1
|
Yan Z, Gui Y, Liu C, Zhang X, Wen C, Olatunji OJ, Suttikhana I, Ashaolu TJ. Gastrointestinal digestion of food proteins: Anticancer, antihypertensive, anti-obesity, and immunomodulatory mechanisms of the derived peptides. Food Res Int 2024; 189:114573. [PMID: 38876600 DOI: 10.1016/j.foodres.2024.114573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/26/2024] [Accepted: 05/26/2024] [Indexed: 06/16/2024]
Abstract
Food proteins and their peptides play a significant role in the important biological processes and physiological functions of the body. The peptides show diverse biological benefits ranging from anticancer to antihypertensive, anti-obesity, and immunomodulatory, among others. In this review, an overview of food protein digestion in the gastrointestinal tract and the mechanisms involved was presented. As some proteins remain resistant and undigested, the multifarious factors (e.g. protein type and structure, microbial composition, pH levels and redox potential, host factors, etc.) affecting their colonic fermentation, the derived peptides, and amino acids that evade intestinal digestion are thus considered. The section that follows focuses on the mechanisms of the peptides with anticancer, antihypertensive, anti-obesity, and immunomodulatory effects. As further considerations were made, it is concluded that clinical studies targeting a clear understanding of the gastrointestinal stability, bioavailability, and safety of food-based peptides are still warranted.
Collapse
Affiliation(s)
- Zheng Yan
- Second People's Hospital of Wuhu City, Anhui Province, China.
| | - Yang Gui
- Second People's Hospital of Wuhu City, Anhui Province, China.
| | - Chunhong Liu
- Second People's Hospital of Wuhu City, Anhui Province, China.
| | - Xiaohai Zhang
- Second People's Hospital of Wuhu City, Anhui Province, China.
| | - Chaoling Wen
- Anhui College of Traditional Chinese Medicine, Wuhu City 241000, Anhui, China.
| | | | - Itthanan Suttikhana
- Department of Agroecosystems, Faculty of Agriculture and Technology, University of South Bohemia in České Budějovice, Branišovská 1645/31a, 370 05 České Budějovice 2, Czechia.
| | - Tolulope Joshua Ashaolu
- Institute for Global Health Innovations, Duy Tan University, Da Nang 550000, Viet Nam; Faculty of Medicine, Duy Tan University, Da Nang 550000, Viet Nam.
| |
Collapse
|
2
|
Xie J, Chen S, Huan P, Wang S, Zhuang Y. A novel angiotensin I-converting enzyme inhibitory peptide from walnut (Juglans sigillata) protein hydrolysates and its evaluation in Ang II-induced HUVECs and hypertensive rats. Int J Biol Macromol 2024; 266:131152. [PMID: 38556230 DOI: 10.1016/j.ijbiomac.2024.131152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 02/28/2024] [Accepted: 03/25/2024] [Indexed: 04/02/2024]
Abstract
This study aims to seek angiotensin-I-converting enzyme inhibitory (ACEi) peptides from walnut using different enzymatic hydrolysis, and further to validate the potent ACEi peptides identified and screened via peptidomics and in silico analysis against hypertension in spontaneously hypertensive rats (SHRs). Results showed that walnut protein hydrolysate (WPH) prepared by combination of alcalase and simulated gastrointestinal digestion exhibited high ACEi activity. WPH was separated via Sephadex-G25, and four peptides were identified, screened and verified based on their PeptideRanker score, structural characteristic and ACE inhibition. Interestingly, FDWLR showed the highest ACEi activity with IC50 value of 8.02 μg/mL, which might be related to its close affinity with ACE observed in molecular docking. Subsequently, high absorption and non-toxicity of FDWLR was predicted via in silico absorption, distribution, metabolism, excretion and toxicity. Furthermore, FDWLR exhibited positively vasoregulation in Ang II-induced human umbilical vein endothelial cells, and great blood pressure lowering effect in SHRs.
Collapse
Affiliation(s)
- Jinxiang Xie
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, No. 727 South Jingming Road, Kunming, Yunnan 650500, China
| | - Shupeng Chen
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, No. 727 South Jingming Road, Kunming, Yunnan 650500, China
| | - Pengtao Huan
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, No. 727 South Jingming Road, Kunming, Yunnan 650500, China
| | - Shuguang Wang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, No. 727 South Jingming Road, Kunming, Yunnan 650500, China.
| | - Yongliang Zhuang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, No. 727 South Jingming Road, Kunming, Yunnan 650500, China.
| |
Collapse
|
3
|
Liu J, Song W, Gao X, Sun J, Liu C, Fang L, Wang J, Shi J, Leng Y, Liu X, Min W. A combined in vitro and in silico study of the inhibitory mechanism of angiotensin-converting enzyme with peanut peptides. Int J Biol Macromol 2024; 268:131901. [PMID: 38677685 DOI: 10.1016/j.ijbiomac.2024.131901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/06/2024] [Accepted: 04/24/2024] [Indexed: 04/29/2024]
Abstract
Food-derived peptides with low molecular weight, high bioavailability, and good absorptivity have been exploited as angiotensin-converting enzyme (ACE) inhibitors. In the present study, in-vitro inhibition kinetics of peanut peptides, in silico screening, validation of ACE inhibitory activity, molecular dynamics (MD) simulations, and HUVEC cells were performed to systematically identify the inhibitory mechanism of ACE interacting with peanut peptides. The results indicate that FPHPP, FPHY, and FPHFD peptides have good thermal, pH, and digestive stability. MD trajectories elucidate the dynamic correlation between peptides and ACE and verify the specific binding interaction. Noteworthily, FPHPP is the best inhibitor with a strongest binding affinity and significantly increases NO, SOD production, and AT2R expression, and decreases ROS, MDA, ET-1 levels, ACE, and AT1R accumulation in Ang II-injury HUVEC cells.
Collapse
Affiliation(s)
- Jiale Liu
- College of Food Science and Engineering, National Engineering Laboratory of Wheat and Corn Deep Processing, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Wentian Song
- College of Food Science and Engineering, National Engineering Laboratory of Wheat and Corn Deep Processing, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Xue Gao
- College of Food Science and Engineering, National Engineering Laboratory of Wheat and Corn Deep Processing, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Jiaoyan Sun
- College of Food Science and Engineering, National Engineering Laboratory of Wheat and Corn Deep Processing, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Chunlei Liu
- College of Food Science and Engineering, National Engineering Laboratory of Wheat and Corn Deep Processing, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Li Fang
- College of Food Science and Engineering, National Engineering Laboratory of Wheat and Corn Deep Processing, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Ji Wang
- College of Food Science and Engineering, National Engineering Laboratory of Wheat and Corn Deep Processing, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Junhua Shi
- College of Food Science and Engineering, National Engineering Laboratory of Wheat and Corn Deep Processing, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Yue Leng
- College of Food Science and Engineering, National Engineering Laboratory of Wheat and Corn Deep Processing, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Xiaoting Liu
- College of Food Science and Engineering, National Engineering Laboratory of Wheat and Corn Deep Processing, Jilin Agricultural University, Changchun 130118, Jilin, China.
| | - Weihong Min
- College of Food Science and Engineering, National Engineering Laboratory of Wheat and Corn Deep Processing, Jilin Agricultural University, Changchun 130118, Jilin, China; College of Food and Health, Zhejiang A&F University, Hangzhou 311300, China.
| |
Collapse
|
4
|
Wu C, Yin Z, Wang Y, Chen X, Li B, Wang Q, Yao L, Zhang Z, Liu X, Zhang R. The first bioactive (angiotensin-converting enzyme-inhibitory) peptide isolated from pearl matrix protein. Heliyon 2024; 10:e28060. [PMID: 38560194 PMCID: PMC10979060 DOI: 10.1016/j.heliyon.2024.e28060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 03/10/2024] [Accepted: 03/11/2024] [Indexed: 04/04/2024] Open
Abstract
In this research, we unveil the medical potential of pearls by identifying a novel bioactive peptide within them for the first time. The peptide, termed KKCHFWPFPW, emerges as a pioneering angiotensin I-converting enzyme (ACE) inhibitor, originating from the pearl matrix of Pinctada fucata. Employing quadrupole time-of-flight mass spectrometry, this peptide was meticulously selected and pinpointed. With a molecular weight of 1417.5 Da and a theoretical isoelectric point of 9.31, its inhibitory potency was demonstrated through a half-maximal inhibitory concentration (IC50) of 4.17 μM, established via high-performance liquid chromatography. The inhibition of ACE by this peptide was found to be competitive, as revealed by Lineweaver-Burk plot analysis, where an increase in peptide concentration correlated with an enhanced rate of ACE inhibition. To delve into the interaction between KKCHFWPFPW and ACE, molecular docking simulations were conducted using the Maestro 2022-1 Glide software, shedding light on the inhibitory mechanism. This investigation suggests that peptides derived from the P. martensii pearl matrix hold promise as a novel source for antihypertensive agents.
Collapse
Affiliation(s)
- Chaoyi Wu
- Key Laboratory of Freshwater Aquatic Genetic Resources, Shanghai Ocean University, Ministry ofAgriculture, Shanghai, 201306, China
| | - Zehui Yin
- Key Laboratory of Freshwater Aquatic Genetic Resources, Shanghai Ocean University, Ministry ofAgriculture, Shanghai, 201306, China
| | - Yayu Wang
- Department of Biotechnology and Biomedicine, Yangtze Delta Region Institute of Tsinghua University, Zhejiang, 314000, China
| | - Xinjiani Chen
- Department of Biotechnology and Biomedicine, Yangtze Delta Region Institute of Tsinghua University, Zhejiang, 314000, China
| | - Bailei Li
- Department of Biotechnology and Biomedicine, Yangtze Delta Region Institute of Tsinghua University, Zhejiang, 314000, China
| | - Qin Wang
- Department of Biotechnology and Biomedicine, Yangtze Delta Region Institute of Tsinghua University, Zhejiang, 314000, China
| | - Liping Yao
- Department of Biotechnology and Biomedicine, Yangtze Delta Region Institute of Tsinghua University, Zhejiang, 314000, China
| | - Zhen Zhang
- Department of Biotechnology and Biomedicine, Yangtze Delta Region Institute of Tsinghua University, Zhejiang, 314000, China
- Zhejiang Provincial Key Laboratory of Applied Enzymology, Yangtze Delta Region Institute of Tsinghua University, 705 Yatai Road, Jiaxing, 314006, China
| | - Xiaojun Liu
- Department of Biotechnology and Biomedicine, Yangtze Delta Region Institute of Tsinghua University, Zhejiang, 314000, China
- Taizhou Innovation Center, Yangtze Delta Region Institute of Tsinghua University, Zhejiang, 318000, China
- Zhejiang Provincial Key Laboratory of Applied Enzymology, Yangtze Delta Region Institute of Tsinghua University, 705 Yatai Road, Jiaxing, 314006, China
| | - Rongqing Zhang
- Department of Biotechnology and Biomedicine, Yangtze Delta Region Institute of Tsinghua University, Zhejiang, 314000, China
- Taizhou Innovation Center, Yangtze Delta Region Institute of Tsinghua University, Zhejiang, 318000, China
- Zhejiang Provincial Key Laboratory of Applied Enzymology, Yangtze Delta Region Institute of Tsinghua University, 705 Yatai Road, Jiaxing, 314006, China
| |
Collapse
|
5
|
Fan H, Shang N, Davidge ST, Wu J. Chicken Muscle-Derived ACE2-Upregulating Peptide VVHPKESF Reduces Blood Pressure Associated with the ACE2/Ang (1-7)/MasR Axis in Spontaneously Hypertensive Rats. Mol Nutr Food Res 2024; 68:e2300524. [PMID: 38356052 DOI: 10.1002/mnfr.202300524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 12/29/2023] [Indexed: 02/16/2024]
Abstract
SCOPE This study aims to investigate the antihypertensive effect of four chicken muscle-derived angiotensin (Ang)-converting enzymes (ACE)-regulating peptides: Val-Arg-Pro (VRP, ACE inhibition), Leu-Lys-Tyr and Val-Arg-Tyr (LKY and VRY, ACE inhibition and ACE2 upregulation), and Val-Val-His-Pro-Lys-Glu-Ser-Phe (VVHPKESF [V-F], ACE2 upregulation) in spontaneously hypertensive rats. METHODS AND RESULTS Rats (12-14 weeks old) are grouped: 1) untreated, 2) VRP, 3) LKY, 4) VRY, and 5) V-F. Blood pressure (BP) is monitored using implantable telemetry technology. Over 18-day oral administration of 15 mg kg-1 body weight (BW) per day, only peptide V-F significantly (p < 0.05) reduces BP, decreases circulating Ang II, and increases ACE2 and Ang (1-7) levels, and enhances aortic expressions of ACE2 and Mas receptor (MasR). Peptide V-F also attenuates vascular inflammation (TNFα, MCP-1, IL-1α, IL-15, and cyclooxygenase 2 [COX2]) and vascular oxidative stress (nitrotyrosine). The gastrointestinal (GI)-degraded fragment of peptide V-F, Val-Val-His-Pro-Lys (VVHPK), is also an ACE2-upregulating peptide. Peptides VRP, LKY, and VRY do not reduce BP, possibly due to low bioavailability or other unknown reasons. CONCLUSIONS Peptide V-F is the first ACE2-upregulating peptide, purified and fractionated from food proteins based on in vitro ACE2 upregulation, that reduces BP associated with the activation of ACE2/Ang (1-7)/MasR axis; the N-terminal moiety VVHPK may be responsible for the antihypertensive effect of V-F.
Collapse
Affiliation(s)
- Hongbing Fan
- Department of Agricultural, Food and Nutritional Science, University of Alberta, 4-10 Ag/For Building, Edmonton, Alberta, T6G 2P5, Canada
- Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, T6G 2R7, Canada
- Department of Animal and Food Sciences, University of Kentucky, Lexington, KY, 40546, USA
| | - Nan Shang
- Department of Agricultural, Food and Nutritional Science, University of Alberta, 4-10 Ag/For Building, Edmonton, Alberta, T6G 2P5, Canada
| | - Sandra T Davidge
- Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, T6G 2R7, Canada
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, Alberta, T6G 2R7, Canada
- Department of Physiology, University of Alberta, Edmonton, Alberta, T6G 2R7, Canada
- Women and Children's Health Research Institute, University of Alberta, Edmonton, Alberta, T6G 2R7, Canada
| | - Jianping Wu
- Department of Agricultural, Food and Nutritional Science, University of Alberta, 4-10 Ag/For Building, Edmonton, Alberta, T6G 2P5, Canada
- Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, T6G 2R7, Canada
| |
Collapse
|
6
|
Banić M, Butorac K, Čuljak N, Butorac A, Novak J, Pavunc AL, Rušanac A, Stanečić Ž, Lovrić M, Šušković J, Kos B. An Integrated Comprehensive Peptidomics and In Silico Analysis of Bioactive Peptide-Rich Milk Fermented by Three Autochthonous Cocci Strains. Int J Mol Sci 2024; 25:2431. [PMID: 38397111 PMCID: PMC10888711 DOI: 10.3390/ijms25042431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/12/2024] [Accepted: 02/17/2024] [Indexed: 02/25/2024] Open
Abstract
Bioactive peptides (BPs) are molecules of paramount importance with great potential for the development of functional foods, nutraceuticals or therapeutics for the prevention or treatment of various diseases. A functional BP-rich dairy product was produced by lyophilisation of bovine milk fermented by the autochthonous strains Lactococcus lactis subsp. lactis ZGBP5-51, Enterococcus faecium ZGBP5-52 and Enterococcus faecalis ZGBP5-53 isolated from the same artisanal fresh cheese. The efficiency of the proteolytic system of the implemented strains in the production of BPs was confirmed by a combined high-throughput mass spectrometry (MS)-based peptidome profiling and an in silico approach. First, peptides released by microbial fermentation were identified via a non-targeted peptide analysis (NTA) comprising reversed-phase nano-liquid chromatography (RP nano-LC) coupled with matrix-assisted laser desorption/ionisation-time-of-flight/time-of-flight (MALDI-TOF/TOF) MS, and then quantified by targeted peptide analysis (TA) involving RP ultrahigh-performance LC (RP-UHPLC) coupled with triple-quadrupole MS (QQQ-MS). A combined database and literature search revealed that 10 of the 25 peptides identified in this work have bioactive properties described in the literature. Finally, by combining the output of MS-based peptidome profiling with in silico bioactivity prediction tools, three peptides (75QFLPYPYYAKPA86, 40VAPFPEVFGK49, 117ARHPHPHLSF126), whose bioactive properties have not been previously reported in the literature, were identified as potential BP candidates.
Collapse
Affiliation(s)
- Martina Banić
- Laboratory for Antibiotic, Enzyme, Probiotic and Starter Culture Technologies, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (M.B.); (K.B.); (N.Č.); (J.N.); (A.L.P.); (A.R.); (J.Š.)
| | - Katarina Butorac
- Laboratory for Antibiotic, Enzyme, Probiotic and Starter Culture Technologies, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (M.B.); (K.B.); (N.Č.); (J.N.); (A.L.P.); (A.R.); (J.Š.)
| | - Nina Čuljak
- Laboratory for Antibiotic, Enzyme, Probiotic and Starter Culture Technologies, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (M.B.); (K.B.); (N.Č.); (J.N.); (A.L.P.); (A.R.); (J.Š.)
| | - Ana Butorac
- BICRO Biocentre Ltd., Borongajska cesta 83H, 10000 Zagreb, Croatia; (A.B.); (Ž.S.); (M.L.)
| | - Jasna Novak
- Laboratory for Antibiotic, Enzyme, Probiotic and Starter Culture Technologies, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (M.B.); (K.B.); (N.Č.); (J.N.); (A.L.P.); (A.R.); (J.Š.)
| | - Andreja Leboš Pavunc
- Laboratory for Antibiotic, Enzyme, Probiotic and Starter Culture Technologies, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (M.B.); (K.B.); (N.Č.); (J.N.); (A.L.P.); (A.R.); (J.Š.)
| | - Anamarija Rušanac
- Laboratory for Antibiotic, Enzyme, Probiotic and Starter Culture Technologies, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (M.B.); (K.B.); (N.Č.); (J.N.); (A.L.P.); (A.R.); (J.Š.)
| | - Željka Stanečić
- BICRO Biocentre Ltd., Borongajska cesta 83H, 10000 Zagreb, Croatia; (A.B.); (Ž.S.); (M.L.)
| | - Marija Lovrić
- BICRO Biocentre Ltd., Borongajska cesta 83H, 10000 Zagreb, Croatia; (A.B.); (Ž.S.); (M.L.)
| | - Jagoda Šušković
- Laboratory for Antibiotic, Enzyme, Probiotic and Starter Culture Technologies, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (M.B.); (K.B.); (N.Č.); (J.N.); (A.L.P.); (A.R.); (J.Š.)
| | - Blaženka Kos
- Laboratory for Antibiotic, Enzyme, Probiotic and Starter Culture Technologies, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (M.B.); (K.B.); (N.Č.); (J.N.); (A.L.P.); (A.R.); (J.Š.)
| |
Collapse
|
7
|
Dai H, He M, Hu G, Li Z, Al-Romaima A, Wu Z, Liu X, Qiu M. Discovery of ACE Inhibitory Peptides Derived from Green Coffee Using In Silico and In Vitro Methods. Foods 2023; 12:3480. [PMID: 37761189 PMCID: PMC10529643 DOI: 10.3390/foods12183480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/04/2023] [Accepted: 09/16/2023] [Indexed: 09/29/2023] Open
Abstract
Inhibition of angiotensin-I converting enzyme (ACE) is an important means of treating hypertension since it plays an important regulatory function in the renin-angiotensin system. The aim of this study was to investigate the ACE inhibitory effect of bioactive peptides from green coffee beans using in silico and in vitro methods. Alcalase and thermolysin were employed to hydrolyze protein extract from coffee beans. Bioactive peptides were identified by LC-MS/MS analysis coupled with database searching. The potential bioactivities of peptides were predicted by in silico screening, among which five novel peptides may have ACE inhibitory activity. In vitro assay was carried out to determine the ACE inhibitory degree. Two peptides (IIPNEVY, ITPPVMLPP) were obtained with IC50 values of 57.54 and 40.37 μM, respectively. Furthermore, it was found that two inhibitors bound to the receptor protein on similar sites near the S1 active pocket of ACE to form stable enzyme-peptide complexes through molecular docking, and the Lineweaver-Burk plot showed that IIPNEVY was a noncompetitive inhibitor, and ITPPVMLPP was suggested to be a mixed-type inhibitor. Our study demonstrated that two peptides isolated from coffee have potential applications as antihypertensive agents.
Collapse
Affiliation(s)
- Haopeng Dai
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (H.D.); (M.H.); (G.H.); (Z.L.); (A.A.-R.); (Z.W.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Min He
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (H.D.); (M.H.); (G.H.); (Z.L.); (A.A.-R.); (Z.W.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guilin Hu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (H.D.); (M.H.); (G.H.); (Z.L.); (A.A.-R.); (Z.W.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhongrong Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (H.D.); (M.H.); (G.H.); (Z.L.); (A.A.-R.); (Z.W.)
| | - Abdulbaset Al-Romaima
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (H.D.); (M.H.); (G.H.); (Z.L.); (A.A.-R.); (Z.W.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhouwei Wu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (H.D.); (M.H.); (G.H.); (Z.L.); (A.A.-R.); (Z.W.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaocui Liu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (H.D.); (M.H.); (G.H.); (Z.L.); (A.A.-R.); (Z.W.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Minghua Qiu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (H.D.); (M.H.); (G.H.); (Z.L.); (A.A.-R.); (Z.W.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
8
|
Kan R, Yu Z, Zhao W. Identification and molecular action mechanism of novel TAS2R14 blocking peptides from egg white proteins. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
9
|
Wang S, Zhao M, Fan H, Wu J. Peptidomics Study of Plant-Based Meat Analogs as a Source of Bioactive Peptides. Foods 2023; 12:foods12051061. [PMID: 36900588 PMCID: PMC10000916 DOI: 10.3390/foods12051061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/26/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
The demand for plant-based meat analogs (PBMA) is on the rise as a strategy to sustain the food protein supply while mitigating environmental change. In addition to supplying essential amino acids and energy, food proteins are known sources of bioactive peptides. Whether protein in PBMA affords similar peptide profiles and bioactivities as real meat remains largely unknown. The purpose of this study was to investigate the gastrointestinal digestion fate of beef and PBMA proteins with a special focus on their potential as precursors of bioactive peptides. Results showed that PBMA protein showed inferior digestibility than that in beef. However, PBMA hydrolysates possessed a comparable amino acid profile to that of beef. A total of 37, 2420 and 2021 peptides were identified in the gastrointestinal digests of beef, Beyond Meat and Impossible Meat, respectively. The astonishingly fewer peptides identified from beef digest is probably due to the near-full digestion of beef proteins. Almost all peptides in Impossible Meat digest were from soy, whereas 81%, 14% and 5% of peptides in Beyond Meat digest were derived from pea, rice and mung proteins, respectively. Peptides in PBMA digests were predicted to exert a wide range of regulatory roles and were shown to have ACE inhibitory, antioxidant and anti-inflammatory activities, supporting the potential of PBMA as a source of bioactive peptides.
Collapse
Affiliation(s)
- Shuguang Wang
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Mouming Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Hongbing Fan
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Jianping Wu
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
- Correspondence: ; Tel.: +1-(780)-492-6885
| |
Collapse
|
10
|
Zhu X, Xie D, Zhu Q, Li Y, Cui C. Preparation of β-lactoglobulin-derived tryptophan peptide and its effect on anxiety-like behaviors in Zebrafish. Front Nutr 2023; 9:1100718. [PMID: 36687713 PMCID: PMC9859658 DOI: 10.3389/fnut.2022.1100718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 12/05/2022] [Indexed: 01/09/2023] Open
Abstract
This study aimed to obtain three Trp-containing peptides from β-lactoglobulin and study their effects on anxiety-like behaviors in zebrafish. Three Trp-containing peptides were prepared from β-lactoglobulin by selective enzymatic hydrolysis and identified by UPLC-Q-TOF MS/MS. The anxiety-like behaviors of zebrafish were reduced after two weeks of administrated of β-lactoglobulin Trp peptides (LAWP), VAGTWY, VAGTW and G TW(concentration of 56 μg/mL or 500 μg/mL). As an index of serotonergic activity, we assessed the enhancing abilities of 5-HT synthesis. The treatment remarkably enhanced the 5-HT synthesis by upregulation of Trp concentration and Trp hydroxylase activation. In addition, this study further validated the anti-anxiety effects of whey protein hydrolysate with a high Trp index in animal and the experimental results were consistent with those reported in previous studies. Our results showed that β-lactoglobulin Trp peptides ingestion has a significant anti-anxiety effect as evidenced by the increasing Trp concentration, TPH activation and 5-HT level compared to the control group, with the VAGTW being the more effective.
Collapse
Affiliation(s)
- Xiping Zhu
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, China,*Correspondence: Xiping Zhu ✉
| | - Dan Xie
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, China
| | - Qiong Zhu
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, China
| | - Yufeng Li
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, China
| | - Chun Cui
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China,Research Institute for Food Nutrition and Human Health, Guangzhou, China,Chun Cui ✉
| |
Collapse
|
11
|
Purification of Extracellular Protease from Staphylococcus simulans QB7and Its Ability in Generating Antioxidant and Anti-inflammatory Peptides from Meat Proteins. Nutrients 2022; 15:nu15010065. [PMID: 36615723 PMCID: PMC9824131 DOI: 10.3390/nu15010065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/14/2022] [Accepted: 12/19/2022] [Indexed: 12/29/2022] Open
Abstract
Proteases, especially microbial proteases, are widely used in food processing. The purpose of this study was aimed to purify an extracellular protease produced by the strain Staphylococcus simulans QB7 and to evaluate its ability in hydrolyzing meat proteins and generating antioxidant and anti-inflammatory peptides. The optimal conditions for producing the enzyme were as follows: inoculum ratio, 10%; initial pH, 6.5; temperature, 32 °C; incubation time, 36 h; and rotation speed, 160 rpm. The protease had a molecular weight of approximately 47 kDa, possessing the optimal activity at 50 °C, pH 7.0, The protease was stable at pH 4.0-8.0 and 30-60 °C, and the activity was improved by Na+, Mg2+, Ca2+, and Zn2+ ions, whereas it was inhibited by Cu2+, Co2+, Fe3+, Ba2+, Fe2+, β-M, and ethylene diamine tetraacetic acid disodium salt (EDTA). The protease could effectively hydrolyze meat proteins, and the generated hydrolysate could significantly inhibit tumor necrosis factor-alpha (TNFα)-induced oxidative stress, including superoxide and malondialdehyde levels and inflammation (vascular adhesion molecule-1 [VCAM-1] and cyclooxygenase 2 [COX2)) in human vascular EA.hy926 cells. The present findings support the ability of S. simulans QB7 protease in generating antioxidant and anti-inflammatory peptides during the fermentation of meat products.
Collapse
|
12
|
Zheng W, Tian E, Liu Z, Zhou C, Yang P, Tian K, Liao W, Li J, Ren C. Small molecule angiotensin converting enzyme inhibitors: A medicinal chemistry perspective. Front Pharmacol 2022; 13:968104. [PMID: 36386190 PMCID: PMC9664202 DOI: 10.3389/fphar.2022.968104] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 10/17/2022] [Indexed: 10/07/2023] Open
Abstract
Angiotensin-converting enzyme (ACE), a zinc metalloprotein, is a central component of the renin-angiotensin system (RAS). It degrades bradykinin and other vasoactive peptides. Angiotensin-converting-enzyme inhibitors (ACE inhibitors, ACEIs) decrease the formation of angiotensin II and increase the level of bradykinin, thus relaxing blood vessels as well as reducing blood volume, lowering blood pressure and reducing oxygen consumption by the heart, which can be used to prevent and treat cardiovascular diseases and kidney diseases. Nevertheless, ACEIs are associated with a range of adverse effects such as renal insufficiency, which limits their use. In recent years, researchers have attempted to reduce the adverse effects of ACEIs by improving the selectivity of ACEIs for structural domains based on conformational relationships, and have developed a series of novel ACEIs. In this review, we have summarized the research advances of ACE inhibitors, focusing on the development sources, design strategies and analysis of structure-activity relationships and the biological activities of ACE inhibitors.
Collapse
Affiliation(s)
- Wenyue Zheng
- Departments of Obstetrics & Gynecology and Pediatrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
- Health Management Center, West China Second University Hospital, Chengdu, China
| | - Erkang Tian
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zhen Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Changhan Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Pei Yang
- Departments of Obstetrics & Gynecology and Pediatrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
- Health Management Center, West China Second University Hospital, Chengdu, China
| | - Keyue Tian
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Wen Liao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Juan Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Changyu Ren
- Department of Pharmacy, Chengdu Fifth People’s Hospital, Chengdu, China
| |
Collapse
|
13
|
Fan H, Wu K, Wu J. LRW fails to reduce blood pressure in spontaneously hypertensive rats due to its low gastrointestinal stability and transepithelial permeability. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101964] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
14
|
Feng C, Tian L, Jiao Y, Tan Y, Liu C, Luo Y, Hong H. The effect of steam cooking on the proteolysis of pacific oyster (Crassostrea gigas) proteins: Digestibility, allergenicity, and bioactivity. Food Chem 2022; 379:132160. [DOI: 10.1016/j.foodchem.2022.132160] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 02/08/2023]
|
15
|
Fan H, Liao W, Davidge ST, Wu J. Chicken Muscle-Derived ACE2 Upregulating Peptide VVHPKESF Inhibits Angiotensin II-Stimulated Inflammation in Vascular Smooth Muscle Cells via the ACE2/Ang (1-7)/MasR Axis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:6397-6406. [PMID: 35584253 DOI: 10.1021/acs.jafc.1c07161] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
This study aimed to evaluate the modulatory effects of four chicken muscle-derived peptides [VRP, LKY, VRY, and VVHPKESF (V-F)] on angiotensin II (Ang II)-induced inflammation in rat vascular smooth muscle A7r5 cells. Only V-F could significantly attenuate Ang II-stimulated inflammation via the inhibition of NF-κB and p38 MAPK signaling, being dependent on the Mas receptor (MasR) not on the Ang II type 1 or type 2 receptor (AT1R or AT2R). V-F accelerated Ang II degradation by enhancing cellular ACE2 activity, which was due to ACE2 upregulation other than a direct ACE2 activation. These findings demonstrated that V-F ameliorated Ang II-induced inflammation in A7r5 cells via the ACE2/Ang (1-7)/MasR axis. Three peptide metabolites of V-F─VHPKESF, PKESF, and SF─were identified but were not considered major contributors to V-F's bioactivity. The regulation of peptide V-F on vascular inflammation supported its functional food or nutraceutical application in the prevention and treatment of hypertension and cardiovascular diseases.
Collapse
Affiliation(s)
- Hongbing Fan
- Department of Agricultural, Food and Nutritional Science, 4-10 Ag/For Building, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
- Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta T6G 2R7, Canada
| | - Wang Liao
- Department of Agricultural, Food and Nutritional Science, 4-10 Ag/For Building, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
- Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta T6G 2R7, Canada
| | - Sandra T Davidge
- Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta T6G 2R7, Canada
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, Alberta T6G 2R7, Canada
- Department of Physiology, University of Alberta, Edmonton, Alberta T6G 2R7, Canada
- Women and Children's Health Research Institute, University of Alberta, Edmonton, Alberta T6G 2R7, Canada
| | - Jianping Wu
- Department of Agricultural, Food and Nutritional Science, 4-10 Ag/For Building, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
- Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta T6G 2R7, Canada
| |
Collapse
|
16
|
Role of structural properties of bioactive peptides in their stability during simulated gastrointestinal digestion: A systematic review. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.01.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
17
|
Optimisation and Characterisation of Novel Angiotensin-Converting Enzyme Inhibitory Peptides Prepared by Double Enzymatic Hydrolysis from Agaricus bisporus Scraps. Foods 2022; 11:foods11030394. [PMID: 35159545 PMCID: PMC8834213 DOI: 10.3390/foods11030394] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 01/28/2022] [Accepted: 01/28/2022] [Indexed: 01/08/2023] Open
Abstract
Food-derived hypotensive peptides have attracted attention in the field of active peptide research in recent years. In this study, based on ACE inhibition rate and using the Box–Behnken central combination design principle to optimise the process of ACE inhibitor peptides prepared by double-enzyme hydrolysis. The amino acid sequences of ACE inhibitor peptides were determined by liquid chromatography mass spectrometry (LC-MS/MS), and their binding to ACE was studied by molecular docking. The optimal processing conditions were 1:1 alkaline protease: compound protease, pH was 8.43, enzymolysis temperature was 44.32 °C, and enzymolysis time was 3.52 h. Under these conditions, the ACE inhibition rate reached 65.12%, and the inhibition rate after separation and purification was 80.68% (IC50 = 0.9 mg/mL). Three novel peptides with ACE inhibitory activity were detected by LC-MS/MS, with sequences LVYP (Leu-Val-Tyr-Pro), VYPW(Val-Tyr-Pro-Trp) and YPWT(Tyr-Pro-Trp-Thr). Molecular docking revealed that the three novel peptides all established hydrogen bonds with the S1(Tyr523, Glu384, Ala354) and S2 (His353) pockets of ACE. Among them, LVYP, VYPW and YPWT, respectively, formed eleven hydrogen bonds, six hydrogen bonds and nine hydrogen bonds with ACE. The study revealed that these peptides have the potential for the development of novel ACE inhibitor drugs and provide a new avenue for high-value utilisation of mushrooms scraps.
Collapse
|
18
|
Wu Q, Luo F, Wang XL, Lin Q, Liu GQ. Angiotensin I-converting enzyme inhibitory peptide: an emerging candidate for vascular dysfunction therapy. Crit Rev Biotechnol 2021; 42:736-755. [PMID: 34634988 DOI: 10.1080/07388551.2021.1948816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Abnormal vasoconstriction, inflammation, and vascular remodeling can be promoted by angiotensin II (Ang II) in the renin-angiotensin system (RAS), leading to vascular dysfunction diseases such as hypertension and atherosclerosis. Researchers have recently focused on angiotensin I-converting enzyme inhibitory peptides (ACEIPs), that have desirable efficacy in vascular dysfunction therapy due to Ang II reduction by inhibiting ACE activity. Promising methods for the large-scale preparation of ACEIPs include selective enzymatic hydrolysis and microbial fermentation. Thus far, ACEIPs have been widely reported to be hydrolyzed from protein-rich sources, including animals, plants, and marine organisms, while many emerging microorganism-derived ACEIPs are theoretically biosynthesized through the nonribosomal peptide synthase (NRPS) pathway. