1
|
Tusé D, McNulty M, McDonald KA, Buchman LW. A review and outlook on expression of animal proteins in plants. FRONTIERS IN PLANT SCIENCE 2024; 15:1426239. [PMID: 39239203 PMCID: PMC11374769 DOI: 10.3389/fpls.2024.1426239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 06/25/2024] [Indexed: 09/07/2024]
Abstract
This review delves into the multifaceted technologies, benefits and considerations surrounding the expression of animal proteins in plants, emphasizing its potential role in advancing global nutrition, enhancing sustainability, while being mindful of the safety considerations. As the world's population continues to grow and is projected to reach 9 billion people by 2050, there is a growing need for alternative protein sources that can meet nutritional demands while minimizing environmental impact. Plant expression of animal proteins is a cutting-edge biotechnology approach that allows crops to produce proteins traditionally derived from animals, offering a sustainable and resource-efficient manner of producing these proteins that diversifies protein production and increases food security. In the United States, it will be important for there to be clear guidance in order for these technologies to reach consumers. As consumer demand for sustainable and alternative food sources rise, biotechnologies can offer economic opportunities, making this emerging technology a key player in the market landscape.
Collapse
Affiliation(s)
- Daniel Tusé
- DT/Consulting Group, Sacramento, CA, United States
| | - Matthew McNulty
- Center for Cellular Agriculture, Tufts University, Medford, MA, United States
| | - Karen A McDonald
- Department of Chemical Engineering and Global Healthshare Initiative, University of California, Davis, Davis, CA, United States
| | - Leah W Buchman
- Biotechniology Innovation Organization, Agriculture and Environment, Washington, DC, United States
| |
Collapse
|
2
|
Sharma E, Vitte J. A systematic review of allergen cross-reactivity: Translating basic concepts into clinical relevance. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. GLOBAL 2024; 3:100230. [PMID: 38524786 PMCID: PMC10959674 DOI: 10.1016/j.jacig.2024.100230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 10/29/2023] [Accepted: 01/03/2024] [Indexed: 03/26/2024]
Abstract
Access to the molecular culprits of allergic reactions allows for the leveraging of molecular allergology as a new precision medicine approach-one built on interdisciplinary, basic, and clinical knowledge. Molecular allergology relies on the use of allergen molecules as in vitro tools for the diagnosis and management of allergic patients. It complements the conventional approach based on skin and in vitro allergen extract testing. Major applications of molecular allergology comprise accurate identification of the offending allergen thanks to discrimination between genuine sensitization and allergen cross-reactivity, evaluation of potential severity, patient-tailored choice of the adequate allergen immunotherapy, and prediction of its expected efficacy and safety. Allergen cross-reactivity, defined as the recognition of 2 or more allergen molecules by antibodies or T cells of the same specificity, frequently interferes with allergen extract testing. At the mechanistic level, allergen cross-reactivity depends on the allergen, the host's immune response, and the context of their interaction. The multiplicity of allergen molecules and families adds further difficulty. Understanding allergen cross-reactivity at the immunologic level and translating it into a daily tool for the management of allergic patients is further complicated by the ever-increasing number of characterized allergenic molecules, the lack of dedicated resources, and the need for a personalized, patient-centered approach. Conversely, knowledge sharing paves the way for improved clinical use, innovative diagnostic tools, and further interdisciplinary research. Here, we aimed to provide a comprehensive and unbiased state-of-the art systematic review on allergen cross-reactivity. To optimize learning, we enhanced the review with basic, translational, and clinical definitions, clinical vignettes, and an overview of online allergen databases.
