1
|
Semmler F, Regis Belisário-Ferrari M, Kulosa M, Kaysser L. The Metabolic Potential of the Human Lung Microbiome. Microorganisms 2024; 12:1448. [PMID: 39065215 PMCID: PMC11278768 DOI: 10.3390/microorganisms12071448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/05/2024] [Accepted: 07/13/2024] [Indexed: 07/28/2024] Open
Abstract
The human lung microbiome remains largely underexplored, despite its potential implications in the pharmacokinetics of inhaled drugs and its involvement in lung diseases. Interactions within these bacterial communities and with the host are complex processes which often involve microbial small molecules. In this study, we employed a computational approach to describe the metabolic potential of the human lung microbiome. By utilizing antiSMASH and BiG-SCAPE software, we identified 1831 biosynthetic gene clusters for the production of specialized metabolites in a carefully compiled genome database of lung-associated bacteria and fungi. It was shown that RiPPs represent the largest class of natural products within the bacteriome, while NRPs constitute the largest class of natural products in the lung mycobiome. All predicted BGCs were further categorized into 767 gene cluster families, and a subsequent network analysis highlighted that these families are widely distributed and contain many uncharacterized members. Moreover, in-depth annotation allowed the assignment of certain gene clusters to putative lung-specific functions within the microbiome, such as osmoadaptation or surfactant synthesis. This study establishes the lung microbiome as a prolific source for secondary metabolites and lays the groundwork for detailed investigation of this unique environment.
Collapse
Affiliation(s)
| | | | | | - Leonard Kaysser
- Department of Pharmaceutical Biology, Institute for Drug Discovery, University of Leipzig, 04317 Leipzig, Germany; (F.S.); (M.R.B.-F.); (M.K.)
| |
Collapse
|
2
|
Mayer AMS, Mayer VA, Swanson-Mungerson M, Pierce ML, Rodríguez AD, Nakamura F, Taglialatela-Scafati O. Marine Pharmacology in 2019-2021: Marine Compounds with Antibacterial, Antidiabetic, Antifungal, Anti-Inflammatory, Antiprotozoal, Antituberculosis and Antiviral Activities; Affecting the Immune and Nervous Systems, and Other Miscellaneous Mechanisms of Action. Mar Drugs 2024; 22:309. [PMID: 39057418 PMCID: PMC11278370 DOI: 10.3390/md22070309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/22/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024] Open
Abstract
The current 2019-2021 marine pharmacology literature review provides a continuation of previous reviews covering the period 1998 to 2018. Preclinical marine pharmacology research during 2019-2021 was published by researchers in 42 countries and contributed novel mechanism-of-action pharmacology for 171 structurally characterized marine compounds. The peer-reviewed marine natural product pharmacology literature reported antibacterial, antifungal, antiprotozoal, antituberculosis, and antiviral mechanism-of-action studies for 49 compounds, 87 compounds with antidiabetic and anti-inflammatory activities that also affected the immune and nervous system, while another group of 51 compounds demonstrated novel miscellaneous mechanisms of action, which upon further investigation, may contribute to several pharmacological classes. Thus, in 2019-2021, a very active preclinical marine natural product pharmacology pipeline provided novel mechanisms of action as well as new lead chemistry for the clinical marine pharmaceutical pipeline targeting the therapy of several disease categories.
Collapse
Affiliation(s)
- Alejandro M. S. Mayer
- Department of Pharmacology, College of Graduate Studies, Midwestern University, 555 31st Street, Downers Grove, IL 60515, USA;
| | - Veronica A. Mayer
- Department of Nursing Education, School of Nursing, Aurora University, 347 S. Gladstone Ave., Aurora, IL 60506, USA;
| | - Michelle Swanson-Mungerson
- Department of Microbiology and Immunology, College of Graduate Studies, Midwestern University, 555 31st Street, Downers Grove, IL 60515, USA;
| | - Marsha L. Pierce
- Department of Pharmacology, College of Graduate Studies, Midwestern University, 555 31st Street, Downers Grove, IL 60515, USA;
| | - Abimael D. Rodríguez
- Molecular Sciences Research Center, University of Puerto Rico, 1390 Ponce de León Avenue, San Juan, PR 00926, USA;
| | - Fumiaki Nakamura
- Research Institute for Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku 169-8555, Tokyo, Japan;
| | | |
Collapse
|
3
|
Liu X, Feng Z, Zhang W, Yao Q, Zhu H. Exogenous myristate promotes the colonization of arbuscular mycorrhizal fungi in tomato. FRONTIERS IN PLANT SCIENCE 2023; 14:1250684. [PMID: 38023845 PMCID: PMC10652774 DOI: 10.3389/fpls.2023.1250684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023]
Abstract
Arbuscular mycorrhizal fungi (AMF) can establish symbiotic associations with the roots of most terrestrial plants, thereby improving the tolerance of the host plants to biotic and abiotic stresses. Although AMF cannot synthesize lipids de novo, they can obtain lipids from the root cells for their growth and development. A recent study reveals that AMF can directly take up myristate (C14:0 lipid) from the environment and produce a large amount of hyphae in asymbiotic status; however, the effect of environmental lipids on AM symbiosis is still unclear. In this study, we inoculated tomato (Solanum lycopersicum) with AMF in an in vitro dual culture system and a sand culture system, and then applied exogenous myristate to the substrate, in order to explore the effect of exogenous lipids on the mycorrhizal colonization of AMF. We investigated the hyphae growth, development, and colonization of AMF, and examined the gene expression involved in phosphate transport, lipid biosynthesis, and transport. Results indicate that exogenous lipids significantly stimulated the growth and branching of hyphae, and significantly increased the number of hyphopodia and mycorrhizal colonization of AMF, with arbuscular abundance and intraradical spores or vesicles being the most promoted. In contrast, exogenous myristate decreased the growth range and host tropism of the germ tubes, and largely inhibited the exchange of nutrition between symbionts. As a result, exogenous myristate did not affect the plant growth. This study suggests that lipids promote mycorrhizal colonization by enhancing the growth and development of AMF hyphae and increasing their contact opportunities with plant roots. To the best of our knowledge, this is the first report that shows that lipids promote the colonization of AMF. Our study highlights the importance of better understanding the roles of environmental lipids in the establishment and maintenance of AM symbiosis and, thus, in agricultural production.
