tract.
Collapse
Affiliation(s)
- Sena Saygili
- John Sealy School of Medicine, University of Texas Medical Branch, Galveston, TX 77555, USA;
| | - Shrilakshmi Hegde
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - Xuan-Zheng Shi
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
5
|
Acevedo-Román A, Pagán-Zayas N, Velázquez-Rivera LI, Torres-Ventura AC, Godoy-Vitorino F. Insights into Gut Dysbiosis: Inflammatory Diseases, Obesity, and Restoration Approaches. Int J Mol Sci 2024; 25:9715. [PMID: 39273662 PMCID: PMC11396321 DOI: 10.3390/ijms25179715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/30/2024] [Accepted: 09/07/2024] [Indexed: 09/15/2024] Open
Abstract
The gut microbiota is one of the most critical factors in human health. It involves numerous physiological processes impacting host health, mainly via immune system modulation. A balanced microbiome contributes to the gut's barrier function, preventing the invasion of pathogens and maintaining the integrity of the gut lining. Dysbiosis, or an imbalance in the gut microbiome's composition and function, disrupts essential processes and contributes to various diseases. This narrative review summarizes key findings related to the gut microbiota in modern multifactorial inflammatory conditions such as ulcerative colitis or Crohn's disease. It addresses the challenges posed by antibiotic-driven dysbiosis, particularly in the context of C. difficile infections, and the development of novel therapies like fecal microbiota transplantation and biotherapeutic drugs to combat these infections. An emphasis is given to restoration of the healthy gut microbiome through dietary interventions, probiotics, prebiotics, and novel approaches for managing gut-related diseases.
Collapse
Affiliation(s)
- Andy Acevedo-Román
- Microbiology Department, University of Puerto Rico Medical Sciences Campus, San Juan 00936, Puerto Rico
| | - Natalia Pagán-Zayas
- Microbiology Department, University of Puerto Rico Medical Sciences Campus, San Juan 00936, Puerto Rico
| | - Liz I Velázquez-Rivera
- Microbiology Department, University of Puerto Rico Medical Sciences Campus, San Juan 00936, Puerto Rico
| | - Aryanne C Torres-Ventura
- Microbiology Department, University of Puerto Rico Medical Sciences Campus, San Juan 00936, Puerto Rico
| | - Filipa Godoy-Vitorino
- Microbiology Department, University of Puerto Rico Medical Sciences Campus, San Juan 00936, Puerto Rico
| |
Collapse
|
6
|
Chu NHS, Chow E, Chan JCN. The Therapeutic Potential of the Specific Intestinal Microbiome (SIM) Diet on Metabolic Diseases. BIOLOGY 2024; 13:498. [PMID: 39056692 PMCID: PMC11273990 DOI: 10.3390/biology13070498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/02/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024]
Abstract
Exploring the intricate crosstalk between dietary prebiotics and the specific intestinal microbiome (SIM) is intriguing in explaining the mechanisms of current successful dietary interventions, including the Mediterranean diet and high-fiber diet. This knowledge forms a robust basis for developing a new natural food therapy. The SIM diet can be measured and evaluated to establish a reliable basis for the management of metabolic diseases, such as diabetes, metabolic (dysfunction)-associated fatty liver disease (MAFLD), obesity, and metabolic cardiovascular disease. This review aims to delve into the existing body of research to shed light on the promising developments of possible dietary prebiotics in this field and explore the implications for clinical practice. The exciting part is the crosstalk of diet, microbiota, and gut-organ interactions facilitated by producing short-chain fatty acids, bile acids, and subsequent metabolite production. These metabolic-related microorganisms include Butyricicoccus, Akkermansia, and Phascolarctobacterium. The SIM diet, rather than supplementation, holds the promise of significant health consequences via the prolonged reaction with the gut microbiome. Most importantly, the literature consistently reports no adverse effects, providing a strong foundation for the safety of this dietary therapy.
Collapse
Affiliation(s)
- Natural H. S. Chu
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China; (E.C.); (J.C.N.C.)
| | - Elaine Chow
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China; (E.C.); (J.C.N.C.)
| | - Juliana C. N. Chan
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China; (E.C.); (J.C.N.C.)
- Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
| |
Collapse
|
7
|
Lee H, Song J, Lee B, Cha J, Lee H. Food carbohydrates in the gut: structural diversity, microbial utilization, and analytical strategies. Food Sci Biotechnol 2024; 33:2123-2140. [PMID: 39130670 PMCID: PMC11315866 DOI: 10.1007/s10068-024-01648-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/14/2024] [Accepted: 06/17/2024] [Indexed: 08/13/2024] Open
Abstract
Carbohydrates, which are a vital dietary component, undergo digestion and gut fermentation through microbial enzymes to produce beneficial short-chain fatty acids. Certain carbohydrates selectively modulate the gut microbiota, impacting host health. Carbohydrate-active enzymes within the gut microbiota significantly contribute to carbohydrate utilization and microbial diversity. Despite their importance, the structural complexity of carbohydrates poses analytical challenges. However, recent advancements, notably, mass spectrometry, have allowed for their characterization and functional analysis. This review examines the intricate relationship between dietary carbohydrates and the gut microbiota, highlighting the crucial role of advanced analytical techniques in understanding their diversity and implications. These advancements provide valuable insights into carbohydrate bioactivity. Integrating high-throughput analysis with next-generation sequencing provides deeper insights into gut microbial interactions, potentially revealing which carbohydrate structures are beneficial for gut health.
Collapse
Affiliation(s)
- HyunJi Lee
- Department of Applied Chemistry, Food Science and Technology, Dong-eui University, Busan, 47340 Republic of Korea
| | - JaeHui Song
- Department of Applied Chemistry, Food Science and Technology, Dong-eui University, Busan, 47340 Republic of Korea
| | - Bokyung Lee
- Department of Food Science and Nutrition, Dong-A University, Busan, 49315 Republic of Korea
- Department of Health Sciences, The Graduate School of Dong-A University, Busan, 49315 Republic of Korea
| | - Jaeho Cha
- Department of Microbiology, Pusan National University, Busan, 46241 Republic of Korea
- Microbiological Resources Research Institute, Pusan National University, Busan, 46241 Republic of Korea
| | - Hyeyoung Lee
- Department of Applied Chemistry, Food Science and Technology, Dong-eui University, Busan, 47340 Republic of Korea
| |
Collapse
|
8
|
Montoya-Hernández D, Dufoo-Hurtado E, Cruz-Hernández A, Campos-Vega R. Spent coffee grounds and its antioxidant dietary fiber promote different colonic microbiome signatures: Benefits for subjects with chronodisruption. Microb Pathog 2023; 185:106431. [PMID: 37984489 DOI: 10.1016/j.micpath.2023.106431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/17/2023] [Accepted: 10/28/2023] [Indexed: 11/22/2023]
Abstract
Chronodisruption, commonly displayed by people living with obesity (PLO), is linked to colonic microbiota dysbiosis, and may increase the risk of many chronic non-communicable diseases, whereas dietary interventions-called chrononutrition may mitigate it. We evaluated the in vitro effects of spent coffee grounds (SCG), and their antioxidant dietary fiber (SCG-DF) on the colonic microbiota of an obese donor displaying dysbiosis and chronodisruption. Basal microbiota pattern was associated with an increased risk of non-communicable chronic diseases. Both samples decrease species richness and increase microbiota diversity (p < 0.05; Chao and Shannon index, respectively), positively enhancing Firmicutes/Bacteroidetes index (SCG, p < 0.04; SCG-DF, p < 0.02). SCG and SCG-DF modulated the microbiota, but SCG-DF induced greater changes, significantly increasing. p_Actonobacterias (SCG p < 0.04; SCG-DF, p < 0.02), and reducing g_Alistipes; s_putredinis, g_Prevotella;s_copri. The highest increase was displayed by p_Proteobacteria (f_Desulfovibrionaceae and f_Alcanigenaceae, p < 0.05), while g_Haemophilus; s_parainfluenzae decreased (p < 0.05). However, neither SCG nor SCG-DF modulated g_Alistipes (evening-type colonic microbial marker) beneficially. SCG and SCG-DF reduced (p < 0.05) g_Lachnospira, a microbial evening-type marker, among other microbial populations, of an obese donor displaying chronodisruption and dysbiosis. SCG and SCG-DF displayed a prebiotic effect with the potential to mitigate diseases linked to chronodisruption.
Collapse
Affiliation(s)
- Diego Montoya-Hernández
- Programa de Posgrado en Alimentos del Centro de la República (PROPAC), Research and Graduate Studies in Food Science, School of Chemistry, Universidad Autónoma de Querétaro, Santiago de Querétaro, 76010, Qro, Mexico.
| | - Elisa Dufoo-Hurtado
- Programa de Posgrado en Alimentos del Centro de la República (PROPAC), Research and Graduate Studies in Food Science, School of Chemistry, Universidad Autónoma de Querétaro, Santiago de Querétaro, 76010, Qro, Mexico.
| | - Andrés Cruz-Hernández
- Escuela de Agronomía, Universidad De La Salle Bajío Campus Campestre, Av. Universidad 602, Col. Lomas del Campestre, León, 37150, Mexico.
| | - Rocio Campos-Vega
- Programa de Posgrado en Alimentos del Centro de la República (PROPAC), Research and Graduate Studies in Food Science, School of Chemistry, Universidad Autónoma de Querétaro, Santiago de Querétaro, 76010, Qro, Mexico.
| |
Collapse
|
9
|
Cavanagh Q, Brooks MSL, Rupasinghe H. Innovative technologies used to convert spent coffee grounds into new food ingredients: Opportunities, challenges, and prospects. FUTURE FOODS 2023; 8:100255. [DOI: 10.1016/j.fufo.2023.100255] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
|
10
|
Tripathi S, Murthy PS. Coffee oligosaccharides and their role in health and wellness. Food Res Int 2023; 173:113288. [PMID: 37803601 DOI: 10.1016/j.foodres.2023.113288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 07/14/2023] [Accepted: 07/15/2023] [Indexed: 10/08/2023]
Abstract
Coffee oligosaccharides (COS) are novel sources of prebiotics comprising manno-oligosaccharides, galacto-oligosaccharides, arabinoxylan-oligosaccharides, and cello-oligosaccharides. These oligosaccharides function as prebiotics, antioxidant-dietary fiber owing to important physicochemical and physiological properties, adjuvants, pharma, nutraceutical food, gut health, immune system boosting, cancer treatment, and many more. Research suggests COS performs prebiotic action, as it enhances gut health by promoting beneficial bacteria in the colon and releasing functional metabolites such as SCFAs. However, research on COS concerning other metabolic illnesses is still lacking. Among various production strategies, pretreatment and enzymatic hydrolysis are preferred for the production of COS. Functional oligosaccharides can add value to coffee waste and reduce the environmental impact of coffee manufacturing, besides providing more options for healthy and active ingredients. This review updates COS, production, bio-activity, their role as a functional food, food supplements/natural food additives, prebiotics and many applications of health sectors. Research is desirable to extend information on COS and their bio-activity, besides in vivo and clinical trials, to assess their effects in prior human formulations into the food and therapeutic arena.
Collapse
Affiliation(s)
- Shivani Tripathi
- Plantation Products, Spices and Flavour Technology Department, CSIR-Central Food Technological Research Institute, Mysuru, Karnataka, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Pushpa S Murthy
- Plantation Products, Spices and Flavour Technology Department, CSIR-Central Food Technological Research Institute, Mysuru, Karnataka, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
11
|
Rana M, Jassal S, Yadav R, Sharma A, Puri N, Mazumder K, Gupta N. Functional β-mannooligosaccharides: Sources, enzymatic production and application as prebiotics. Crit Rev Food Sci Nutr 2023; 64:10221-10238. [PMID: 37335120 DOI: 10.1080/10408398.2023.2222165] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
One of the emerging non-digestible oligosaccharide prebiotics is β-mannooligosaccharides (β-MOS). β-MOS are β-mannan derived oligosaccharides, they are selectively fermented by gut microbiota, promoting the growth of beneficial microorganisms (probiotics), whereas the growth of enteric pathogens remains unaffected or gets inhibited in their presence, along with production of metabolites such as short-chain fatty acids. β-MOS also exhibit several other bioactive properties and health-promoting effects. Production of β-MOS using the enzymes such as β-mannanases is the most effective and eco-friendly approach. For the application of β-MOS on a large scale, their production needs to be standardized using low-cost substrates, efficient enzymes and optimization of the production conditions. Moreover, for their application, detailed in-vivo and clinical studies are required. For this, a thorough information of various studies in this regard is needed. The current review provides a comprehensive account of the enzymatic production of β-MOS along with an evaluation of their prebiotic and other bioactive properties. Their characterization, structural-functional relationship and in-vivo studies have also been summarized. Research gaps and future prospects have also been discussed, which will help in conducting further research for the commercialization of β-MOS as prebiotics, functional food ingredients and therapeutic agents.
Collapse
Affiliation(s)
- Monika Rana
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Sunena Jassal
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Richa Yadav
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Anupama Sharma
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Neena Puri
- Department of Industrial Microbiology, Guru Nanak Khalsa College, Yamunanagar, Haryana, India
| | - Koushik Mazumder
- Food & Nutritional Biotechnology, National Agri-Food Biotechnology Institute, Mohali, Punjab, India
| | - Naveen Gupta
- Department of Microbiology, Panjab University, Chandigarh, India
| |
Collapse
|
12
|
Xu Y, Yao R, Zhao W, Zhu J, Yao J, Zhang G, Liu D. Spirocyclopiperazinium salt compound DXL-A-24 improves visceral sensation and gut microbiota in a rat model of irritable bowel syndrome. Heliyon 2023; 9:e16544. [PMID: 37303540 PMCID: PMC10250758 DOI: 10.1016/j.heliyon.2023.e16544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 05/14/2023] [Accepted: 05/19/2023] [Indexed: 06/13/2023] Open
Abstract
Irritable bowel syndrome (IBS) is characterized by visceral pain, impaired intestinal barrier and a disorder of the microbiota. DXL-A-24 has analgesic and anti-inflammatory effects by inhibiting neuropeptides and inflammatory factors. In this study, we used chronic unpredictable mild stress (CUMS) induced IBS model, to assess the action of DXL-A-24 on visceral hypersensitivity, barrier function and microbiota. Visceral sensation was assessed by colorectal distension in a model of IBS. The expressions of substance P (SP) and calcitonin gene-related peptide (CGRP) were detected by immunohistochemistry and western blot, the contents of diamine oxidase (DAO) and D-lactic acid were detected by ELISA, and 16S rRNA to detect the diversity of gut microbiota. CUMS reduced visceral pain threshold and increased colonic permeability of rats. DXL-A-24 for 28 days inhibited these changes. DXL-A-24 also decreased the expression of SP, CGRP in colon and D-LA, DAO in serum. Besides, DXL-A-24 increased the richness and diversity of intestinal microbiota. In conclusions, DXL-A-24 reduced visceral sensitivity, improved intestinal barrier and regulated gut microbiota in rats with IBS.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Dongguang Liu
- Corresponding author. Lunan Pharmaceutical Group Corporation, Linyi, 276000, Shandong, China.
| |
Collapse
|
13
|
Chen L, Wang XJ, Chen JX, Yang JC, Cai XB, Chen YS. Caffeine ameliorates the metabolic syndrome in diet-induced obese mice through regulating the gut microbiota and serum metabolism. Diabetol Metab Syndr 2023; 15:37. [PMID: 36890514 PMCID: PMC9996965 DOI: 10.1186/s13098-023-00993-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 02/07/2023] [Indexed: 03/10/2023] Open
Abstract
OBJECTIVE Obesity is associated with gut microbiota disorders, which has been related to developing metabolic syndromes. The research aims to investigate the effects of caffeine treatment on insulin resistance, intestinal microbiota composition and serum metabolomic changes in high-fat diet (HFD)-induced obesity mice. METHODS Eight-week-old male C57BL/6 J mice were fed a normal chow diet (NCD) or HFD with or without different concentrations of caffeine. After 12 weeks of treatment, body weight, insulin resistance, serum lipid profiles, gut microbiota and serum metabolomic profiles were assessed. RESULTS Caffeine intervention improved the metabolic syndrome in HFD-fed mice, such as serum lipid disorders and insulin resistance. 16S rRNA Sequencing analysis revealed that caffeine increased the relative abundance of Dubosiella, Bifidobacterium and Desulfovibrio and decreased that of Bacteroides, Lactobacillus and Lactococcus to reverse HFD-fed obesity in mice. Additionally, Caffeine Supplementation also altered serum metabolomics, mainly focusing on lipid metabolism, bile acid metabolism and energy metabolism. Caffeine increased its metabolite 1,7-Dimethylxanthine, which was positively correlated with Dubosiella. CONCLUSIONS Caffeine exerts a beneficial effect on insulin resistance in HFD-mice, and the underlying mechanism may be partly related to altered gut microbiota and bile acid metabolism.
Collapse
Affiliation(s)
- Li Chen
- Department of Gastroenterology, The First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, Guangdong, People's Republic of China
- Department of Endocrinology, The First Affiliated Hospital of Shantou University Medical College, No. 57 Changping Road, Shantou, 515041, Guangdong, China
| | - Xian-Jun Wang
- Department of Gastroenterology, The First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, Guangdong, People's Republic of China
| | - Jie-Xin Chen
- Department of Endocrinology, The First Affiliated Hospital of Shantou University Medical College, No. 57 Changping Road, Shantou, 515041, Guangdong, China
| | - Jing-Cheng Yang
- Department of Endocrinology, The First Affiliated Hospital of Shantou University Medical College, No. 57 Changping Road, Shantou, 515041, Guangdong, China
| | - Xian-Bin Cai
- Department of Gastroenterology, The First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, Guangdong, People's Republic of China.
| | - Yong-Song Chen
- Department of Endocrinology, The First Affiliated Hospital of Shantou University Medical College, No. 57 Changping Road, Shantou, 515041, Guangdong, China.
| |
Collapse
|
14
|
Machado M, Ferreira H, Oliveira MBPP, Alves RC. Coffee by-products: An underexplored source of prebiotic ingredients. Crit Rev Food Sci Nutr 2023; 64:7181-7200. [PMID: 36847145 DOI: 10.1080/10408398.2023.2181761] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
Consumers' demand for foods with high nutritional value and health benefits has fueled the development of prebiotic foods. In coffee industry, cherries transformation into roasted beans generates a large amount of waste/by-products (pulp/husks, mucilage, parchment, defective beans, silverskin and spent coffee grounds) that usually end up in landfills. The possibility to use coffee by-products as relevant sources of prebiotic ingredients is herein ascertained. As a prelude to this discussion, an overview of pertinent literature on prebiotic action was conducted, including on biotransformation of prebiotics, gut microbiota, and metabolites. Existing research indicates that coffee by-products contain significant levels of dietary fiber and other components that can improve gut health by stimulating beneficial bacteria in the colon, making them excellent candidates for prebiotic ingredients. Oligosaccharides from coffee by-products have lower digestibility than inulin and can be fermented by gut microbiota into functional metabolites, such as short-chain fatty acids. Depending on the concentration, melanoidins and chlorogenic acids may also have prebiotic action. Nevertheless, there is still a lack of in vivo studies to validate such findings in vitro. This review shows how coffee by-products can be interesting for the development of functional foods, contributing to sustainability, circular economy, food security, and health.
Collapse
Affiliation(s)
- Marlene Machado
- REQUIMTE/LAQV, Laboratory of Bromatology and Hydrology, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Helena Ferreira
- REQUIMTE/UCIBIO, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - M Beatriz P P Oliveira
- REQUIMTE/LAQV, Laboratory of Bromatology and Hydrology, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Rita C Alves
- REQUIMTE/LAQV, Laboratory of Bromatology and Hydrology, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| |
Collapse
|
15
|
Bevilacqua E, Cruzat V, Singh I, Rose’Meyer RB, Panchal SK, Brown L. The Potential of Spent Coffee Grounds in Functional Food Development. Nutrients 2023; 15:nu15040994. [PMID: 36839353 PMCID: PMC9963703 DOI: 10.3390/nu15040994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 02/09/2023] [Accepted: 02/12/2023] [Indexed: 02/18/2023] Open
Abstract
Coffee is a popular and widely consumed beverage worldwide, with epidemiological studies showing reduced risk of cardiovascular disease, cancers and non-alcoholic fatty liver disease. However, few studies have investigated the health effects of the post-brewing coffee product, spent coffee grounds (SCG), from either hot- or cold-brew coffee. SCG from hot-brew coffee improved metabolic parameters in rats with diet-induced metabolic syndrome and improved gut microbiome in these rats and in humans; further, SCG reduced energy consumption in humans. SCG contains similar bioactive compounds as the beverage including caffeine, chlorogenic acids, trigonelline, polyphenols and melanoidins, with established health benefits and safety for human consumption. Further, SCG utilisation could reduce the estimated 6-8 million tonnes of waste each year worldwide from production of coffee as a beverage. In this article, we explore SCG as a major by-product of coffee production and consumption, together with the potential economic impacts of health and non-health applications of SCG. The known bioactive compounds present in hot- and cold-brew coffee and SCG show potential effects in cardiovascular disease, cancer, liver disease and metabolic disorders. Based on these potential health benefits of SCG, it is expected that foods including SCG may moderate chronic human disease while reducing the environmental impact of waste otherwise dumped in landfill.
Collapse
Affiliation(s)
- Elza Bevilacqua
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast, QLD 4222, Australia
| | - Vinicius Cruzat
- Faculty of Health, Southern Cross University, Gold Coast, QLD 4225, Australia
| | - Indu Singh
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast, QLD 4222, Australia
| | - Roselyn B. Rose’Meyer
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast, QLD 4222, Australia
| | - Sunil K. Panchal
- School of Science, Western Sydney University, Richmond, NSW 2753, Australia
| | - Lindsay Brown
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast, QLD 4222, Australia
- Correspondence: ; Tel.: +61-433-062-123
| |
Collapse
|
16
|
Jian S, Zhang L, Ding N, Yang K, Xin Z, Hu M, Zhou Z, Zhao Z, Deng B, Deng J. Effects of black soldier fly larvae as protein or fat sources on apparent nutrient digestibility, fecal microbiota, and metabolic profiles in beagle dogs. Front Microbiol 2022; 13:1044986. [PMID: 36504773 PMCID: PMC9733673 DOI: 10.3389/fmicb.2022.1044986] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 10/25/2022] [Indexed: 11/26/2022] Open
Abstract
Black soldier fly (Hermetia illucens) larvae (BSFL) act as a biological system converting organic waste into protein and fat with great potential application as pet food. To evaluate the feasibility of BSFL as a protein and fat source, 20 healthy beagle dogs were fed three dietary treatments for 65 days, including (1) a basal diet group (CON group), (2) a basal diet that replaced 20% chicken meal with defatted black soldier fly larvae protein group (DBP group), and (3) a basal diet that replaced 8% mixed oil with black soldier fly larvae fat group (BF group). This study demonstrated that the serum biochemical parameters among the three groups were within the normal range. No difference (p > 0.05) was observed in body weight, body condition score, or antioxidant capacity among the three groups. The mean IFN-γ level in the BF group was lower than that in the CON group, but there was no significant difference (p > 0.05). Compared with the CON group, the DBP group had decreasing (p < 0.05) apparent crude protein and organic matter digestibility. Furthermore, the DBP group had decreasing (p < 0.05) fecal propionate, butyrate, total short-chain fatty acids (SCFAs), isobutyrate, isovalerate, and total branched-chain fatty acids (BCFAs) and increased (p < 0.05) fecal pH. Nevertheless, there was no difference (p > 0.05) in SCFAs or BCFAs between the CON and BF groups. The fecal microbiota revealed that Lachnoclostridium, Clostridioides, Blautia, and Enterococcus were significantly enriched in the DBP group, and Terrisporobacter and Ralstonia were significantly enriched in the BF group. The fecal metabolome showed that the DBP group significantly influenced 18 metabolic pathways. Integrating biological and statistical correlation analysis on differential fecal microbiota and metabolites between the CON and DBP groups found that Lachnoclostridium, Clostridioides, and Enterococcus were positively associated with biotin. In addition, Lachnoclostridium, Clostridioides, Blautia, and Enterococcus were positively associated with niacinamide, phenylalanine acid, fumaric acid, and citrulline and negatively associated with cadavrine, putrescine, saccharopine, and butyrate. In all, 20% DBP restrained the apparent CP and OM digestibility, thereby affecting hindgut microbial metabolism. In contrast, 8% BF in the dog diet showed no adverse effects on body condition, apparent nutrient digestibility, fecal microbiota, or metabolic profiles. Our findings are conducive to opening a new avenue for the exploitation of DBP and BF as protein and fat resources in dog food.
Collapse
Affiliation(s)
- Shiyan Jian
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Limeng Zhang
- Guangzhou Qingke Biotechnology Co., Ltd., Guangzhou, Guangdong, China
| | - Ning Ding
- Guangzhou Customs Technology Center, Guangzhou, Guangdong, China
| | - Kang Yang
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Zhongquan Xin
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Minhua Hu
- Guangzhou General Pharmaceutical Research Institute Co., Ltd. (National Canine Laboratory Animal Resources Center), Guangzhou, Guangdong, China
| | - Zhidong Zhou
- Guangzhou General Pharmaceutical Research Institute Co., Ltd. (National Canine Laboratory Animal Resources Center), Guangzhou, Guangdong, China
| | - Zhihong Zhao
- Guangzhou General Pharmaceutical Research Institute Co., Ltd. (National Canine Laboratory Animal Resources Center), Guangzhou, Guangdong, China
| | - Baichuan Deng
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Jinping Deng
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
17
|
Bamigbade GB, Subhash AJ, Kamal-Eldin A, Nyström L, Ayyash M. An Updated Review on Prebiotics: Insights on Potentials of Food Seeds Waste as Source of Potential Prebiotics. Molecules 2022; 27:molecules27185947. [PMID: 36144679 PMCID: PMC9505924 DOI: 10.3390/molecules27185947] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 09/06/2022] [Accepted: 09/08/2022] [Indexed: 01/19/2023] Open
Abstract
Prebiotics are a group of biological nutrients that are capable of being degraded by microflora in the gastrointestinal tract (GIT), primarily Lactobacilli and Bifidobacteria. When prebiotics are ingested, either as a food additive or as a supplement, the colonic microflora degrade them, producing short-chain fatty acids (SCFA), which are simultaneously released in the colon and absorbed into the blood circulatory system. The two major groups of prebiotics that have been extensively studied in relation to human health are fructo-oligosaccharides (FOS) and galactooligosaccharides (GOS). The candidature of a compound to be regarded as a prebiotic is a function of how much of dietary fiber it contains. The seeds of fruits such as date palms have been reported to contain dietary fiber. An increasing awareness of the consumption of fruits and seeds as part of the daily diet, as well as poor storage systems for seeds, have generated an enormous amount of seed waste, which is traditionally discarded in landfills or incinerated. This cultural practice is hazardous to the environment because seed waste is rich in organic compounds that can produce hazardous gases. Therefore, this review discusses the potential use of seed wastes in prebiotic production, consequently reducing the environmental hazards posed by these wastes.
Collapse
Affiliation(s)
- Gafar Babatunde Bamigbade
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University (UAEU), Al-Ain P.O. Box 15551, United Arab Emirates
| | - Athira Jayasree Subhash
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University (UAEU), Al-Ain P.O. Box 15551, United Arab Emirates
| | - Afaf Kamal-Eldin
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University (UAEU), Al-Ain P.O. Box 15551, United Arab Emirates
| | - Laura Nyström
- Department of Health Science and Technology, Institute of Food, Nutrition and Health, ETH Zurich, 8092 Zurich, Switzerland
| | - Mutamed Ayyash
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University (UAEU), Al-Ain P.O. Box 15551, United Arab Emirates
- Correspondence:
| |
Collapse
|
18
|
Mavria A, Tsouko E, Protonotariou S, Papagiannopoulos A, Georgiadou M, Selianitis D, Pispas S, Mandala I, Koutinas AA. Sustainable Production of Novel Oleogels Valorizing Microbial Oil Rich in Carotenoids Derived from Spent Coffee Grounds. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:10807-10817. [PMID: 36008363 DOI: 10.1021/acs.jafc.2c03478] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Sustainable food systems that employ renewable resources without competition with the food chain are drivers for the bioeconomy era. This study reports the valorization of microwave-pretreated spent coffee grounds (SCGs) to produce oleogels rich in bioactive compounds. Microbial oil rich in carotenoids (MOC) was produced under batch fermentation of Rhodosporidium toruloides using SCG enzymatic hydrolysates. Candelilla wax (CLW) could structure MOC and sunflower oil at a 3.3-fold lower concentration than that of carnauba wax (CBW). MOC-based oleogels with 10% CBW and 3% CLW showed an elastic-dominant and gel-like structure (tan δ ≪ 1), providing gelation and oil binding capacity (>95%). Dendritic structures of CBW-based oleogels and evenly distributed rod-like crystals of CLW-based ones were observed via polarized light microscopy. MOC-based oleogels exhibited similar Fourier-transform infrared spectroscopy spectra. X-ray diffractograms of oleogels were distinguished by the oil type that presented β'-type polymorphism. MOC-based oleogels could be applied in confectionary products and spreads as substitutes for trans fatty acids, reformulating fat-containing food products.
Collapse
Affiliation(s)
- Aikaterini Mavria
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, Athens 11855, Greece
| | - Erminta Tsouko
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, Athens 11855, Greece
| | - Styliani Protonotariou
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, Athens 11855, Greece
| | - Aristeidis Papagiannopoulos
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece
| | - Maria Georgiadou
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, Athens 11855, Greece
| | - Dimitrios Selianitis
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece
| | - Stergios Pispas
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece
| | - Ioanna Mandala
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, Athens 11855, Greece
| | - Apostolis A Koutinas
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, Athens 11855, Greece
| |
Collapse
|
19
|
Chen L, Wang X, Chen J, Yang J, lin L, Cai X, Chen Y. Caffeine Ameliorates the Metabolic Syndrome in Diet-induced Obese Mice Through Regulating the Gut Microbiota and Serum Metabolism.. [DOI: 10.21203/rs.3.rs-1897181/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Abstract
Objective
Obesity is associated with gut microbiota disorders, which has been related to developing metabolic syndromes. The research aims to investigate the effects of caffeine treatment on insulin resistance, intestinal microbiota composition and serum metabolomic changes in high-fat diet (HFD)-induced obesity mice.
Methods
Eight-week-old male C57BL/6J mice were fed a normal chow diet (NCD) or HFD with or without different concentrations of caffeine. After 12 weeks of treatment, body weight, insulin resistance, serum lipid profiles, gut microbiota and serum metabolomic profiles were assessed.
Results
Caffeine intervention improved the metabolic syndrome in HFD-fed mice, such as serum lipid disorders and insulin resistance. 16S rRNA Sequencing analysis revealed that caffeine increased the relative abundance of Dubosiella, Bifidobacterium and Desulfovibrio and decreased that of Bacteroides, Lactobacillus and Lactococcus to reverse HFD-fed obesity in mice. Additionally, Caffeine Supplementation also altered serum metabolomics, mainly focusing on lipid metabolism, bile acid metabolism and energy metabolism. Caffeine increased its metabolite 1,7-Dimethylxanthine, which was positively correlated with Dubosiella.
Conclusions
Caffeine exerts a beneficial effect on insulin resistance in HFD-mice, and the underlying mechanism may be partly related to altered gut microbiota and bile acid metabolism.
Collapse
Affiliation(s)
- Li Chen
- First Affiliated Hospital of Shantou University Medical College
| | - Xian-jun Wang
- First Affiliated Hospital of Shantou University Medical College
| | - Jie-xin Chen
- First Affiliated Hospital of Shantou University Medical College
| | - Jing-cheng Yang
- First Affiliated Hospital of Shantou University Medical College
| | - Ling lin
- First Affiliated Hospital of Shantou University Medical College
| | - Xian-Bin Cai
- First Affiliated Hospital of Shantou University Medical College
| | - Yong-song Chen
- First Affiliated Hospital of Shantou University Medical College
| |
Collapse
|
20
|
Ribeiro M, Alvarenga L, Cardozo LFMF, Kemp JA, Lima LS, Almeida JSD, Leal VDO, Stenvinkel P, Shiels PG, Mafra D. The magical smell and taste: Can coffee be good to patients with cardiometabolic disease? Crit Rev Food Sci Nutr 2022; 64:562-583. [PMID: 35930394 DOI: 10.1080/10408398.2022.2106938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Coffee is a beverage consumed globally. Although few studies have indicated adverse effects, it is typically a beneficial health-promoting agent in a range of diseases, including depression, diabetes, cardiovascular disease, and obesity. Coffee is rich in caffeine, antioxidants, and phenolic compounds, which can modulate the composition of the gut microbiota and mitigate both inflammation and oxidative stress, common features of the burden of lifestyle diseases. This review will discuss the possible benefits of coffee on complications present in patients with diabetes, cardiovascular disease and chronic kidney disease, outwith the social and emotional benefits attributed to caffeine consumption.
Collapse
Affiliation(s)
- Marcia Ribeiro
- Graduate Program in Biological Sciences - Physiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
- Unidade de Pesquisa Clinica (UPC), University Hospital Antonio Pedro, Niterói, RJ, Brazil
| | - Livia Alvarenga
- Unidade de Pesquisa Clinica (UPC), University Hospital Antonio Pedro, Niterói, RJ, Brazil
- Graduate Program in Medical Sciences, Fluminense Federal University (UFF), Niterói, RJ, Brazil
| | - Ludmila F M F Cardozo
- Unidade de Pesquisa Clinica (UPC), University Hospital Antonio Pedro, Niterói, RJ, Brazil
- Graduate Program in Cardiovascular Sciences, Fluminense Federal University (UFF), Niterói, RJ, Brazil
| | - Julie A Kemp
- Unidade de Pesquisa Clinica (UPC), University Hospital Antonio Pedro, Niterói, RJ, Brazil
- Graduate Program in Cardiovascular Sciences, Fluminense Federal University (UFF), Niterói, RJ, Brazil
| | - Ligia S Lima
- Graduate Program in Biological Sciences - Physiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
- Unidade de Pesquisa Clinica (UPC), University Hospital Antonio Pedro, Niterói, RJ, Brazil
| | - Jonatas S de Almeida
- Unidade de Pesquisa Clinica (UPC), University Hospital Antonio Pedro, Niterói, RJ, Brazil
| | - Viviane de O Leal
- Nutrition Division, Pedro Ernesto University Hospital, University of the State of Rio de Janeiro (UERJ), Rio de Janeiro, RJ, Brazil
| | - Peter Stenvinkel
- Division of Renal Medicine and Baxter Novum, Department of Clinical Science, Technology and Intervention, Karolinska Instituted, Stockholm, Sweden
| | - Paul G Shiels
- Wolfson Wohl Translational Research Centre, University of Glasgow, Glasgow, UK
| | - Denise Mafra
- Graduate Program in Biological Sciences - Physiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
- Unidade de Pesquisa Clinica (UPC), University Hospital Antonio Pedro, Niterói, RJ, Brazil
- Graduate Program in Medical Sciences, Fluminense Federal University (UFF), Niterói, RJ, Brazil
| |
Collapse
|
21
|
Yao N, Yang Y, Li X, Wang Y, Guo R, Wang X, Li J, Xie Z, Li B, Cui W. Effects of Dietary Nutrients on Fatty Liver Disease Associated With Metabolic Dysfunction (MAFLD): Based on the Intestinal-Hepatic Axis. Front Nutr 2022; 9:906511. [PMID: 35782947 PMCID: PMC9247350 DOI: 10.3389/fnut.2022.906511] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/26/2022] [Indexed: 12/12/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) has recently become the most common liver disease with a global prevalence of over 25% and is expected to increase. Recently, experts have reached a consensus that “fatty liver disease associated with metabolic dysfunction or MAFLD” may be a more appropriate and inclusive definition than NAFLD. Like the former name NAFLD, MAFLD, as a manifestation of multiple system metabolic disorders involving the liver, has certain heterogeneity in its pathogenesis, clinical manifestations, pathological changes and natural outcomes. We found that there is a delicate dynamic balance among intestinal microflora, metabolites and host immune system to maintain a healthy intestinal environment and host health. On the contrary, this imbalance is related to diseases such as MAFLD. However, there are no clear studies on how dietary nutrients affect the intestinal environment and participate in the pathogenesis of MAFLD. This review summarizes the interactions among dietary nutrients, intestinal microbiota and MAFLD in an attempt to provide evidence for the use of dietary supplements to regulate liver function in patients with MAFLD. These dietary nutrients influence the development and progression of MAFLD mainly through the hepatic-intestinal axis by altering dietary energy absorption, regulating bile acid metabolism, changing intestinal permeability and producing ethanol. Meanwhile, the nutrients have the ability to combat MAFLD in terms of enriching abundance of intestinal microbiota, reducing Firmicutes/Bacteroidetes ratio and promoting abundance of beneficial gut microbes. Therefore, family therapy with MAFLD using a reasonable diet could be considered.