Collapse
Affiliation(s)
| | - Joana Vitte
- Aix-Marseille University, MEPHI, IHU Méditerranée Infection, Marseille, France
- Desbrest Institute of Epidemiology and Public Health (IDESP), University of Montpellier, INSERM, Montpellier, France
- University of Reims Champagne-Ardenne, INSERM UMR-S 1250 P3CELL and University Hospital of Reims, Immunology Laboratory, Reims, France
| |
Collapse
|
3
|
Treudler R. Emerging and Novel Elicitors of Anaphylaxis: Collegium Internationale Allergologicum Update 2024. Int Arch Allergy Immunol 2024; 185:794-802. [PMID: 38527454 DOI: 10.1159/000537958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 02/19/2024] [Indexed: 03/27/2024] Open
Abstract
BACKGROUND Anaphylaxis represents the most severe end of the spectrum of allergic reactions. Frequent elicitors of anaphylaxis are insects, foods, and drugs. This paper summarizes recent development with regard to emerging and novel elicitors of anaphylaxis. SUMMARY Food allergens on the rise include pulses (like pea, chickpea), seeds (hemp, chia), nuts (cashew), pseudograins (buckwheat, quinoa), fruits, and microalgae. Novel foods are foods that were not consumed to any significant extent in the European Union before May 1997, which includes four edible insects (mealworm, migratory locust, house cricket, and buffalo worm). Recent investigations have pointed out the risk of anaphylaxis associated with the consumption of yellow mealworm for people allergic to shellfish and house dust mites. In Europe, fire ants (mostly Solenopsis invicta) and Vespa velutina nigrithorax represent invasive species, which account for increasing numbers of anaphylactic reactions. Also, several new drugs, especially biologicals, have been associated with anaphylaxis. KEY MESSAGES Elicitors of anaphylaxis are changing as a result of (i) increase in demand for plant-based food, (ii) introduction of novel foods, (iii) spreading of allergens by climate changes and globalization, or (iv) due to exposure to newly developed drugs.
Collapse
Affiliation(s)
- Regina Treudler
- Charité - Universitätsmedizin Berlin, Institute of Allergology IFA, Berlin, Germany
| |
Collapse
|
4
|
Oriel RC, Elizur A, Sicherer SH. Comprehensive Diagnosis, Management, and Treatment of Sesame Allergy. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2024; 12:590-597. [PMID: 37952774 DOI: 10.1016/j.jaip.2023.11.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/02/2023] [Accepted: 11/03/2023] [Indexed: 11/14/2023]
Abstract
Sesame allergy prevalence varies regionally and by age, in the range of 0.1% to 0.9%. Reactions can be severe and potentially fatal. Resolution rates are in the range of 20% to 50%. The diagnosis requires a careful history and the use of tests, such as skin prick tests and serum sesame-specific IgE. The availability of serum IgE testing for the sesame protein Ses i 1 has improved diagnostic accuracy. The emerging potential for sesame basophil activation tests and additional new tests will likely improve diagnosis in coming years, further reducing the need for diagnostic oral food challenges. Although sesame proteins share homology with those in many foods, clinically relevant cross-reactivity appears uncommon. Nevertheless, sesame is a prominent allergen for those with multiple food allergies. Management may include strict avoidance, but sesame products vary dramatically in protein content. Many people with sesame allergy tolerate forms that are low in protein, such as scattered seeds, rather than sesame paste that is protein-dense. Thus, options in the approach to avoidance are possible. Studies suggest that sesame oral immunotherapy may be safe and effective, and this and additional treatment options are emerging. Here, we review the current comprehensive diagnosis, management, and treatment for sesame allergy.
Collapse
Affiliation(s)
- Roxanne C Oriel
- Division of Pediatric Allergy and Immunology, Jaffe Food Allergy Institute, Kravis Children's Hospital, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Arnon Elizur
- Institute of Allergy, Immunology, and Pediatric Pulmonology, Yitzhak Shamir Medical Center, Tel Aviv, Israel; Department of Pediatrics, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Scott H Sicherer
- Division of Pediatric Allergy and Immunology, Jaffe Food Allergy Institute, Kravis Children's Hospital, Icahn School of Medicine at Mount Sinai, New York, NY.