Collapse
Affiliation(s)
- Xiaodi Liu
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Zengwei Feng
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Wei Zhang
- College of Horticulture, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Guangdong Engineering Research Center for Litchi, South China Agricultural University, Guangzhou, China
| | - Qing Yao
- College of Horticulture, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Guangdong Engineering Research Center for Litchi, South China Agricultural University, Guangzhou, China
| | - Honghui Zhu
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| |
Collapse
|
4
|
Qi L, Du HF, Sun TT, Li L, Zhang YH, Liu YF, Cao F. Natural products from marine fungi as a source against agricultural pathogenic fungi. Appl Microbiol Biotechnol 2023:10.1007/s00253-023-12657-3. [PMID: 37401997 DOI: 10.1007/s00253-023-12657-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/15/2023] [Accepted: 06/19/2023] [Indexed: 07/05/2023]
Abstract
There are many kinds of agricultural pathogenic fungi, which may belong to pathogenic fungi in different species, such as Fusarium, Alternaria, Colletotrichum, Phytophthora, and other agricultural pathogens. Pathogenic fungi from different sources are widely distributed in agriculture, which threaten the lives of crops around the world and caused great damage to agricultural production and economic benefits. Due to the particularity of the marine environment, marine-derived fungi could produce natural compounds with unique structures, rich diversities, and significant bioactivities. Since marine natural products with different structural characteristics could inhibit different kinds of agricultural pathogenic fungi, secondary metabolites with antifungal activity could be used as lead compounds against agricultural pathogenic fungi. In order to summarize the structural characteristics of marine natural products against agricultural pathogenic fungi, this review systematically overview the activities against agricultural pathogenic fungi of 198 secondary metabolites from different marine fungal sources. A total of 92 references published from 1998 to 2022 were cited. KEY POINTS: • Pathogenic fungi, which could cause damage to agriculture, were classified. • Structurally diverse antifungal compounds from marine-derived fungi were summarized. • The sources and distributions of these bioactive metabolites were analyzed.
Collapse
Affiliation(s)
- Lu Qi
- College of Pharmaceutical Sciences, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnostics of Education Ministry of China, Baoding, 071002, China
| | - Hui-Fang Du
- College of Pharmaceutical Sciences, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnostics of Education Ministry of China, Baoding, 071002, China
| | - Tian-Tian Sun
- College of Pharmaceutical Sciences, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnostics of Education Ministry of China, Baoding, 071002, China
| | - Lei Li
- College of Pharmaceutical Sciences, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnostics of Education Ministry of China, Baoding, 071002, China
| | - Ya-Hui Zhang
- College of Pharmaceutical Sciences, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnostics of Education Ministry of China, Baoding, 071002, China
| | - Yun-Feng Liu
- College of Life Sciences, Baoding, 071002, China.
| | - Fei Cao
- College of Pharmaceutical Sciences, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnostics of Education Ministry of China, Baoding, 071002, China.
| |
Collapse
|
5
|
Gao X, Menche D. Sequential Methods for Di- and Tetrahydro-Pyranone Synthesis Enable Concise Access to Tuscolid δ-Lactone. Chem Asian J 2023; 18:e202201193. [PMID: 36541601 PMCID: PMC10108315 DOI: 10.1002/asia.202201193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/21/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022]
Abstract
Two novel tandem sequences for stereoselective synthesis of elaborate hydropyranones are reported. The first one relies on an aldol-lactonization procedure of a chiral enolate with an unprotected aldehyde, while the second one is based on a challenging dienolate ketone addition with concomitant cyclization and substrate controlled reduction. Both approaches proceed with high efficiency and stereoselectivity and enable very short accesses to the authentic pyranone subunit of the complex polyketide tuscolid and will be important to develop a first total synthesis of this structurally unique macrolide and to evaluate the tuscolid-tuscoron rearrangement.