Collapse
Affiliation(s)
- Nan Yao
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, China
| | - Yixue Yang
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, China
| | - Xiaotong Li
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, China
| | - Yuxiang Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, China
| | - Ruirui Guo
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, China
| | - Xuhan Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, China
| | - Jing Li
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, China
| | - Zechun Xie
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, China
| | - Bo Li
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, China
- *Correspondence: Bo Li
| | - Weiwei Cui
- Department of Nutrition and Food Hygiene, School of Public Health, Jilin University, Changchun, China
- Weiwei Cui
| |
Collapse
|
22
|
Advances in Prebiotic Mannooligosaccharides. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2022.100883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
23
|
Sun D, Li C, Cui P, Zhang J, Zhou Y, Wu M, Li X, Wang TF, Zeng Z, Qin HM. Reshaping the binding channel of a novel GH113 family β-mannanase from Paenibacillus cineris (PcMan113) for enhanced activity. BIORESOUR BIOPROCESS 2022; 9:17. [PMID: 38647808 PMCID: PMC10992819 DOI: 10.1186/s40643-022-00505-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 02/13/2022] [Indexed: 11/10/2022] Open
Abstract
Endo-β-mannanases are important enzymes for degrading lignocellulosic biomass to generate mannan, which has significant health effects as a prebiotic that promotes the development of gut microbiota. Here, a novel endo-β-mannanase belonging to glycoside hydrolase (GH) family 113 from Paenibacillus cineris (PcMan113) was cloned, expressed and characterized, as one of only a few reported GH113 family β-mannanases. Compared to other functionally and structurally characterized GH113 mannanases, recombinant PcMan113 showed a broader substrate spectrum and a better performance. Based on a structural homology model, the highly active mutant PcMT3 (F110E/N246Y) was obtained, with 4.60- and 5.53-fold increases of enzyme activity (towards KG) and catalytic efficiency (kcat/Km, against M5) compared with the WT enzyme, respectively. Furthermore, molecular dynamics (MD) simulations were conducted to precisely explore the differences of catalytic activity between WT and PcMT3, which revealed that PcMT3 has a less flexible conformation, as well as an enlarged substrate-binding channel with decreased steric hindrance and increased binding energy in substrate recognition. In conclusion, we obtained a highly active variant of PcMan113 with potential for commercial application in the manufacture of manno-oligosaccharides.
Collapse
Affiliation(s)
- Dengyue Sun
- State Key Laboratory of Biobased Material and Green Papermaking, College of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250100, People's Republic of China
- School of Bioengineering, Qilu University of Technology, Shandong Province, Jinan, 250353, People's Republic of China
| | - Chao Li
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
| | - Pengpeng Cui
- School of Bioengineering, Qilu University of Technology, Shandong Province, Jinan, 250353, People's Republic of China
| | - Jie Zhang
- School of Bioengineering, Qilu University of Technology, Shandong Province, Jinan, 250353, People's Republic of China
| | - Yaolin Zhou
- School of Bioengineering, Qilu University of Technology, Shandong Province, Jinan, 250353, People's Republic of China
| | - Mian Wu
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
| | - Xia Li
- School of Bioengineering, Qilu University of Technology, Shandong Province, Jinan, 250353, People's Republic of China
| | - Teng-Fei Wang
- State Key Laboratory of Biobased Material and Green Papermaking, College of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250100, People's Republic of China
- School of Bioengineering, Qilu University of Technology, Shandong Province, Jinan, 250353, People's Republic of China
| | - Zhixiong Zeng
- School of Bioengineering, Qilu University of Technology, Shandong Province, Jinan, 250353, People's Republic of China.
| | - Hui-Min Qin
- State Key Laboratory of Biobased Material and Green Papermaking, College of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250100, People's Republic of China.
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China.
| |
Collapse
|
24
|
Cervera-Mata A, Delgado G, Fernández-Arteaga A, Fornasier F, Mondini C. Spent coffee grounds by-products and their influence on soil C-N dynamics. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 302:114075. [PMID: 34800772 DOI: 10.1016/j.jenvman.2021.114075] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 10/04/2021] [Accepted: 11/06/2021] [Indexed: 06/13/2023]
Abstract
SCG are a bio-waste generated in great amount worldwide which are attractive as soil amendment for their high content of organic matter and nutritive elements. Nevertheless, several studies have shown that soil application of untreated SCG has detrimental agronomic and environmental effects due to their high degradability and content of noxious compounds (phenols, caffeine, and tannins). However, SCG can be valorised, in the frame of circular economy, by extraction of energy and valuable products (carbohydrates, proteins, bio-oil, bio-diesel) and generation of solid by products (biochar, hydrochar, compost) that can be utilized as soil fertilizers and amendments. Therefore, the aim of this work was the characterization of different solid SCG by-products (as second-generation products) and their assessment as effective organic amendments. The novelty of this study is that for the first time 8 different by-products derived from the same SCG were characterized and comparatively evaluated for their impact on the C and N cycles of soil. SCG was collected and treated to generate 8 different SCG by-products (biochars produced at 270 and 400 °C, hydrochars produced at 160 and 200 °C, vermicompost, defatted SCG and biochars produced from defatted SCG at 270 and 400 °C). SCG and derived by-products were characterized for SEM micromorphology, pH and EC values, and C, N, H, O, volatile matter, fixed C, LOI, carbonates, water soluble C and N, NO3- and NH4+ content. SCG and SCG by-products assessment as organic amendments was performed with an incubation experiment. The residues were added (2.5%) to a moist Mediterranean agricultural soil and the amended soil samples were placed in mesocosms and incubated at 20 °C for 30 days. During incubation, CO2 and N2O emissions were measured every 6 h by means of a gas chromatography automated system for GHG sampling and measurement. The percentage of added C remaining (CR) in the soil was calculated by fitting the cumulative respiration of amended soil to a two-pool model. After 2, 7 and 30 days of incubation, the control and amended soils were sampled and analyzed for their content of extractable organic C, N, NO3- and NH4+ and microbial biomass C and N. Results showed that SCG by-products presented a great variability in their properties. SCG and hydrochars presented higher contents in volatile matter and water soluble C and N, and low content of fixed C, while biochars showed an opposite behaviour. SEM images confirmed the different characteristics of the SCG by-products: the biochar presented a porous structure, honeycomb-like form, due to the loss of the more soluble compounds, while the SCG and hydrochars' pores were filled with amorphous carbonaceous materials. Consequently, soil addition of SCG by-products showed a distinct impact on C and N cycle and microbial biomass content. Addition of SCG and hydrochars generated the highest cumulative CO2-C emissions (2103-2300 μg g-1), the lower amount of CR (86.8-88.6%), increased the soil extractable organic C and microbial biomass C and N and caused N immobilization. On the other hand, the addition of biochars generated lower CO2-C emissions (542-1060 μg g-1), higher amounts of CR (96. 3-99.9%) and lower amounts of extractable compounds and microbial biomass C and N, generating also N immobilization, but to a lesser extent. The addition of vermicompost generated 723 μg g-1 of CO2-C and 98% of CR remaining. However, this by-product did not generate N immobilization being able to act as N fertilizer. None of the residues generated N2O emissions. The different properties of the SCG by-products and their impact on C and N cycle indicated that they can be effectively applied to soil to exert different agronomical and environmental functions.
Collapse
Affiliation(s)
- Ana Cervera-Mata
- Departamento de Edafología y Química Agrícola. Facultad de Farmacia. Universidad de Granada, Granada, Spain; Instituto de Nutrición y Tecnología de los Alimentos, Centro de Investigación Biomédica, Universidad de Granada, Granada, Spain.
| | - Gabriel Delgado
- Departamento de Edafología y Química Agrícola. Facultad de Farmacia. Universidad de Granada, Granada, Spain
| | | | - Flavio Fornasier
- CREA Centro di ricerca Viticoltura ed Enologia, sede di Gorizia, Gorizia, Italy
| | - Claudio Mondini
- CREA Centro di ricerca Viticoltura ed Enologia, sede di Gorizia, Gorizia, Italy
| |
Collapse
|
25
|
Sun Y, Kang K, Li YL, Sang LX, Chang B. Tea polyphenols protect mice from acute ethanol-Induced liver injury by modulating the gut microbiota and short-chain fatty acids. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104865] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
26
|
How do green and black coffee brews and bioactive interaction with gut microbiome affect its health outcomes? Mining evidence from mechanistic studies, metagenomics and clinical trials. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.11.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
27
|
Wongsiridetchai C, Jonjaroen V, Sawangwan T, Charoenrat T, Chantorn S. Evaluation of prebiotic mannooligosaccharides obtained from spent coffee grounds for nutraceutical application. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111717] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
28
|
Pérez-Burillo S, Molino S, Navajas-Porras B, Valverde-Moya ÁJ, Hinojosa-Nogueira D, López-Maldonado A, Pastoriza S, Rufián-Henares JÁ. An in vitro batch fermentation protocol for studying the contribution of food to gut microbiota composition and functionality. Nat Protoc 2021; 16:3186-3209. [PMID: 34089022 DOI: 10.1038/s41596-021-00537-x] [Citation(s) in RCA: 130] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 03/18/2021] [Indexed: 02/05/2023]
Abstract
Knowledge of the effect of foods on gut microbiota composition and functionality is expanding. To isolate the effect of single foods and/or single nutrients (i.e., fiber, polyphenols), this protocol describes an in vitro batch fermentation procedure to be carried out after an in vitro gastrointestinal digestion. Therefore, this is an extension of the previous protocol described by Brodkorb et al. (2019) for studying in vitro digestion. The current protocol uses an oligotrophic fermentation medium with peptone and a high concentration of fecal inoculum from human fecal samples both to provide the microbiota and as the main source of nutrients for the bacteria. This protocol is recommended for screening work to be performed when many food samples are to be studied. It has been used successfully to study gut microbiota fermentation of different foodstuffs, giving insights into their functionality, community structure or ability to degrade particular substances, which can contribute to the development of personalized nutrition strategies. The procedure does not require a specific level of expertise. The protocol takes 4-6 h for preparation of fermentation tubes and 20 h for incubation.