| |
Collapse
|
5
|
Präger L, Simon JC, Treudler R. Food allergy - New risks through vegan diet? Overview of new allergen sources and current data on the potential risk of anaphylaxis. J Dtsch Dermatol Ges 2023; 21:1308-1313. [PMID: 37723909 DOI: 10.1111/ddg.15157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 05/25/2023] [Indexed: 09/20/2023]
Abstract
A vegan diet is increasingly en vogue, i.e., a diet based on plants, in which animal products are completely avoided, often for health and environmental reasons. The menu is supplemented with pulses (e.g., soy, lentils, peas), nuts (e.g., cashew, macadamia, almond, pecan, para, walnut) and seeds (e.g., chia, flaxseed) or pseudo-grains (quinoa, buckwheat). Indeed, the product range is expanding to include vegan foods such as milk alternatives (e.g., oat, almond, soy drinks) and cheese or meat substitutes (e.g., soy-based). Food allergies are also on the rise, with an increasing prevalence worldwide. It is worthy of note that the main allergens of anaphylactic reactions to food in adults are predominantly of plant origin, mainly pulses and nuts - the very foods that form the main source of protein in the vegan diet. In this context, allergies to storage proteins (e.g., Gly m 5 and Gly m 6 from soya beans) can lead to severe anaphylactic reactions, while highly processed substitute products containing plant protein isolates (e.g., pea flour) in concentrated form continue to be of particular concern and may therefore be allergologically problematic. In this article, we aim to provide an overview of allergens and emerging allergen sources in vegan foods and highlight the anaphylaxis risk of the vegan diet.
Collapse
Affiliation(s)
- Lea Präger
- Department of Dermatology, Venereology and Allergology, University Hospital Leipzig, Germany
- Leipzig Interdisciplinary Allergy Center (LICA-CAC), University Hospital Leipzig, Germany
| | - Jan Christoph Simon
- Department of Dermatology, Venereology and Allergology, University Hospital Leipzig, Germany
- Leipzig Interdisciplinary Allergy Center (LICA-CAC), University Hospital Leipzig, Germany
| | - Regina Treudler
- Department of Dermatology, Venereology and Allergology, University Hospital Leipzig, Germany
- Leipzig Interdisciplinary Allergy Center (LICA-CAC), University Hospital Leipzig, Germany
| |
Collapse
|
6
|
Präger L, Simon JC, Treudler R. Nahrungsmittelallergie - Neue Risiken durch vegane Ernährung? Überblick zu neuen Allergenquellen und aktuelle Daten zum Anaphylaxierisiko: Food allergy - New risks through vegan diet? Overview of new allergen sources and current data on the potential risk of anaphylaxis. J Dtsch Dermatol Ges 2023; 21:1308-1314. [PMID: 37946654 DOI: 10.1111/ddg.15157_g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 05/25/2023] [Indexed: 11/12/2023]
Abstract
ZusammenfassungZunehmend mehr Menschen ernähren sich aus gesundheitlichen und Umweltaspekten ausschließlich von pflanzlichen Nahrungsmitteln (vegan). Dabei werden vielfach Hülsenfrüchte (wie Soja, Linsen, Erbsen), Schalenfrüchte (Cashew, Macadamia, Mandel, Pekan‐, Para‐ und Walnuss), Samen und Saaten (wie Chia, Leinsamen) oder (Pseudo‐)Getreide (wie Quinoa, Buchweizen) verzehrt. Vegane Milchalternativen sind Hafer‐, Mandel‐ und Sojadrinks, auch Käse‐ sowie Fleischersatzprodukte basieren oft auf einer Sojagrundlage. Gleichzeitig nimmt die Prävalenz von Nahrungsmittelallergien weltweit zu. Pflanzenallergene aus Hülsen‐ und Schalenfrüchten, die in der veganen Ernährung die Hauptproteinquelle ausmachen, zählen zu den häufigsten Auslösern von Nahrungsmittelallergien bei Erwachsenen. Dabei kommt es bei Allergien auf Speicherproteine (wie Gly m 5 und Gly m 6 aus der Sojabohne) zu teils schweren anaphylaktischen Reaktionen. Besonderes Augenmerk liegt weiter auf hochverarbeiteten Ersatzprodukten, die Pflanzenproteinisolate (zum Beispiel Erbsenmehl) in konzentrierter Form enthalten und damit allergologisch problematisch werden können. In diesem Artikel geben wir einen Überblick über wichtige Allergene und neue Allergenquellen in ausgesuchten veganen Nahrungsmitteln und betrachten die vegane Ernährung unter allergologischen Aspekten.