Collapse
Affiliation(s)
- Xin Gao
- Kekulé-Institut für Organische Chemie und Biochemie, Universität Bonn, Gerhard-Domagk-Str. 1, 53121, Bonn, Germany
| | - Dirk Menche
- Kekulé-Institut für Organische Chemie und Biochemie, Universität Bonn, Gerhard-Domagk-Str. 1, 53121, Bonn, Germany
| |
Collapse
|
6
|
Liu SZ, Xu GX, He FM, Zhang WB, Wu Z, Li MY, Tang XX, Qiu YK. New Sorbicillinoids with Tea Pathogenic Fungus Inhibitory Effect from Marine-Derived Fungus Hypocrea jecorina H8. Mar Drugs 2022; 20:md20030213. [PMID: 35323512 PMCID: PMC8955853 DOI: 10.3390/md20030213] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/11/2022] [Accepted: 03/12/2022] [Indexed: 02/04/2023] Open
Abstract
Four new dimeric sorbicillinoids (1–3 and 5) and a new monomeric sorbicillinoid (4) as well as six known analogs (6–11) were purified from the fungal strain Hypocrea jecorina H8, which was obtained from mangrove sediment, and showed potent inhibitory activity against the tea pathogenic fungus Pestalotiopsis theae (P. theae). The planar structures of 1–5 were assigned by analyses of their UV, IR, HR-ESI-MS, and NMR spectroscopic data. All the compounds were evaluated for growth inhibition of tea pathogenic fungus P. theae. Compounds 5, 6, 8, 9, and 10 exhibited more potent inhibitory activities compared with the positive control hexaconazole with an ED50 of 24.25 ± 1.57 µg/mL. The ED50 values of compounds 5, 6, 8, 9, and 10 were 9.13 ± 1.25, 2.04 ± 1.24, 18.22 ± 1.29, 1.83 ± 1.37, and 4.68 ± 1.44 µg/mL, respectively. Additionally, the effects of these compounds on zebrafish embryo development were also evaluated. Except for compounds 5 and 8, which imparted toxic effects on zebrafish even at 0.625 μM, the other isolated compounds did not exhibit significant toxicity to zebrafish eggs, embryos, or larvae. Taken together, sorbicillinoid derivatives (6, 9, and 10) from H. jecorina H8 displayed low toxicity and high anti-tea pathogenic fungus potential.
Collapse
Affiliation(s)
- Shun-Zhi Liu
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, South Xiang-An Road, Xiamen 361102, China; (S.-Z.L.); (F.-M.H.); (M.-Y.L.)
| | - Guang-Xin Xu
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography State, Ministry of Natural Resources, Da-Xue Road, Xiamen 361005, China; (G.-X.X.); (Z.W.)
| | - Feng-Ming He
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, South Xiang-An Road, Xiamen 361102, China; (S.-Z.L.); (F.-M.H.); (M.-Y.L.)
| | - Wei-Bo Zhang
- State Key Laboratory of Marine Life, Ocean University of China, Yu-Shan Road, Qingdao 266100, China;
| | - Zhen Wu
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography State, Ministry of Natural Resources, Da-Xue Road, Xiamen 361005, China; (G.-X.X.); (Z.W.)
| | - Ming-Yu Li
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, South Xiang-An Road, Xiamen 361102, China; (S.-Z.L.); (F.-M.H.); (M.-Y.L.)
| | - Xi-Xiang Tang
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography State, Ministry of Natural Resources, Da-Xue Road, Xiamen 361005, China; (G.-X.X.); (Z.W.)
- Correspondence: (X.-X.T.); (Y.-K.Q.); Tel./Fax: +86-592-2189868 (Y.-K.Q.)
| | - Ying-Kun Qiu
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, South Xiang-An Road, Xiamen 361102, China; (S.-Z.L.); (F.-M.H.); (M.-Y.L.)
- Correspondence: (X.-X.T.); (Y.-K.Q.); Tel./Fax: +86-592-2189868 (Y.-K.Q.)
| |
Collapse
|
7
|
Li K, Chen S, Pang X, Cai J, Zhang X, Liu Y, Zhu Y, Zhou X. Natural products from mangrove sediments-derived microbes: Structural diversity, bioactivities, biosynthesis, and total synthesis. Eur J Med Chem 2022; 230:114117. [PMID: 35063731 DOI: 10.1016/j.ejmech.2022.114117] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/28/2021] [Accepted: 01/09/2022] [Indexed: 12/25/2022]
Abstract
The mangrove forests are a complex ecosystem, and the microbial communities in mangrove sediments play a critical role in the biogeochemical cycles of mangrove ecosystems. Mangrove sediments-derived microbes (MSM), as a rich reservoir of natural product diversity, could be utilized in the exploration of new antibiotics or drugs. To understand the structural diversity and bioactivities of the metabolites of MSM, this review for the first time provides a comprehensive overview of 519 natural products isolated from MSM with their bioactivities, up to 2021. Most of the structural types of these compounds are alkaloids, lactones, xanthones, quinones, terpenoids, and steroids. Among them, 210 compounds are obtained from bacteria, most of which are from Streptomyces, while 309 compounds are from fungus, especially genus Aspergillus and Penicillium. The pharmacological mechanisms of some representative lead compounds are well studied, revealing that they have important medicinal potentials, such as piericidins with anti-renal cell cancer effects, azalomycins with anti-MRSA activities, and ophiobolins as antineoplastic agents. The biosynthetic pathways of representative natural products from MSM have also been summarized, especially ikarugamycin, piericidins, divergolides, and azalomycins. In addition, the total synthetic strategies of representative secondary metabolites from MSM are also reviewed, such as piericidin A and borrelidin. This review provides an important reference for the research status of natural products isolated from MSM and the lead compounds worthy of further development, and reveals that MSM have important medicinal values and are worthy of further development.