Collapse
Affiliation(s)
- Sergio Pérez-Burillo
- Departamento de Nutrición y Bromatología, Instituto de Nutrición y Tecnología de Alimentos, Centro de Investigación Biomédica, Universidad de Granada, Granada, Spain
| | - Silvia Molino
- Departamento de Nutrición y Bromatología, Instituto de Nutrición y Tecnología de Alimentos, Centro de Investigación Biomédica, Universidad de Granada, Granada, Spain
| | - Beatriz Navajas-Porras
- Departamento de Nutrición y Bromatología, Instituto de Nutrición y Tecnología de Alimentos, Centro de Investigación Biomédica, Universidad de Granada, Granada, Spain
| | - Álvaro Jesús Valverde-Moya
- Departamento de Nutrición y Bromatología, Instituto de Nutrición y Tecnología de Alimentos, Centro de Investigación Biomédica, Universidad de Granada, Granada, Spain
| | - Daniel Hinojosa-Nogueira
- Departamento de Nutrición y Bromatología, Instituto de Nutrición y Tecnología de Alimentos, Centro de Investigación Biomédica, Universidad de Granada, Granada, Spain
| | - Alicia López-Maldonado
- Departamento de Nutrición y Bromatología, Instituto de Nutrición y Tecnología de Alimentos, Centro de Investigación Biomédica, Universidad de Granada, Granada, Spain
| | - Silvia Pastoriza
- Departamento de Nutrición y Bromatología, Instituto de Nutrición y Tecnología de Alimentos, Centro de Investigación Biomédica, Universidad de Granada, Granada, Spain
| | - José Ángel Rufián-Henares
- Departamento de Nutrición y Bromatología, Instituto de Nutrición y Tecnología de Alimentos, Centro de Investigación Biomédica, Universidad de Granada, Granada, Spain. .,Instituto de Investigación Biosanitaria ibs.GRANADA, Universidad de Granada, Granada, Spain.
| |
Collapse
|
29
|
Liu Q, Xi Y, Wang Q, Liu J, Li P, Meng X, Liu K, Chen W, Liu X, Liu Z. Mannan oligosaccharide attenuates cognitive and behavioral disorders in the 5xFAD Alzheimer's disease mouse model via regulating the gut microbiota-brain axis. Brain Behav Immun 2021; 95:330-343. [PMID: 33839232 DOI: 10.1016/j.bbi.2021.04.005] [Citation(s) in RCA: 125] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/18/2021] [Accepted: 04/07/2021] [Indexed: 01/12/2023] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized by cognitive deficits and psychiatric symptoms. The gut microbiota-brain axis plays a pivotal role during AD development, which could target nutritional intervention. The prebiotic mannan oligosaccharide (MOS) has been reported to reshape the gut microbiome and enhanced the formation of the neuroprotective metabolites short-chain fatty acids (SCFAs). Here, we found that an 8-week treatment of MOS (0.12%, w/v in the drinking water) significantly improved cognitive function and spatial memory, accompanied by attenuated the anxiety- and obsessive-like behaviors in the 5xFAD transgenic AD mice model. MOS substantially reduced the Aβ accumulation in the cortex, hippocampus, and amygdala of the brain. Importantly, MOS treatment significantly balanced the brain redox status and suppressed the neuroinflammatory responses. Moreover, MOS also alleviated the HPA-axis disorders by decreasing the levels of hormones corticosterone (CORT) and corticotropin-releasing hormone (CRH) and upregulated the norepinephrine (NE) expressions. Notably, the gut barrier integrity damage and the LPS leak were prevented by the MOS treatment. MOS re-constructed the gut microbiota composition, including increasing the relative abundance of Lactobacillus and reducing the relative abundance of Helicobacter. MOS enhanced the butyrate formation and related microbes levels. The correlation analysis indicated that the reshaped gut microbiome and enhanced butyrate formation are highly associated with behavioral alteration and brain oxidative status. SCFAs supplementation experiment also attenuated the behavioral disorders and Aβ accumulation in the AD mice brain, accompanied by balanced HPA-axis and redox status. In conclusion, the present study indicated that MOS significantly attenuates the cognitive and mental deficits in the 5xFAD mice, which could be partly explained by the reshaped microbiome and enhanced SCFAs formation in the gut. MOS, as a prebiotics, can be translated into a novel microbiota-targeted approach for managing metabolic and neurodegenerative diseases.
Collapse
Affiliation(s)
- Qing Liu
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Yujia Xi
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Qianxu Wang
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Jinhui Liu
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Peiran Li
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Xue Meng
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Kai Liu
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Weixuan Chen
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Xuebo Liu
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Zhigang Liu
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China; Department of Food Science, Cornell University, Ithaca, NY 14853, United States.
| |
Collapse
|
30
|
Liu M, Song S, Chen Q, Sun J, Chu W, Zhang Y, Ji F. Gut microbiota mediates cognitive impairment in young mice after multiple neonatal exposures to sevoflurane. Aging (Albany NY) 2021; 13:16733-16748. [PMID: 34182544 PMCID: PMC8266337 DOI: 10.18632/aging.203193] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 05/31/2021] [Indexed: 12/12/2022]
Abstract
Multiple exposures to anesthesia may increase the risk of cognitive impairment in young children. However, the mechanisms underlying this neurodevelopmental disorder remain elusive. In this study, we investigated alteration of the gut microbiota after multiple neonatal exposures to the anesthetic sevoflurane and the potential role of microbiota alteration on cognitive impairment using a young mice model. Multiple neonatal sevoflurane exposures resulted in obvious cognitive impairment symptoms and altered gut microbiota composition. Fecal transplantation experiments confirmed that alteration of the microbiota was responsible for the cognitive disorders in young mice. Microbiota profiling analysis identified microbial taxa that showed consistent differential abundance before and after fecal microbiota transplantation. Several of the differentially abundant taxa are associated with memory and/or health of the host, such as species of Streptococcus, Lachnospiraceae, and Pseudoflavonifractor. The results reveal that abnormal composition of the gut microbiota is a risk factor for cognitive impairment in young mice after multiple neonatal exposures to sevoflurane and provide insight into a potential therapeutic strategy for sevoflurane-related neurotoxicity.
Collapse
Affiliation(s)
- Meiyu Liu
- Department of Anesthesiology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Department of Anesthesiology, The Affiliated Hospital of Yangzhou University, Yangzhou, Jiangsu, China
| | - Shaoyong Song
- Department of Anesthesiology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Qingcai Chen
- Department of Anesthesiology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Jianhong Sun
- Department of Anesthesiology, The Affiliated Hospital of Yangzhou University, Yangzhou, Jiangsu, China
| | - Wei Chu
- Medical School of Soochow University, Suzhou, Jiangsu, China
| | - Yunzeng Zhang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
| | - Fuhai Ji
- Department of Anesthesiology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
31
|
Zhou J, Wu S, Qi G, Fu Y, Wang W, Zhang H, Wang J. Dietary supplemental xylooligosaccharide modulates nutrient digestibility, intestinal morphology, and gut microbiota in laying hens. ACTA ACUST UNITED AC 2021; 7:152-162. [PMID: 33997343 PMCID: PMC8110867 DOI: 10.1016/j.aninu.2020.05.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 05/01/2020] [Accepted: 05/06/2020] [Indexed: 02/08/2023]
Abstract
This study was conducted to evaluate the prebiotic effects of dietary xylooligosaccharide (XOS) supplementation on performance, nutrient digestibility, intestinal morphology, and gut microbiota in laying hens. In a 12-wk experiment, a total of 288 Hy-Line Brown layers at 50 wk of age were randomly assigned into 3 dietary treatments supplemented with XOS at 0, 200 or 400 mg/kg. Each treatment had 8 replicates with 12 birds each. Hens fed XOS diets showed a lower feed-to-egg ratio during wk 7 to 12 and a higher egg yolk color value in wk 12 compared with those fed the control diet (P < 0.05). Dietary XOS supplementation improved the apparent total tract digestibility of gross energy and nitrogen at the end of the 12th wk (P < 0.05). In addition, a higher villus height-to-crypt depth ratio of the ileum was observed in XOS-added groups (P < 0.05). The high throughput sequencing analysis of bacterial 16S rRNA revealed that dietary XOS supplementation at 200 mg/kg altered cecal microbiota. Alpha diversity analysis illustrated a higher cecal bacterial richness in birds fed with XOS at 200 mg/kg. The composition of cecal microbiota modulated by the XOS addition was characterized by an increased abundance of Firmicutes along with a reduced abundance of Bacteroidetes. At the genus level, dietary XOS supplementation triggered decreases in Bacteroides and Campylobacter concurrent with increases in Lactobacillus and several short chain fatty acid producers including Desulfovibrio, Faecalitalea, Faecalicoccus, and 5 genera of family Lachnospiraceae. Collectively, dietary XOS addition improved the feed conversion ratio by modulating nutrient digestibility and ileal morphology in laying hens, which could be attributed to the enhancement of bacterial diversity and alteration of microbial composition.
Collapse
Affiliation(s)
- Jianmin Zhou
- Laboratory of Quality & Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture & Rural Affairs, and National Engineering Research Center of Biological Feed, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Shugeng Wu
- Laboratory of Quality & Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture & Rural Affairs, and National Engineering Research Center of Biological Feed, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Guanghai Qi
- Laboratory of Quality & Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture & Rural Affairs, and National Engineering Research Center of Biological Feed, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yu Fu
- Laboratory of Quality & Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture & Rural Affairs, and National Engineering Research Center of Biological Feed, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Weiwei Wang
- Laboratory of Quality & Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture & Rural Affairs, and National Engineering Research Center of Biological Feed, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Haijun Zhang
- Laboratory of Quality & Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture & Rural Affairs, and National Engineering Research Center of Biological Feed, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jing Wang
- Laboratory of Quality & Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture & Rural Affairs, and National Engineering Research Center of Biological Feed, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| |
Collapse
|
32
|
Cervera-Mata A, Lara L, Fernández-Arteaga A, Ángel Rufián-Henares J, Delgado G. Washed hydrochar from spent coffee grounds: A second generation of coffee residues. Evaluation as organic amendment. WASTE MANAGEMENT (NEW YORK, N.Y.) 2021; 120:322-329. [PMID: 33340815 DOI: 10.1016/j.wasman.2020.11.041] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 10/19/2020] [Accepted: 11/24/2020] [Indexed: 06/12/2023]
Abstract
Spent coffee grounds (SCG) hydrochar is a second-generation solid waste obtained by hydrothermal carbonization (HTC). Two washed hydrochars from SCG (175 and 185 °C; 12 MPa of N2) were tested as organic amendments of an agricultural soil (Cambic Calcisol), at doses of 1 and 2.5%, in an in vitro assay using Lactuca sativa as a crop plant. The washed hydrochars differ from the SCG in organic carbon (OC) (56 vs 47%), C/N ratio (29 vs 24), polyphenols (186 vs 77 mg GAE/g), pH (4.1 vs 5.8), assimilable P (186 vs 1274 ppm) and K (32 vs 2475 ppm). The particles of washed hydrochars have a lower size and a more porous structure than SCG particles. Higher HTC temperatures generate greater differences with SCG. The effects on the soil of washed hydrochars are similar to SCG, regarding OC, total N, C/N ratio, available K and P contents. The influence of SCG and washed hydrochars on lettuces is also similar: both give rise to plant growth inhibition and increase in the contents of Ca, Mg, Cu, Fe and Mn. Nevertheless, washed hydrochars seem to be more effective in the mobilization of elements in the soil than SCG, which could be attributed to their higher content of polyphenols. For example: Ca (139 mg/100 g with SCG and 160 mg/100 g with hydrochar) and Fe (0.742 mg/100 g with SCG and 1.45 mg/100 g with hydrochar). Therefore, it can be concluded that SCG hydrochars could be used as organic amendments with similar limitations and advantages to SCG.
Collapse
Affiliation(s)
- Ana Cervera-Mata
- Departamento de Edafología y Química Agrícola, Universidad de Granada, Granada, Spain
| | - Leslie Lara
- Departamento de Ingeniería Química, Universidad de Granada, Granada, Spain
| | | | - Jose Ángel Rufián-Henares
- Departamento de Nutrición y Bromatología, Instituto de Nutrición y Tecnología de los Alimentos, Centro de Investigación Biomédica, Universidad de Granada, Granada, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, Universidad de Granada, Spain.
| | - Gabriel Delgado
- Departamento de Edafología y Química Agrícola, Universidad de Granada, Granada, Spain
| |
Collapse
|
33
|
Enqi W, Jingzhu S, Lingpeng P, Yaqin L. Comparison of the Gut Microbiota Disturbance in Rat Models of Irritable Bowel Syndrome Induced by Maternal Separation and Multiple Early-Life Adversity. Front Cell Infect Microbiol 2021; 10:581974. [PMID: 33520732 PMCID: PMC7840688 DOI: 10.3389/fcimb.2020.581974] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 12/02/2020] [Indexed: 01/06/2023] Open
Abstract
Background The study aimed to identify the effects of modeling procedures on bacterial communities and to investigate whether different modeling procedures lead to consistent patterns of gut microbiome compositions. Methods Two irritable bowel syndrome (IBS) rat models maternal separation (MS) alone and multiple-early-adversity modeling (MAM) were established and the gut microbiome were analyzed using 16S-rRNA-based high-throughput sequencing methods. Results Rats from both models exhibited visceral hypersensitivity and the two model groups exhibited differences in the extent of visceral sensitivity and fecal water content. The microbial community structure of the two models exhibited significant differences compared to the controls, while the two model groups also exhibited significant differences between them. Furthermore, microbial community functional predictions suggested that the two models exhibited different abundances of metabolisms and pathways. Several common and distinct characteristic differences were also observed between the two model groups. Alloprevotella were more abundant in both model groups, while Butyricicoccus, Turicibacter, Ruminococcus, and Clostridium_sensu_stricto along with the family it belongs to were less abundant relative to controls. In addition, the abundance of Clostridium_IV, Corynebacterium, Rothia, Elusimicrobium, Romboutsia, Allobaculum, Parasutterella, and their related taxa were specifically associated with MS group, whereas Butyricimonas and Vampirovibrio along with its related taxa were specifically associated with MAM group. Among those, Butyricimonas, Butyricicoccus and Corynebacterium were found to partially mediate early adversity exposure-induced visceral hypersensitivity. Conclusions Our results highlight the importance in evaluating gut microbiota characteristics in IBS research while also systematically considering potential modeling procedural differences. The microbial compositional/functional differences identified in this study were suggestive to further investigation of mechanisms of early adversity induced IBS.