Collapse
Affiliation(s)
- Lea Präger
- Klinik für Dermatologie, Venereologie und Allergologie, Universitätsmedizin Leipzig
- Leipziger Interdisziplinäres Allergiecentrum (LICA-CAC), Universitätsmedizin Leipzig
| | - Jan Christoph Simon
- Klinik für Dermatologie, Venereologie und Allergologie, Universitätsmedizin Leipzig
- Leipziger Interdisziplinäres Allergiecentrum (LICA-CAC), Universitätsmedizin Leipzig
| | - Regina Treudler
- Klinik für Dermatologie, Venereologie und Allergologie, Universitätsmedizin Leipzig
- Leipziger Interdisziplinäres Allergiecentrum (LICA-CAC), Universitätsmedizin Leipzig
| |
Collapse
|
7
|
Abstract
PURPOSE OF REVIEW More people are excluding wheat from their diet, or turning to a more sustainable diet in which includes meat substitutes or is mainly or wholly plant-based. This increases the availability of new foods and with it the increasing likelihood of novel allergens. RECENT FINDINGS There is a growing body of evidence which suggests that allergies to seeds and legumes are increasing potentially due to their use in concentrated form in vegan or health foods. Insects can be a sustainable source of protein, but mealworm could provoke symptoms in individuals sensitized or allergic to shellfish or house dust mite. Novel plant food allergens such as gibberellin-regulated proteins and thaumatin-like proteins are increasingly being reported as significant causes of severe reactions to fruits. SUMMARY these findings make it even more imperative to take a full dietary history to ensure apparent idiopathic anaphylaxis is not in reality due to a novel food, especially in cases where other forms of the food are tolerated. Given the lack of diagnostic tests for these novel foods, a prick-to-prick skin prick test should be performed with the suspected food. There is currently more work needed to define and sequence many of the allergens involved.
Collapse
Affiliation(s)
- Bianca Olivieri
- Department of Medicine, Asthma, Allergy and Clinical Immunology Section, University of Verona, Verona, Italy
| | - Isabel J Skypala
- Royal Brompton & Harefield Hospitals, part of Guys and St Thomas NHS Foundation Trust
- Department of Inflammation and repair, Imperial College, London, UK
| |
Collapse
|
8
|
López-Pedrouso M, Lorenzo JM, Alché JDD, Moreira R, Franco D. Advanced Proteomic and Bioinformatic Tools for Predictive Analysis of Allergens in Novel Foods. BIOLOGY 2023; 12:biology12050714. [PMID: 37237526 DOI: 10.3390/biology12050714] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/09/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023]
Abstract
In recent years, novel food is becoming an emerging trend increasingly more demanding in developed countries. Food proteins from vegetables (pulses, legumes, cereals), fungi, bacteria and insects are being researched to introduce them in meat alternatives, beverages, baked products and others. One of the most complex challenges for introducing novel foods on the market is to ensure food safety. New alimentary scenarios drive the detection of novel allergens that need to be identified and quantified with the aim of appropriate labelling. Allergenic reactions are mostly caused by proteins of great abundance in foods, most frequently of small molecular mass, glycosylated, water-soluble and with high stability to proteolysis. The most relevant plant and animal food allergens, such as lipid transfer proteins, profilins, seed storage proteins, lactoglobulins, caseins, tropomyosins and parvalbumins from fruits, vegetables, nuts, milk, eggs, shellfish and fish, have been investigated. New methods for massive screening in search of potential allergens must be developed, particularly concerning protein databases and other online tools. Moreover, several bioinformatic tools based on sequence alignment, motif identification or 3-D structure predictions should be implemented as well. Finally, targeted proteomics will become a powerful technology for the quantification of these hazardous proteins. The ultimate objective is to build an effective and resilient surveillance network with this cutting-edge technology.