Collapse
Affiliation(s)
- Kunlong Li
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; Department of Emergency Medicine, Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Chest Pain Center, Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Siqiang Chen
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
| | - Xiaoyan Pang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Jian Cai
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Xinya Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Yonghong Liu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
| | - Yiguang Zhu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; Sanya Institute of Oceanology, SCSIO, Sanya, 572000, China.
| | - Xuefeng Zhou
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China.
| |
Collapse
|
8
|
Tang J, Huang X, Cao MH, Wang Z, Yu Z, Yan Y, Huang JP, Wang L, Huang SX. Mono-/Bis-Alkenoic Acid Derivatives From an Endophytic Fungus Scopulariopsis candelabrum and Their Antifungal Activity. Front Chem 2022; 9:812564. [PMID: 35087795 PMCID: PMC8787343 DOI: 10.3389/fchem.2021.812564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 12/10/2021] [Indexed: 11/13/2022] Open
Abstract
During a screening for antifungal secondary metabolites, six new mono-/bis-alkenoic acid derivatives (2–7) and one known alkenoic acid derivative (1) were isolated from an endophytic fungi Scopulariopsis candelabrum. Their chemical structures were identified by 1H-NMR, 13C-NMR, 2D NMR, and high-resolution mass spectrometry, as well as comparisons with previously reported literatures. Among them, fusariumesters C‒F (2–5) are bis-alkenoic acid derivatives dimerized by an ester bond, while acetylfusaridioic acid A (6) and fusaridioic acid D (7) are alkenoic acid monomers. All the isolates were submitted to an antifungal assay against Candida albicans and the corn pathogen Exserohilum turcicum using the filter paper agar diffusion method. As a result, only compound 1 decorating with β-lactone ring turned out to be active against these two tested fungi. The broth microdilution assay against Candida albicans showed the minimum inhibitory concentration (MIC) value of 1 to be 20 μg/ml, while the minimum inhibitory concentration value of the positive control (naystatin) was 10 μg/ml. And the half maximal inhibitory concentration (IC50) value (21.23 μg/ml) of 1 against Exserohilum turcicum was determined by analyzing its inhibition effect on the mycelial growth, using cycloheximide (IC50 = 46.70 μg/ml) as the positive control.
Collapse
Affiliation(s)
- Jun Tang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, CAS Center for Excellence in Molecular Plant Sciences, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine, Hunan University of Medicine, Huaihua, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Xueshuang Huang
- Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine, Hunan University of Medicine, Huaihua, China
| | - Ming-Hang Cao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, CAS Center for Excellence in Molecular Plant Sciences, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Zhiyan Wang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, CAS Center for Excellence in Molecular Plant Sciences, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Zhiyin Yu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yijun Yan
- State Key Laboratory of Phytochemistry and Plant Resources in West China, CAS Center for Excellence in Molecular Plant Sciences, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Jian-Ping Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Li Wang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, CAS Center for Excellence in Molecular Plant Sciences, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Li Wang, ; Sheng-Xiong Huang,
| | - Sheng-Xiong Huang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, CAS Center for Excellence in Molecular Plant Sciences, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine, Hunan University of Medicine, Huaihua, China
- *Correspondence: Li Wang, ; Sheng-Xiong Huang,
| |
Collapse
|
9
|
Chen S, Cai R, Liu Z, Cui H, She Z. Secondary metabolites from mangrove-associated fungi: source, chemistry and bioactivities. Nat Prod Rep 2021; 39:560-595. [PMID: 34623363 DOI: 10.1039/d1np00041a] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Covering 1989 to 2020The mangrove forests are a complex ecosystem occurring at tropical and subtropical intertidal estuarine zones and nourish a diverse group of microorganisms including fungi, actinomycetes, bacteria, cyanobacteria, algae, and protozoa. Among the mangrove microbial community, mangrove associated fungi, as the second-largest ecological group of the marine fungi, not only play an essential role in creating and maintaining this biosphere but also represent a rich source of structurally unique and diverse bioactive secondary metabolites, attracting significant attention of organic chemists and pharmacologists. This review summarizes the discovery relating to the source and characteristics of metabolic products isolated from mangrove-associated fungi over the past thirty years (1989-2020). Its emphasis included 1387 new metabolites from 451 papers, focusing on bioactivity and the unique chemical diversity of these natural products.
Collapse
Affiliation(s)
- Senhua Chen
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China. .,School of Marine Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Runlin Cai
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China. .,College of Science, Shantou University, Shantou 515063, China
| | - Zhaoming Liu
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China. .,State Key Laboratory of Applied Microbiology Southern China, Guangdong Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Hui Cui
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China. .,School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Zhigang She
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
10
|
Kanaida M, Kimishima A, Eguchi S, Iwatsuki M, Watanabe Y, Honsho M, Hirose T, Noguchi Y, Nonaka K, Sennari G, Matsui H, Kaito C, Hanaki H, Asami Y, Sunazuka T. Total Syntheses and Chemical Biology Studies of Hymeglusin and Fusarilactone A, Novel Circumventors of β-Lactam Drug Resistance in Methicillin-Resistant Staphylococcus aureus. ChemMedChem 2021; 16:2106-2111. [PMID: 33783142 DOI: 10.1002/cmdc.202100219] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Indexed: 11/10/2022]
Abstract
Hymeglusin, a previously known eukaryotic hydroxymethylglutaryl-CoA (HMG-CoA) synthase inhibitor, was identified as circumventing the β-lactam drug resistance in methicillin-resistant Staphylococcus aureus (MRSA). We describe the concise total syntheses of a series of natural products, which enabled determination of the absolute configuration of fusarilactone A and provided structure-activity relationship information. Based on previous reports, we speculated that the target protein of this circumventing effect may be MRSA bacterial HMG-CoA synthase (mvaS). We found that this enzyme was dose-dependently inhibited by hymeglusin. Furthermore, overexpression of the MRSA mvaS gene and site-directed mutagenesis studies suggested its binding site and the mechanism of action.