Collapse
Affiliation(s)
| | | | | | - Ling Yaqin
- *Correspondence: Ling Yaqin, ; Pei Lingpeng,
| |
Collapse
|
34
|
Lingpeng P, Jingzhu S, Wei L, Enqi W, Yaqin L. Effect of water extracts from Cynanchum thesioides (Freyn) K. Schum. on visceral hypersensitivity and gut microbiota profile in maternally separated rats. JOURNAL OF ETHNOPHARMACOLOGY 2021; 264:113352. [PMID: 32891821 DOI: 10.1016/j.jep.2020.113352] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 08/28/2020] [Accepted: 08/29/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Irritable bowel syndrome (IBS) is a chronic, stress-related, functional gastrointestinal disorder characterized by abdominal discomfort and altered bowel habits; the manipulation of the microbiota is emerging as a promising therapeutic option for IBS. Cynanchum thesioides (CT) is an herb of traditional Mongolian medicine that has been employed in treating abdominal pain and diarrhea for hundreds of years. Phytochemical studies of this plant showed the presence of various flavonoids with antibacterial and anti-inflammatory activities. We hypothesized that Cynanchum thesioides manipulates the gut mycobiome and reverses visceral hypersensitivity in IBS rat model. PURPOSE OF THE STUDY The aims of this study were to prove the in vivo efficacy of Cynanchum thesioides on improving visceral hypersensitivity in IBS rat model and to examine its effect on gut bacterial communities, focusing on the potential interrelationships among microbiota and visceral hypersensitivity. MATERIALS AND METHODS We induced visceral hypersensitivity rat models by maternal separation (MS) of Sprague-Dawley rats, and administered CT water extracts to MS rats for 10 consecutive days. The abdominal withdrawal reflex score and threshold of colorectal distention were employed to assess visceral sensitivity. We then used the Illumina HiSeq platform to analyze bacterial 16S rRNA gene. RESULTS Treatment with CT improved visceral hypersensitivity in MS rats, and this was accompanied by alterations in the structure and composition of the gut microbiota. The extent of the stability of the gut microbiota was improved after treatment with CT. The genera Pseudomonas, Lachnospiracea_incertae_sedis, and Clostridium XlVa (which were more prevalent in MS rats) were significantly decreased, whereas the abundance of some genera were less prevalent in MS rats-for example, Clostridium IV, Elusimicrobium, Clostridium_sensu_stricto, and Acetatifactor were significantly enriched after treatment with CT. CONCLUSION Water-extracted CT was beneficial against visceral hypersensitivity in IBS and favorably affected the structure, composition, and functionality of gut microbiota. CT is therefore a promising agent in therapy of IBS.
Collapse
Affiliation(s)
- Pei Lingpeng
- Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, Beijing, 100081, China.
| | - Song Jingzhu
- Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, Beijing, 100081, China.
| | - Liu Wei
- College of Laboratory Medicine, Jilin Medical University, Jilin, 132013, China.
| | - Wu Enqi
- Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, Beijing, 100081, China.
| | - Ling Yaqin
- Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, Beijing, 100081, China.
| |
Collapse
|
35
|
Goiri I, Díaz de Otálora X, Ruiz R, Rey J, Atxaerandio R, Lavín JL, San Martin D, Orive M, Iñarra B, Zufia J, Urkiza J, García-Rodríguez A. Spent Coffee Grounds Alter Bacterial Communities in Latxa Dairy Ewes. Microorganisms 2020; 8:microorganisms8121961. [PMID: 33322068 PMCID: PMC7764017 DOI: 10.3390/microorganisms8121961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/03/2020] [Accepted: 12/04/2020] [Indexed: 11/16/2022] Open
Abstract
Antimicrobial and antioxidant properties of spent coffee grounds (SCG) make them a potential ingredient in a diet for ruminants. This study investigated the effects of SCG on rumen microbiota. For 51 days, 36 dairy ewes were assigned to the experimental treatments (0, 30, 50, and 100 g SCG/kg). Ruminal samples were collected on day 50. DNA was extracted and subjected to paired-end Illumina sequencing of the V3-V4 hypervariable region of the 16S rRNA genes. Bioinformatic analyses were performed using QIIME (v.1.9.0). SCG increased dose-dependently bacterial diversity and altered bacterial structure. Further, 60, 78, and 449 operational taxonomic unit (OUT) were different between control and 30, 50 and 100 g/kg SCG groups, respectively. Higher differences were observed between the control and 100 g/kg SCG group, where OTU of the genera Treponema, CF231, Butyrivibrio, BF331, Anaeroplasma, Blautia, Fibrobacter, and Clostridium were enriched with SCG. Correlations between volatile fatty acids (VFA) and bacterial taxa were sparser in the SCG groups and had little overlap. Certain bacterial taxa presented different signs of the correlation with VFA in SCG and control groups, but Butyrivibrio and Blautia consistently correlated with branched-chain VFA in all groups. SCG induced shifts in the ruminal bacterial community and altered the correlation networks among bacterial taxa and ruminal VFA.
Collapse
Affiliation(s)
- Idoia Goiri
- Department of Animal Production, NEIKER-Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Campus Agroalimentario de Arkaute s/n, 01192 Arkaute, Spain; (X.D.d.O.); (R.R.); (J.R.); (R.A.); (J.L.L.); (A.G.-R.)
- Correspondence:
| | - Xabier Díaz de Otálora
- Department of Animal Production, NEIKER-Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Campus Agroalimentario de Arkaute s/n, 01192 Arkaute, Spain; (X.D.d.O.); (R.R.); (J.R.); (R.A.); (J.L.L.); (A.G.-R.)
| | - Roberto Ruiz
- Department of Animal Production, NEIKER-Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Campus Agroalimentario de Arkaute s/n, 01192 Arkaute, Spain; (X.D.d.O.); (R.R.); (J.R.); (R.A.); (J.L.L.); (A.G.-R.)
| | - Jagoba Rey
- Department of Animal Production, NEIKER-Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Campus Agroalimentario de Arkaute s/n, 01192 Arkaute, Spain; (X.D.d.O.); (R.R.); (J.R.); (R.A.); (J.L.L.); (A.G.-R.)
| | - Raquel Atxaerandio
- Department of Animal Production, NEIKER-Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Campus Agroalimentario de Arkaute s/n, 01192 Arkaute, Spain; (X.D.d.O.); (R.R.); (J.R.); (R.A.); (J.L.L.); (A.G.-R.)
| | - Jose Luis Lavín
- Department of Animal Production, NEIKER-Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Campus Agroalimentario de Arkaute s/n, 01192 Arkaute, Spain; (X.D.d.O.); (R.R.); (J.R.); (R.A.); (J.L.L.); (A.G.-R.)
| | - David San Martin
- AZTI, Food Research, Basque Research and Technology Alliance (BRTA), Parque Tecnológico de Bizkaia, Astondo Bidea, Edificio 609, 48160 Derio-Bizkaia, Spain; (D.S.M.); (M.O.); (B.I.); (J.Z.)
| | - Mikel Orive
- AZTI, Food Research, Basque Research and Technology Alliance (BRTA), Parque Tecnológico de Bizkaia, Astondo Bidea, Edificio 609, 48160 Derio-Bizkaia, Spain; (D.S.M.); (M.O.); (B.I.); (J.Z.)
| | - Bruno Iñarra
- AZTI, Food Research, Basque Research and Technology Alliance (BRTA), Parque Tecnológico de Bizkaia, Astondo Bidea, Edificio 609, 48160 Derio-Bizkaia, Spain; (D.S.M.); (M.O.); (B.I.); (J.Z.)
| | - Jaime Zufia
- AZTI, Food Research, Basque Research and Technology Alliance (BRTA), Parque Tecnológico de Bizkaia, Astondo Bidea, Edificio 609, 48160 Derio-Bizkaia, Spain; (D.S.M.); (M.O.); (B.I.); (J.Z.)
| | - Jabi Urkiza
- Cooperativa Agraria MIBA, Polígono Industrial Galartza, 48277 Etxebarria, Spain;
| | - Aser García-Rodríguez
- Department of Animal Production, NEIKER-Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Campus Agroalimentario de Arkaute s/n, 01192 Arkaute, Spain; (X.D.d.O.); (R.R.); (J.R.); (R.A.); (J.L.L.); (A.G.-R.)
| |
Collapse
|
36
|
Angeloni S, Scortichini S, Fiorini D, Sagratini G, Vittori S, Neiens SD, Steinhaus M, Zheljazkov VD, Maggi F, Caprioli G. Characterization of Odor-Active Compounds, Polyphenols, and Fatty Acids in Coffee Silverskin. Molecules 2020; 25:molecules25132993. [PMID: 32629998 PMCID: PMC7411821 DOI: 10.3390/molecules25132993] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 06/27/2020] [Accepted: 06/29/2020] [Indexed: 12/31/2022] Open
Abstract
For the first time the volatile fraction of coffee silverskin has been studied focusing on odor-active compounds detected by gas chromatography-olfactometry/flame ionization detector (GC-O/FID) system. Two approaches, namely headspace (HS) analysis by solid-phase microextraction-gas chromatography-mass spectrometry (SPME-GC-MS) and odor-active compounds analysis by gas chromatography-olfactometry/flame ionization detector (GC-O/FID), have been employed to fully characterize the aroma profile of this by-product. This work also provided an entire characterization of the bioactive compounds present in coffee silverskin, including alkaloids, chlorogenic acids, phenolic acids, flavonoids, and secoiridoids, by using different extraction procedures and high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) system. Coffee silverskin was shown to be a good source of caffeine and chlorogenic acids but also of phenolic acids and flavonoids. In addition, the fatty acid composition of the coffee silverskin was established by GC-FID system. The results from this research could contribute to the development of innovative applications and reuses of coffee silverskin, an interesting resource with a high potential to be tapped by the food and nutraceutical sector, and possibly also in the cosmetics and perfumery.
Collapse
Affiliation(s)
- Simone Angeloni
- School of Pharmacy, University of Camerino, via Sant’ Agostino 1, I-62032 Camerino (MC), Italy; (S.A.); (G.S.); (S.V.); (G.C.)
- International Hub for Coffee Research and Innovation, 62020 Belforte del Chienti (MC), Italy
| | - Serena Scortichini
- School of Science and Technology, Chemistry Division, University of Camerino, V. S. Agostino 1, I-62032 Camerino (MC), Italy; (S.S.); (D.F.)
| | - Dennis Fiorini
- School of Science and Technology, Chemistry Division, University of Camerino, V. S. Agostino 1, I-62032 Camerino (MC), Italy; (S.S.); (D.F.)
| | - Gianni Sagratini
- School of Pharmacy, University of Camerino, via Sant’ Agostino 1, I-62032 Camerino (MC), Italy; (S.A.); (G.S.); (S.V.); (G.C.)
| | - Sauro Vittori
- School of Pharmacy, University of Camerino, via Sant’ Agostino 1, I-62032 Camerino (MC), Italy; (S.A.); (G.S.); (S.V.); (G.C.)
| | - Silva D. Neiens
- Leibniz-Institute for Food Systems Biology at the Technical University of Munich, Lise-Meitner-Straße 34, 85354 Freising, Germany; (S.D.N.); (M.S.)
| | - Martin Steinhaus
- Leibniz-Institute for Food Systems Biology at the Technical University of Munich, Lise-Meitner-Straße 34, 85354 Freising, Germany; (S.D.N.); (M.S.)
| | - Valtcho D. Zheljazkov
- Department of Crop and Soil Science, 431A Crop Science Building, 3050 SW Campus Way, Oregon State University, Corvallis, OR 97331, USA;
| | - Filippo Maggi
- School of Pharmacy, University of Camerino, via Sant’ Agostino 1, I-62032 Camerino (MC), Italy; (S.A.); (G.S.); (S.V.); (G.C.)
- Correspondence: ; Tel.: +39-0737404506
| | - Giovanni Caprioli
- School of Pharmacy, University of Camerino, via Sant’ Agostino 1, I-62032 Camerino (MC), Italy; (S.A.); (G.S.); (S.V.); (G.C.)
| |
Collapse
|
37
|
Zhou L, Xiao X, Li M, Zhang Q, Yu M, Zheng J, Deng M. Maternal Exercise Improves High-Fat Diet-Induced Metabolic Abnormalities and Gut Microbiota Profiles in Mouse Dams and Offspring. Front Cell Infect Microbiol 2020; 10:292. [PMID: 32626663 PMCID: PMC7311581 DOI: 10.3389/fcimb.2020.00292] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 05/18/2020] [Indexed: 12/13/2022] Open
Abstract
Early-life overnutrition programs increased risks of metabolic disorders in adulthood. Regular exercise has been widely accepted to be an effective measure to maintain metabolic health. However, the intergenerational effects of maternal exercise and the specific mechanism are largely unclear. Our objective was to investigate whether maternal exercise could alleviate the metabolic disturbances induced by early-life overnutrition in both dams and offspring and to explore the role of gut microbiota in mediating the effects. C57BL/6 female mice were randomly divided into three groups: the control group, which were fed a normal control diet; high-fat group, which received a high-fat diet; and high-fat with exercise intervention group, which was fed a high-fat diet and received a voluntary wheel running training. The diet intervention started from 3 weeks prior to mating and lasted throughout pregnancy and lactation. The exercise intervention was only prior to and during pregnancy. The male offspring got free access to normal chow diet from weaning to 24 weeks of age. Glucose tolerance test and biochemical parameters were detected in dams at weaning and offspring at 8 and 24 weeks of age. Their cecal contents were collected for the 16 s rDNA amplicon sequencing. The results showed that maternal high-fat diet resulted in significant glucose intolerance, insulin resistance, and lipid profiles disorders in both dams and offspring. Maternal exercise markedly improved insulin sensitivity in dams and metabolic disorders in offspring from young into adulthood. The decrease in unfavorable bacteria and the persistent enrichment of short-chain fatty acids-producers from mothers to adult offspring, particularly the genus Odoribacter, were all associated with the improvement of metabolism by maternal exercise. Overall, maternal exercise could significantly mitigate the detrimental effects of a maternal high-fat diet on metabolism in both dams and male offspring. The continuous alterations in gut microbiota might be a critical factor in deciphering the metabolic benefits of maternal exercise, which provides some novel evidence and targets for combating metabolic diseases.
Collapse
Affiliation(s)
- Liyuan Zhou
- Key Laboratory of Endocrinology, Department of Endocrinology, Ministry of Health, Translational Medicine Center, Peking Union Medical College, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Xinhua Xiao
- Key Laboratory of Endocrinology, Department of Endocrinology, Ministry of Health, Translational Medicine Center, Peking Union Medical College, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Ming Li
- Key Laboratory of Endocrinology, Department of Endocrinology, Ministry of Health, Translational Medicine Center, Peking Union Medical College, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Qian Zhang
- Key Laboratory of Endocrinology, Department of Endocrinology, Ministry of Health, Translational Medicine Center, Peking Union Medical College, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Miao Yu
- Key Laboratory of Endocrinology, Department of Endocrinology, Ministry of Health, Translational Medicine Center, Peking Union Medical College, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Jia Zheng
- Key Laboratory of Endocrinology, Department of Endocrinology, Ministry of Health, Translational Medicine Center, Peking Union Medical College, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Mingqun Deng
- Key Laboratory of Endocrinology, Department of Endocrinology, Ministry of Health, Translational Medicine Center, Peking Union Medical College, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
38
|
Cervera-Mata A, Navarro-Alarcón M, Rufián-Henares JÁ, Pastoriza S, Montilla-Gómez J, Delgado G. Phytotoxicity and chelating capacity of spent coffee grounds: Two contrasting faces in its use as soil organic amendment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 717:137247. [PMID: 32092806 DOI: 10.1016/j.scitotenv.2020.137247] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 02/08/2020] [Accepted: 02/09/2020] [Indexed: 06/10/2023]
Abstract
Spent coffee grounds (SCG) are a bioresidue generated in large amounts worldwide, which could be employed as either fresh or transformed organic soil amendment, by means of different treatments in order to improve its agronomic qualities. An in vitro experiment was conducted in order to evaluate the effect of using different bioamendments derived from spent coffee grounds (SCG) on biomass and Zn, Cu and Fe content of lettuces. Application of 7.5% (w/w) fresh SCG, vermicompost, compost, biochars (at 270 and 400 °C; pyrolysis), SCG washed with ethanol and water, and hydrolysed SCG was carried out in an agricultural soil (Cambic Calcisol). In order to compare with conventional agriculture, the addition of NPK fertilizer was also assessed. Only vermicompost and biochar at 400 °C overcome the growth limitation of SCG. However, these treatments diminished Zn, Cu and Fe concentrations in lettuce probably due to the destruction (microbial degradation/thermal treatment) of natural chelating components (polyphenols). Increase in mineral content was observed in those treatments that did not completely eliminate polyphenols. NPK fertilizer gave rise to lettuces with higher biomass but lower micronutrients content. The results lead us to the possible solution for the use of SCG as organic amendment by vermicomposting and biocharization in order to eliminate toxicity.
Collapse
Affiliation(s)
- Ana Cervera-Mata
- Departmento de Edafología y Química Agrícola, Universidad de Granada, Granada, Spain
| | - Miguel Navarro-Alarcón
- Departamento de Nutrición y Bromatología, Instituto de Nutrición y Tecnología de los Alimentos, Centro de Investigación Biomédica, Universidad de Granada, Granada, Spain.
| | - José Ángel Rufián-Henares
- Departamento de Nutrición y Bromatología, Instituto de Nutrición y Tecnología de los Alimentos, Centro de Investigación Biomédica, Universidad de Granada, Granada, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, Universidad de Granada, Spain
| | - Silvia Pastoriza
- Departamento de Nutrición y Bromatología, Instituto de Nutrición y Tecnología de los Alimentos, Centro de Investigación Biomédica, Universidad de Granada, Granada, Spain
| | - Javier Montilla-Gómez
- Departamento de Nutrición y Bromatología, Instituto de Nutrición y Tecnología de los Alimentos, Centro de Investigación Biomédica, Universidad de Granada, Granada, Spain
| | - Gabriel Delgado
- Departmento de Edafología y Química Agrícola, Universidad de Granada, Granada, Spain
| |
Collapse
|
39
|
Mansour A, Mohajeri-Tehrani MR, Karimi S, Sanginabadi M, Poustchi H, Enayati S, Asgarbeik S, Nasrollahzadeh J, Hekmatdoost A. Short term effects of coffee components consumption on gut microbiota in patients with non-alcoholic fatty liver and diabetes: A pilot randomized placebo-controlled, clinical trial. EXCLI JOURNAL 2020; 19:241-250. [PMID: 32256270 PMCID: PMC7105939 DOI: 10.17179/excli2019-2021] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 02/24/2020] [Indexed: 12/11/2022]
Abstract
The aim of this study was to determine the effects of caffeine and chlorogenic acid supplementation on gut microbiota, and metabolic disturbances in patients with NAFLD and diabetes. In this randomized, placebo-controlled, clinical trial, 26 patients with diabetes and NAFLD were randomly assigned to four groups to receive either 200 mg caffeine plus 200 mg chlorogenic acid (CFCA), or 200 mg caffeine plus 200 mg placebo (starch) (CFPL), or 200 mg chlorogenic acid plus 200 mg placebo (CAPL), or 200 mg placebo plus 200 mg placebo (PLPL) for 12 weeks. After 3 months of supplementation, patients in the intervention groups showed a significant decrease in body weight (CFCA group =-3.69 kg; CFPL group=-0.7kg; CAPL group=-0.43kg; PLPL group=0.26 kg) (p=0.004). Weight reduced significantly more in CFCA group compared to all other three groups (p=0.005 for PLPL; p=0.023 for CAPL; and p=0.031 for CFPL). Although the number of gut Bifidobacteria increased in CFCA group, there were no statistically significant differences within and between the groups in any of bacteria numbers. In conclusion, our study showed that 12 weeks consumption of 200 mg/day caffeine plus 200 mg/day chlorogenic acid is effective in reduction of weight in patients with NAFLD and diabetes which might be at least partially through the rise in gut Bifidobacteria. This pilot study shed a light on the pathway of future clinical trials assessing the effects of coffee consumption in these patients. This trial has been registered at clinicaltrial.gov with registration number of NCT02929901.
Collapse
Affiliation(s)
- Asieh Mansour
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology, National Nutrition and Food Technology, Research Institute Shahid Beheshti University of Medical Science, Tehran, Iran
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Mohajeri-Tehrani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Sara Karimi
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology, National Nutrition and Food Technology, Research Institute Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Milad Sanginabadi
- Radiology Department, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Poustchi
- Liver and Pancreatobiliary Diseases Research Center, Digestive Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Samaneh Enayati
- Metabolic Disorders Research Center, Endocrinology and Metabolism Molecular Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeedeh Asgarbeik
- Metabolic Disorders Research Center, Endocrinology and Metabolism Molecular Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Javad Nasrollahzadeh
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology, National Nutrition and Food Technology, Research Institute Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Azita Hekmatdoost
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology, National Nutrition and Food Technology, Research Institute Shahid Beheshti University of Medical Science, Tehran, Iran
| |
Collapse
|
40
|
de Cosío-Barrón ACG, Hernández-Arriaga AM, Campos-Vega R. Spent coffee (Coffea arabica L.) grounds positively modulate indicators of colonic microbial activity. INNOV FOOD SCI EMERG 2020. [DOI: 10.1016/j.ifset.2019.102286] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
41
|
Preparation, characterization, and prebiotic activity of manno-oligosaccharides produced from cassia gum by a glycoside hydrolase family 134 β-mannanase. Food Chem 2020; 309:125709. [DOI: 10.1016/j.foodchem.2019.125709] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 10/11/2019] [Accepted: 10/14/2019] [Indexed: 02/06/2023]
|
42
|
Bhandarkar NS, Mouatt P, Goncalves P, Thomas T, Brown L, Panchal SK. Modulation of gut microbiota by spent coffee grounds attenuates diet-induced metabolic syndrome in rats. FASEB J 2020; 34:4783-4797. [PMID: 32039529 DOI: 10.1096/fj.201902416rr] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 01/22/2020] [Accepted: 01/24/2020] [Indexed: 12/13/2022]
Abstract
Coffee brewing produces spent coffee grounds as waste; few studies have investigated the health benefits of these grounds. This study investigated responses to spent coffee grounds in a diet-induced rat model of metabolic syndrome. Male Wistar rats aged 8-9 weeks were fed either corn starch-rich diet or high-carbohydrate, high-fat diet for 16 weeks, which were supplemented with 5% spent coffee grounds during the last 8 weeks. Rats fed non-supplemented diets were used as controls. High-carbohydrate, high-fat diet-fed rats developed metabolic syndrome including abdominal obesity, impaired glucose tolerance, dyslipidemia, and cardiovascular and liver damage. Body weight, abdominal fat, total body fat mass, systolic blood pressure, and concentrations of plasma triglycerides and non-esterified fatty acids were reduced by spent coffee grounds along with improved glucose tolerance and structure and function of heart and liver. Spent coffee grounds increased the diversity of the gut microbiota and decreased the ratio of Firmicutes to Bacteroidetes. Changes in gut microbiota correlated with the reduction in obesity and improvement in glucose tolerance and systolic blood pressure. These findings indicate that intervention with spent coffee grounds may be useful for managing obesity and metabolic syndrome by altering the gut microbiota, thus increasing the value of this food waste.