Collapse
Affiliation(s)
- María López-Pedrouso
- Department of Zoology, Genetics and Physical Anthropology, Universidade de Santiago de Compostela, Santiago de Compostela, 15872 A Coruña, Spain
| | - José M Lorenzo
- Centro Tecnolóxico da Carne de Galicia, Rúa Galicia Nº 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain
| | - Juan de Dios Alché
- Plant Reproductive Biology and Advanced Microscopy Laboratory, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, Spanish National Research Council (CSIC), Profesor Albareda 1, 18008 Granada, Spain
| | - Ramón Moreira
- Department of Chemical Engineering, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Daniel Franco
- Department of Chemical Engineering, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| |
Collapse
|
9
|
Turck D, Bohn T, Castenmiller J, De Henauw S, Hirsch‐Ernst KI, Maciuk A, Mangelsdorf I, McArdle HJ, Naska A, Pelaez C, Pentieva K, Siani A, Thies F, Tsabouri S, Vinceti M, Aguilera‐Gómez M, Cubadda F, Frenzel T, Heinonen M, Marchelli R, Neuhäuser‐Berthold M, Poulsen M, Prieto Maradona M, Schlatter JR, van Loveren H, Gelbmann W, Gerazova‐Efremova K, Roldán‐Torres R, Knutsen HK. Safety of the extension of use of partially defatted chia seed ( Salvia hispanica L.) powder with a high fibre content as a novel food pursuant to Regulation (EU) 2015/2283. EFSA J 2023; 21:e07904. [PMID: 37089183 PMCID: PMC10117169 DOI: 10.2903/j.efsa.2023.7904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023] Open
Abstract
Following a request from the European Commission, the EFSA Panel on Nutrition, Novel Foods and Food Allergens (NDA) was asked to deliver an opinion on the safety of the extension of use of partially defatted chia seed (Salvia hispanica L.) powder with a high fibre content as a novel food (NF) pursuant to Regulation (EU) 2015/2283. The NF is already authorised and included in the Union list of NFs and is produced according to the same production process. This application is limited to an assessment of the extension of use of the NF as a food ingredient in several food categories with a high moisture content that are subject to thermal processing. The target population for the extension of use is the general population. The information provided on the formation of process contaminants (acrylamide, furan and methylfurans) in a selected food category with added NF (bread) subjected to heat treatment is sufficient for this assessment and does not raise safety concerns. Noting that no safety concerns were identified from the information available on the production process, composition, specifications and proposed uses of the NF, the Panel considers that intake estimates for the NF are not needed for this assessment. The Panel concludes that the NF, partially defatted chia seeds powder with a high fibre content, is safe under the proposed conditions of use.
Collapse
|
10
|
Villa C, Costa J, Mafra I. Sesame as a source of food allergens: clinical relevance, molecular characterization, cross-reactivity, stability toward processing and detection strategies. Crit Rev Food Sci Nutr 2022; 64:4746-4762. [PMID: 36377716 DOI: 10.1080/10408398.2022.2145263] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Sesame is an allergenic food with an increasing allergy prevalence among the European/USA population. Sesame allergy is generally life-persisting, being the cause of severe/systemic adverse immune responses in sesame-allergic individuals. Herein, clinical data about sesame allergy, including prevalence, diagnosis, relevance, and treatments are described, with focus on the molecular characterization of sesame allergens, their cross-reactivity and co-sensitization phenomena. The influence of food processing and digestibility on the stability/immunoreactivity of sesame allergens is critically discussed and the analytical approaches available for their detection in foodstuffs. Cross-reactivity between sesame and tree nuts or peanuts is frequent because of the high similarities among proteins of the same family. However, cross-reactivity phenomena are not always correlated with true clinical allergy in sensitized patients. Data suggest that sesame allergens are resistant to heat treatments and digestibility, with little effect on their immunoreactivity. Nevertheless, data are scarce, evidencing the need for more research to understand the effect of food processing on sesame allergenicity modulation. The demands for identifying trace amounts of sesame in foods have prompted the development of analytical methods, which have targeted both protein and DNA markers, providing reliable, specific, and sensitive tools, crucial for the effective management of sesame as an allergenic food.