Collapse
Affiliation(s)
- Masahiro Kanaida
- Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane Minato-ku, Tokyo, 108-8641, Japan
| | - Aoi Kimishima
- Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane Minato-ku, Tokyo, 108-8641, Japan
- Ōmura Satoshi Memorial Institute, Kitasato University, 5-9-1 Shirokane Minato-ku, Tokyo, 108-8641, Japan
| | - Shuhei Eguchi
- Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane Minato-ku, Tokyo, 108-8641, Japan
| | - Masato Iwatsuki
- Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane Minato-ku, Tokyo, 108-8641, Japan
- Ōmura Satoshi Memorial Institute, Kitasato University, 5-9-1 Shirokane Minato-ku, Tokyo, 108-8641, Japan
| | - Yoshihiro Watanabe
- Ōmura Satoshi Memorial Institute, Kitasato University, 5-9-1 Shirokane Minato-ku, Tokyo, 108-8641, Japan
| | - Masako Honsho
- Ōmura Satoshi Memorial Institute, Kitasato University, 5-9-1 Shirokane Minato-ku, Tokyo, 108-8641, Japan
| | - Tomoyasu Hirose
- Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane Minato-ku, Tokyo, 108-8641, Japan
- Ōmura Satoshi Memorial Institute, Kitasato University, 5-9-1 Shirokane Minato-ku, Tokyo, 108-8641, Japan
| | - Yoshihiko Noguchi
- Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane Minato-ku, Tokyo, 108-8641, Japan
- Ōmura Satoshi Memorial Institute, Kitasato University, 5-9-1 Shirokane Minato-ku, Tokyo, 108-8641, Japan
| | - Kenichi Nonaka
- Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane Minato-ku, Tokyo, 108-8641, Japan
- Ōmura Satoshi Memorial Institute, Kitasato University, 5-9-1 Shirokane Minato-ku, Tokyo, 108-8641, Japan
| | - Goh Sennari
- Ōmura Satoshi Memorial Institute, Kitasato University, 5-9-1 Shirokane Minato-ku, Tokyo, 108-8641, Japan
| | - Hidehito Matsui
- Ōmura Satoshi Memorial Institute, Kitasato University, 5-9-1 Shirokane Minato-ku, Tokyo, 108-8641, Japan
| | - Chikara Kaito
- Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama, 700-8530, Japan
| | - Hideaki Hanaki
- Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane Minato-ku, Tokyo, 108-8641, Japan
- Ōmura Satoshi Memorial Institute, Kitasato University, 5-9-1 Shirokane Minato-ku, Tokyo, 108-8641, Japan
| | - Yukihiro Asami
- Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane Minato-ku, Tokyo, 108-8641, Japan
- Ōmura Satoshi Memorial Institute, Kitasato University, 5-9-1 Shirokane Minato-ku, Tokyo, 108-8641, Japan
| | - Toshiaki Sunazuka
- Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane Minato-ku, Tokyo, 108-8641, Japan
- Ōmura Satoshi Memorial Institute, Kitasato University, 5-9-1 Shirokane Minato-ku, Tokyo, 108-8641, Japan
| |
Collapse
|
11
|
Li B, Yang Y, Cai J, Liu X, Shi T, Li C, Chen Y, Xu P, Huang G. Genomic Characteristics and Comparative Genomics Analysis of Two Chinese Corynespora cassiicola Strains Causing Corynespora Leaf Fall (CLF) Disease. J Fungi (Basel) 2021; 7:485. [PMID: 34208763 PMCID: PMC8235470 DOI: 10.3390/jof7060485] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/08/2021] [Accepted: 06/08/2021] [Indexed: 01/08/2023] Open
Abstract
Rubber tree Corynespora leaf fall (CLF) disease, caused by the fungus Corynespora cassiicola, is one of the most damaging diseases in rubber tree plantations in Asia and Africa, and this disease also threatens rubber nurseries and young rubber plantations in China. C. cassiicola isolates display high genetic diversity, and virulence profiles vary significantly depending on cultivar. Although one phytotoxin (cassicolin) has been identified, it cannot fully explain the diversity in pathogenicity between C. cassiicola species, and some virulent C. cassiicola strains do not contain the cassiicolin gene. In the present study, we report high-quality gapless genome sequences, obtained using short-read sequencing and single-molecule long-read sequencing, of two Chinese C. cassiicola virulent strains. Comparative genomics of gene families in these two stains and a virulent CPP strain from the Philippines showed that all three strains experienced different selective pressures, and metabolism-related gene families vary between the strains. Secreted protein analysis indicated that the quantities of secreted cell wall-degrading enzymes were correlated with pathogenesis, and the most aggressive CCP strain (cassiicolin toxin type 1) encoded 27.34% and 39.74% more secreted carbohydrate-active enzymes (CAZymes) than Chinese strains YN49 and CC01, respectively, both of which can only infect rubber tree saplings. The results of antiSMASH analysis showed that all three strains encode ~60 secondary metabolite biosynthesis gene clusters (SM BGCs). Phylogenomic and domain structure analyses of core synthesis genes, together with synteny analysis of polyketide synthase (PKS) and non-ribosomal peptide synthetase (NRPS) gene clusters, revealed diversity in the distribution of SM BGCs between strains, as well as SM polymorphisms, which may play an important role in pathogenic progress. The results expand our understanding of the C. cassiicola genome. Further comparative genomic analysis indicates that secreted CAZymes and SMs may influence pathogenicity in rubber tree plantations. The findings facilitate future exploration of the molecular pathogenic mechanism of C. cassiicola.