Collapse
Affiliation(s)
- Nikhil S Bhandarkar
- Functional Foods Research Group, University of Southern Queensland, Toowoomba, QLD, Australia.,School of Health and Wellbeing, University of Southern Queensland, Toowoomba, QLD, Australia
| | - Peter Mouatt
- Southern Cross Plant Science, Southern Cross University, Lismore, NSW, Australia
| | - Priscila Goncalves
- Centre for Marine Science and Innovation & School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Torsten Thomas
- Centre for Marine Science and Innovation & School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Lindsay Brown
- Functional Foods Research Group, University of Southern Queensland, Toowoomba, QLD, Australia.,School of Health and Wellbeing, University of Southern Queensland, Toowoomba, QLD, Australia
| | - Sunil K Panchal
- Functional Foods Research Group, University of Southern Queensland, Toowoomba, QLD, Australia
| |
Collapse
|
43
|
Bioregional Alterations in Gut Microbiome Contribute to the Plasma Metabolomic Changes in Pigs Fed with Inulin. Microorganisms 2020; 8:microorganisms8010111. [PMID: 31941086 PMCID: PMC7022628 DOI: 10.3390/microorganisms8010111] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/06/2020] [Accepted: 01/10/2020] [Indexed: 12/22/2022] Open
Abstract
Inulin (INU) is a non-digestible carbohydrate, known for its beneficial properties in metabolic disorders. However, whether and how gut microbiota in its regulation contributes to host metabolism has yet to be investigated. We conduct this study to examine the possible associations between the gut microbiota and circulating gut microbiota-host co-metabolites induced by inulin interventions. Plasma and intestinal site samples were collected from the pigs that have consumed inulin diet for 60 days. High-throughput sequencing was adopted for microbial composition, and the GC-TOF-MS-based metabolomics were used to characterize featured plasma metabolites upon inulin intervention. Integrated multi-omics analyses were carried out to establish microbiota-host interaction. Inulin consumption decreased the total cholesterol (p = 0.04) and glucose (p = 0.03) level in serum. Greater β-diversity was observed in the cecum and colon of inulin-fed versus that of control-fed pigs (p < 0.05). No differences were observed in the ileum. In the cecum, 18 genera were altered by inulin, followed by 17 in the colon and 6 in the ileum. Inulin increased propionate, and isobutyrate concentrations but decreased the ratio of acetate to propionate in the cecum, and increased total short fatty acids, valerate, and isobutyrate concentrations in the colon. Metabolomic analysis reveals that indole-3-propionic acid (IPA) was significantly higher, and the branched-chain amino acids (BCAA), L-valine, L-isoleucine, and L-leucine are significantly lower in the inulin groups. Mantel test and integrative analysis revealed associations between plasma metabolites (e.g., IPA, BCAA, L-tryptophan) and inulin-responsive cecal microbial genera. These results indicate that the inulin has regional effects on the intestine microbiome in pigs, with the most pronounced effects occurring in the cecum. Moreover, cecum microbiota plays a pivotal role in the modulation of circulating host metabolites upon inulin intervention.
Collapse
|
44
|
Liu Y, Chen J, Tan Q, Deng X, Tsai PJ, Chen PH, Ye M, Guo J, Su Z. Nondigestible Oligosaccharides with Anti-Obesity Effects. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:4-16. [PMID: 31829005 DOI: 10.1021/acs.jafc.9b06079] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Obesity has an important influence on health conditions, causing a multitude of complications and comorbidities, and drug therapy is considered to be one of the treatment strategies. Nowadays, there is increasing interest in the study of intestinal microbiota regulation of obesity; also, an increasing number of agricultural and sideline products have been found to have anti-obesity potential. In the present review, we summarize an overview of current known and potential anti-obesity oligosaccharides and their molecular structures. We describe their anti-obesity potential activity and the molecular structure associated with this activity, the regulation of intestinal microbiota composition and its mechanism of action, including regulation of the short-chain fatty acid (SCFA) pathway and altering bile acid (BA) pathway. This review will provide new ideas for us to develop new anti-obesity functional foods.
Collapse
Affiliation(s)
- Yongjian Liu
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs , Guangdong Pharmaceutical University , Guangzhou 510006 , China
- Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine , Guangdong Pharmaceutical University , Guangzhou 510006 , China
| | - Jiajia Chen
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs , Guangdong Pharmaceutical University , Guangzhou 510006 , China
- Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine , Guangdong Pharmaceutical University , Guangzhou 510006 , China
| | - Qiuhua Tan
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs , Guangdong Pharmaceutical University , Guangzhou 510006 , China
- Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine , Guangdong Pharmaceutical University , Guangzhou 510006 , China
| | - Xiaoyi Deng
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs , Guangdong Pharmaceutical University , Guangzhou 510006 , China
- Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine , Guangdong Pharmaceutical University , Guangzhou 510006 , China
| | - Ping-Ju Tsai
- King-Prebiotics Biotechnology (TW) CO., LTD. , Linkou District, New Taipei City 24446 , Taiwan China
| | - Pei-Hsuan Chen
- King-Prebiotics Biotechnology (TW) CO., LTD. , Linkou District, New Taipei City 24446 , Taiwan China
| | - Manxiang Ye
- New Francisco (Yunfu City) Biotechnology CO., LTD. , Swan-kan-chiau Industrial District, Kaofong Village Yunfu City 527343 , Guangdong , China
| | - Jiao Guo
- Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine , Guangdong Pharmaceutical University , Guangzhou 510006 , China
| | - Zhengquan Su
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs , Guangdong Pharmaceutical University , Guangzhou 510006 , China
| |
Collapse
|
45
|
Zhou L, Xiao X, Zhang Q, Zheng J, Li M, Wang X, Deng M, Zhai X, Liu J. Gut microbiota might be a crucial factor in deciphering the metabolic benefits of perinatal genistein consumption in dams and adult female offspring. Food Funct 2019; 10:4505-4521. [PMID: 31348478 DOI: 10.1039/c9fo01046g] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
Adverse early-life exposures program an increased risk of chronic metabolic diseases in adulthood. However, the effects of genistein consumption in early life on metabolic health are unclear. Our objective was to investigate whether perinatal genistein intake could mitigate the deleterious effects of a high-fat diet (HF) on metabolism in dams and female offspring and to explore the role of the gut microbiota in mediating the transgenerational effects. C57BL/6 female mice were fed a HF, HF with genistein (0.6 g kg-1 diet) or normal control diet for 3 weeks before mating and throughout pregnancy and lactation. The offspring had free access to normal diet from weaning to 24 weeks of age. A glucose tolerance test was performed and the levels of serum insulin and lipid were measured. The cecal contents were collected for 16s rDNA sequencing. The results showed that perinatal genistein intake could not only significantly reduce blood glucose levels, insulin and free fatty acids (FFA) in dams, but also improve glucose tolerance, insulin sensitivity and serum lipid profiles in adult female offspring. Significant enrichment of short-chain fatty acid (mainly butyrate)-producing bacteria might play crucial roles in deciphering the metabolic benefits of perinatal genistein intake in dams. The obvious decrease in harmful microorganisms and increase in Erysipelotrichaceae_incertae_sedis were associated with the protective effects of maternal genistein intake on female offspring. In addition, Bifidobacterium might be an important factor for deciphering the metabolic improvement in both dams and female offspring by dietary genistein. Overall, perinatal genistein intake attenuated the harmful effects of HF on metabolism in both dams and female offspring, and the protective effects were associated with the alterations in the gut microbiota, which provides new evidence and targets for mitigating the poor effects of adverse early-life exposures on metabolic health in later life.
Collapse
Affiliation(s)
- Liyuan Zhou
- Key Laboratory of Endocrinology, Translational Medicine Center, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Wang WW, Jia HJ, Zhang HJ, Wang J, Lv HY, Wu SG, Qi GH. Supplemental Plant Extracts From Flos lonicerae in Combination With Baikal skullcap Attenuate Intestinal Disruption and Modulate Gut Microbiota in Laying Hens Challenged by Salmonella pullorum. Front Microbiol 2019; 10:1681. [PMID: 31396190 PMCID: PMC6668501 DOI: 10.3389/fmicb.2019.01681] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 07/08/2019] [Indexed: 12/12/2022] Open
Abstract
Dietary inclusions of baicalin and chlorogenic acid were beneficial for intestinal health in pigs. Nevertheless, it is unknown whether these plant-derived products had protection for intestine against bacterial challenge in chickens. This study was aimed at evaluating the potential mitigating effects of plant extracts (PE) from Flos lonicerae combined with Baikal skullcap (the active components are chlorogenic acid and baicalin) on intestinal disruption and dysbacteriosis induced by Salmonella pullorum in laying hens. A total of 216 41-week-old layers were randomly divided into 3 groups (6 replicates per group): negative control (NC), S. pullorum-infected positive control (PC), and the S. pullorum-infected group with supplementation of PE at 1000 mg/kg. All birds except those in NC were challenged with S. pullorum at the end of 4 weeks of the experiment. S. pullorum challenge impaired (P < 0.05) the production performance (egg production, feed intake, and feed efficiency) of laying hens, increased (P < 0.05) serum endotoxin content and frequency of Salmonella-positive organs, as well as up-regulated (P < 0.05) ileal expression of pro-inflammatory cytokines including IFNG, TNFA, IL8, and IL1B, whereas PE addition reversed (P < 0.05) these changes and increased (P < 0.05) ileal IL10 expression. Supplemental PE moderated ileal microbiota dysbiosis in challenged birds, characterized by a reduced abundance of Firmicutes along with increased abundances of Bacteroidetes (Bacteroides), Deferribacteres and several butyrate-producers such as Prevotellaceae, Faecalibacterium, Blautia, Butyricicoccus, Lachnoclostridium, and Olsenella, which may assist with energy harvesting and boost anti-inflammatory capacity of host. The decreased abundance of Firmicutes with the increased abundance of Bacteroidetes caused by PE addition had positive correlations with the decreased expression of ileal pro-inflammatory cytokines. The increased abundances of Bacteroidetes (Bacteroides) and Prevotellaceae following PE addition were also positively correlated with the improvement of performance (egg production and feed intake) of laying hens. Collectively, supplemental PE from Flos lonicerae in combination with Baikal skullcap alleviated S. pullorum-induced intestinal disruption and performance impairment in laying hens, which could be at least partially responsible by the modulation of gut microbial composition.
Collapse
Affiliation(s)
- Wei-wei Wang
- Risk Assessment Laboratory of Feed Derived Factors to Animal Product Quality Safety of Ministry of Agriculture and Rural Affairs, National Engineering Research Center of Biological Feed, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hong-jie Jia
- Risk Assessment Laboratory of Feed Derived Factors to Animal Product Quality Safety of Ministry of Agriculture and Rural Affairs, National Engineering Research Center of Biological Feed, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hai-jun Zhang
- Risk Assessment Laboratory of Feed Derived Factors to Animal Product Quality Safety of Ministry of Agriculture and Rural Affairs, National Engineering Research Center of Biological Feed, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jing Wang
- Risk Assessment Laboratory of Feed Derived Factors to Animal Product Quality Safety of Ministry of Agriculture and Rural Affairs, National Engineering Research Center of Biological Feed, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | | | - Shu-geng Wu
- Risk Assessment Laboratory of Feed Derived Factors to Animal Product Quality Safety of Ministry of Agriculture and Rural Affairs, National Engineering Research Center of Biological Feed, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Guang-hai Qi
- Risk Assessment Laboratory of Feed Derived Factors to Animal Product Quality Safety of Ministry of Agriculture and Rural Affairs, National Engineering Research Center of Biological Feed, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|