Collapse
Affiliation(s)
- Caterina Villa
- REQUIMTE-LAQV, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, Porto, Portugal
| | - Joana Costa
- REQUIMTE-LAQV, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, Porto, Portugal
| | - Isabel Mafra
- REQUIMTE-LAQV, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, Porto, Portugal
| |
Collapse
|
11
|
Kaman K, Factor JM. A practical focus on sesame allergy and a brief review of other seed allergies. JOURNAL OF FOOD ALLERGY 2022; 4:151-157. [PMID: 39021852 PMCID: PMC11250203 DOI: 10.2500/jfa.2022.4.220008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Although seed allergies are relatively rare, sesame allergy has been increasing worldwide and is typically persistent in most patients. Because allergen labeling laws, until just recently, have not required the declaration of sesame as a major allergen, there is a clear need to better understand and potentially treat this food allergy. Although blood and skin prick testing for sesame have limited predictive value, this improves with the use of component diagnostics and skin-prick test with fresh sesame. A thorough history and oral food challenge should be used to diagnose sesame allergy. Treatment of sesame allergy with oral immunotherapy has been demonstrated to be safe and effective in case reports, and in at least one controlled study with a published sesame oral immunotherapy protocol. There is minimum literature with regard to management of other seed allergies.
Collapse
Affiliation(s)
- Kelsey Kaman
- From the Connecticut Asthma and Allergy Center, West Hartford, Connecticut; and
| | - Jeffrey M. Factor
- From the Connecticut Asthma and Allergy Center, West Hartford, Connecticut; and
- New England Food Allergy Treatment Center, West Hartford, Connecticut
| |
Collapse
|
12
|
Abstract
The term “superfood” is linked to food that is beneficial to health. However, there is no legal or clear scientific definition, and little is known about individual perceptions of this food group. Therefore, an online survey was conducted (n = 1006 respondents) to assess the public’s understanding of superfoods in Germany, including (a) the conceptual understanding of the term “superfood”, (b) corresponding consumption behavior, and (c) the risk–benefit appraisal. In total, 70% of respondents were aware of the term “superfood”, and 33% reported consuming superfoods at least once a week. The term was mainly associated with positive food properties, such as “healthy” and “contains vitamins”. Health benefits were rated to be much higher than potential health risks. In addition, imported foods were more likely to be labelled as superfoods, compared to domestic equivalents. In further analyses, we found women, younger people, and organic buyers to have an even more positive impression. That is, specific parts of the population may be particularly attracted to superfood products. Therefore, target-group specific information campaigns can be a useful tool to increase the population’s awareness of the potential health risks of superfood consumption and to highlight the presence of equivalent “domestic superfoods” in Germany.
Collapse
|
13
|
Kim H, Gantulga P, Lee E, Lee J, Lee S, Jeong K. Perilla seed allergy in children: Cosensitization and cross-reactivity with sesame seed. ALLERGY ASTHMA & RESPIRATORY DISEASE 2022. [DOI: 10.4168/aard.2022.10.2.110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Hyebo Kim
- Department of Pediatrics, Ajou University School of Medicine, Suwon, Korea
| | - Purevsan Gantulga
- Department of Pediatrics, Ajou University School of Medicine, Suwon, Korea
| | - Eunjoo Lee
- Department of Pediatrics, Inje University Haeundae Paik Hospital, Busan, Korea
| | - Jeongmin Lee
- Department of Pediatrics, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Sooyoung Lee
- Department of Pediatrics, Ajou University School of Medicine, Suwon, Korea
| | - Kyunguk Jeong
- Department of Pediatrics, Ajou University School of Medicine, Suwon, Korea
| |
Collapse
|