Collapse
Affiliation(s)
- Boxun Li
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, 4 Xueyuan Road, Haikou 571101, China; (B.L.); (Y.Y.); (J.C.); (X.L.); (T.S.); (C.L.); (Y.C.)
- College of Grassland Agriculture Science and Technology, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, China
| | - Yang Yang
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, 4 Xueyuan Road, Haikou 571101, China; (B.L.); (Y.Y.); (J.C.); (X.L.); (T.S.); (C.L.); (Y.C.)
- College of Grassland Agriculture Science and Technology, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, China
| | - Jimiao Cai
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, 4 Xueyuan Road, Haikou 571101, China; (B.L.); (Y.Y.); (J.C.); (X.L.); (T.S.); (C.L.); (Y.C.)
- College of Grassland Agriculture Science and Technology, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, China
| | - Xianbao Liu
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, 4 Xueyuan Road, Haikou 571101, China; (B.L.); (Y.Y.); (J.C.); (X.L.); (T.S.); (C.L.); (Y.C.)
- College of Grassland Agriculture Science and Technology, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, China
| | - Tao Shi
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, 4 Xueyuan Road, Haikou 571101, China; (B.L.); (Y.Y.); (J.C.); (X.L.); (T.S.); (C.L.); (Y.C.)
- College of Grassland Agriculture Science and Technology, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, China
| | - Chaoping Li
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, 4 Xueyuan Road, Haikou 571101, China; (B.L.); (Y.Y.); (J.C.); (X.L.); (T.S.); (C.L.); (Y.C.)
- College of Grassland Agriculture Science and Technology, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, China
| | - Yipeng Chen
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, 4 Xueyuan Road, Haikou 571101, China; (B.L.); (Y.Y.); (J.C.); (X.L.); (T.S.); (C.L.); (Y.C.)
- College of Grassland Agriculture Science and Technology, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, China
| | - Pan Xu
- Key Laboratory of Integrated Pest Management on Tropical Grops, Ministry of Agriculture and Rural Affairs, Beijing 100020, China;
| | - Guixiu Huang
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, 4 Xueyuan Road, Haikou 571101, China; (B.L.); (Y.Y.); (J.C.); (X.L.); (T.S.); (C.L.); (Y.C.)
- College of Grassland Agriculture Science and Technology, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, China
| |
Collapse
|
12
|
Knowles SL, Roberts CD, Augustinović M, Flores-Bocanegra L, Raja HA, Heath-Borrero KN, Burdette JE, Falkinham Iii JO, Pearce CJ, Oberlies NH. Opportunities and Limitations for Assigning Relative Configurations of Antibacterial Bislactones using GIAO NMR Shift Calculations. JOURNAL OF NATURAL PRODUCTS 2021; 84:1254-1260. [PMID: 33764773 PMCID: PMC8108483 DOI: 10.1021/acs.jnatprod.0c01309] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Four new bislactones, dihydroacremonol (1), clonostachyone (2), acremodiol B (3), and acremodiol C (4), along with one known compound, hymeglusin (5), were isolated from cultures of two fungal strains (MSX59876 and MSX59260). Both strains were identified based on phylogenetic analysis of molecular data as Clonostachys spp.; yet, they biosynthesized a suite of related, but different, secondary metabolites. Given the challenges associated with elucidating the structures and configurations of bislactones, GIAO NMR calculations were tested as a complement to traditional NMR and HRESIMS experiments. Fortuitously, the enantiomer of the new natural product (4) was known as a synthetic compound, and the predicted configuration from GIAO NMR calculations (i.e., for the relative configuration) and optical rotation calculations (i.e., for the absolute configuration) matched those of the synthesis product. These results engendered confidence in using similar procedures, particularly the mixture of GIAO NMR shift calculations coupled with an orthogonal technique, to predict the configuration of 1-3; however, there were important limitations, which are discussed for each of these. The metabolites displayed antimicrobial activities, with compounds 1 and 4 being the most potent against Staphylococcus aureus with MICs of 1 and 4 μg/mL, respectively.
Collapse
Affiliation(s)
- Sonja L Knowles
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina 27412, United States
| | - Christopher D Roberts
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina 27412, United States
| | - Mario Augustinović
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina 27412, United States
| | - Laura Flores-Bocanegra
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina 27412, United States
| | - Huzefa A Raja
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina 27412, United States
| | - Kimberly N Heath-Borrero
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Joanna E Burdette
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Joseph O Falkinham Iii
- Department of Biological Sciences, Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Cedric J Pearce
- Mycosynthetix, Inc., Hillsborough, North Carolina 27278, United States
| | - Nicholas H Oberlies
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina 27412, United States
| |
Collapse
|
13
|
Lv Y, Liu H, Wang L, Li K, Gao W, Liu X, Tang L, Kalinina TA, Glukhareva TV, Fan Z. Discovery of Novel 3,4-Dichloroisothiazole-Containing Coumarins as Fungicidal Leads. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:4253-4262. [PMID: 33792298 DOI: 10.1021/acs.jafc.1c00132] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Natural products are one of the resources for discovering novel fungicidal leads. As a natural fungicide, osthole was used as a coumarin-based lead compound for the development of novel fungicides. Here, a series of 3,4-dichloroisothiazole-containing 7-hydroxycoumarins were rationally designed, synthesized, and characterized by introducing a bioactive substructure, 3,4-dichloroisothiazole, into the coumarin skeleton. In vitro bioassay indicated that compound 7g displayed good activity against Rhizoctonia solani, Physalospora piricola, Sclerotinia sclerotiorum, and Botrytis cinerea. Its median effective concentration (EC50) value against each of these fungi fell between 0.88 and 2.50 μg/mL, which was much lower than that of osthole against the corresponding pathogen (between 7.38 and 74.59 μg/mL). In vivo screening validated that 7k exhibited 100%, 60%, and 20% efficacy against R. solani Kühn at 200, 100, and 50 μg/mL, respectively. RNA sequence analysis implied that growth inhibition of R. solani by 7k might result from potential disruptions of fungal membrane formation and intracellular metabolism. Furthermore, a field experiment with cucumber plants indicated that 7b showed 62.73% and 74.03% efficacy against Pseudoperonospora cubensis (Berk. & Curt.) Rostov. at rates of 12.5 g a.i./ha and 25 g a.i./ha, respectively, which showed no significant difference between 7b and osthole at 30 g a.i./ha. Our studies suggested that 7b, 7g, and 7k might be used as fungicidal leads for further optimization.
Collapse
Affiliation(s)
- You Lv
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Hanlu Liu
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Lifan Wang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Kun Li
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Wei Gao
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Xiaoyu Liu
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Liangfu Tang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Tatiana A Kalinina
- The Ural Federal University Named after the First President of Russia B. N. Yeltsin, Yeltsin UrFU, Ekaterinburg 620002, Russia
| | - Tatiana V Glukhareva
- The Ural Federal University Named after the First President of Russia B. N. Yeltsin, Yeltsin UrFU, Ekaterinburg 620002, Russia
| | - Zhijin Fan
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
14
|
Zhao T, Zhang XY, Deng RS, Tan Z, Chen GY, Nong XH. Three new unsaturated fatty acids from marine-derived fungus Aspergillus sp. SCAU150. Nat Prod Res 2021; 36:3965-3971. [PMID: 33764238 DOI: 10.1080/14786419.2021.1903002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Four unsaturated fatty acid derivatives including three new pantheric acids (1-3), together with three known polyketides (5-7), were isolated from a culture broth of the marine-derived fungus Aspergillus sp. SCAU150. Their complete structures were determined by NMR and HRESIMS data analyses. The antifungal activity of the isolated compounds above was evaluated and 2 was found to show moderated activity toward the phytopathogenic fungus Fusarium solani bio-80814 with an inhibition zone diameter of 6 mm under 5 µg/disc.
Collapse
Affiliation(s)
- Ting Zhao
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, Hainan Normal University, Haikou, Hainan, China.,Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, Hainan, China
| | - Xiao-Yong Zhang
- College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Ran-Sha Deng
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, Hainan Normal University, Haikou, Hainan, China.,Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, Hainan, China
| | - Zhen Tan
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, Hainan Normal University, Haikou, Hainan, China.,Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, Hainan, China
| | - Guang-Ying Chen
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, Hainan Normal University, Haikou, Hainan, China.,Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, Hainan, China
| | - Xu-Hua Nong
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, Hainan Normal University, Haikou, Hainan, China.,Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, Hainan, China
| |
Collapse
|
15
|
Bioactive aromatic butenolides from a mangrove sediment originated fungal species, Aspergillus terreus SCAU011. Fitoterapia 2021; 150:104856. [PMID: 33582267 DOI: 10.1016/j.fitote.2021.104856] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/07/2021] [Accepted: 02/07/2021] [Indexed: 11/20/2022]
Abstract
Seven new compounds including five aromatic butenolide analogues (1-5), one quinazolinone alkaloid (6) and one benzoic acid derivative (7), along with eleven known co-metabolites (8-18), were isolated from Aspergillus terreus SCAU011, a fungus from the rhizosphere sediment of a mangrove plant Rhizophora stylosa. The structures of these isolates were established by a combination of MS, NMR and ECD data analyses, as well as chemical method. Compound 3 is a rare ring-open aromatic butenolide, while 6 represents the first natural ring-open benzomalvin-type quinazolinone alkaloid. Also, the previously reported structures for asperlides A-C were proposed to be revised in the present work. The COX-2 inhibitory, α-glucosidase inhibitory, antioxidant and antibacterial activities of all the compounds were assessed. While compounds 4, 6, 11 and 18 exhibited better COX-2 inhibitory activity than the positive control celecoxib, compounds 9 and 10 showed significant α-glucosidase inhibitory activity with IC50 values of 56.1 and 12.9 μM, respectively. Meanwhile, half of the tested samples (1, 8-11 and 15-17) exerted similar or better antioxidant activity compared with the reference drug curcumin, and compounds 3, 9, 17 and 18 displayed moderate antibacterial effect against Staphylococcus aureus.
Collapse
|
16
|
Guo LF, Liu GR, Liu L. Caryophyllene-type sesquiterpenoids and α-furanones from the plant endophytic fungus Pestalotiopsis theae. Chin J Nat Med 2021; 18:261-267. [PMID: 32402402 DOI: 10.1016/s1875-5364(20)30032-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Indexed: 02/07/2023]
Abstract
Two new caryophyllene-type sesquiterpenoids, pestathenols A (1) and B (2) and one new α-furanone, pestatheranone A (6), along with five known compounds (3-5, 7 and 8) have been isolated from the crude extract of the plant endophytic fungus Pestalotiopsis theae. Their structures were unambiguously established by extensive spectroscopic analyses. The absolute configuration of the 5,6-diol moiety in 1 was assigned using Snatzke's method. Compounds 1 and 2 showed weak cytotoxicity against HeLa cell line.
Collapse
Affiliation(s)
- Long-Fang Guo
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Gao-Ran Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Ling Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
17
|
Carroll AR, Copp BR, Davis RA, Keyzers RA, Prinsep MR. Marine natural products. Nat Prod Rep 2021; 38:362-413. [PMID: 33570537 DOI: 10.1039/d0np00089b] [Citation(s) in RCA: 220] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
This review covers the literature published in 2019 for marine natural products (MNPs), with 719 citations (701 for the period January to December 2019) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, mangroves and other intertidal plants and microorganisms. The emphasis is on new compounds (1490 in 440 papers for 2019), together with the relevant biological activities, source organisms and country of origin. Pertinent reviews, biosynthetic studies, first syntheses, and syntheses that led to the revision of structures or stereochemistries, have been included. Methods used to study marine fungi and their chemical diversity have also been discussed.
Collapse
Affiliation(s)
- Anthony R Carroll
- School of Environment and Science, Griffith University, Gold Coast, Australia. and Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia
| | - Brent R Copp
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Rohan A Davis
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia and School of Enivironment and Science, Griffith University, Brisbane, Australia
| | - Robert A Keyzers
- Centre for Biodiscovery, School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Michèle R Prinsep
- Chemistry, School of Science, University of Waikato, Hamilton, New Zealand
| |
Collapse
|
18
|
Two new unsaturated fatty acids from the mangrove rhizosphere soil-derived fungus Penicillium javanicum HK1-22. Bioorg Chem 2019; 93:103331. [PMID: 31622851 DOI: 10.1016/j.bioorg.2019.103331] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 08/12/2019] [Accepted: 09/28/2019] [Indexed: 11/21/2022]
Abstract
Two new unsaturated fatty acids, 6R,8R-dihydroxy-9Z,12Z-octadecadienoic acid (1) and methyl-6R,8R-dihydroxy-9Z,12Z-octadecadienoate (2), and two known 9Z,12Z-octadecadienoic acid analogues (3, 4) together with a known sesquiterpenoid (5) were isolated from the mangrove rhizosphere soil-derived fungus Penicillium javanicum HK1-22. An acetonide derivative (1a) from 1 was also prepared. The relative configuration of 1 was determined by analysis of the 1D and 2D NOE spectra of 1a. The absolute configuration of 1 was assigned on the basis of biogenetic considerations. The antifungal activity of the high yield compound 5 was evaluated against four strains of crop pathogens and it showed significant antifungal activities against all the tested strains.
Collapse
|
19
|
Tang XX, Liu SZ, Yan X, Tang BW, Fang MJ, Wang XM, Wu Z, Qiu YK. Two New Cytotoxic Compounds from a Deep-Sea Penicillum citreonigrum XT20-134. Mar Drugs 2019; 17:md17090509. [PMID: 31470583 PMCID: PMC6780507 DOI: 10.3390/md17090509] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 08/25/2019] [Accepted: 08/27/2019] [Indexed: 01/03/2023] Open
Abstract
Penicillum citreonigrum XT20-134 (MCCC 3A00956) is a fungus with cytotoxic activity, derived from deep-sea sediment. Five new compounds, adeninylpyrenocine (1), 2-hydroxyl-3-pyrenocine-thio propanoic acid (2), ozazino-cyclo-(2,3-dihydroxyl-trp-tyr) (3), 5,5-dichloro-1-(3,5-dimethoxyphenyl)-1,4-dihydroxypentan-2-one (4), and 2,3,4-trihydroxybutyl cinnamate (5), together with 19 known compounds (6-24), were isolated from an ethyl acetate (EtOAc) extract of its fermentation. The structures of the new compounds were comprehensively characterized by high-resolution electrospray ionization-mass spectrometry (HR-ESI-MS), 1D and 2D nuclear magnetic resonance (NMR). All isolates were evaluated for their cytotoxic activities. The heteroatom-containing new compounds 2 and 4 showed potent cytotoxicity to the human hepatoma tumor cell Bel7402 with IC50 values of 7.63 ± 1.46, 13.14 ± 1.41 μM and the human fibrosarcoma tumor cell HT1080 with IC50 values of 10.22 ± 1.32, 16.53 ± 1.67 μM, respectively.
Collapse
Affiliation(s)
- Xi-Xiang Tang
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography State Oceanic Administration, Xiamen 361005, China
| | - Shun-Zhi Liu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, South Xiang-An Road, Xiamen 361102, China
| | - Xia Yan
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Ningbo University, Ningbo 315832, China
| | - Bo-Wen Tang
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, South Xiang-An Road, Xiamen 361102, China
| | - Mei-Juan Fang
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, South Xiang-An Road, Xiamen 361102, China
| | - Xiu-Min Wang
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, South Xiang-An Road, Xiamen 361102, China
| | - Zhen Wu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, South Xiang-An Road, Xiamen 361102, China.
| | - Ying-Kun Qiu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, South Xiang-An Road, Xiamen 361102, China.
| |
Collapse
|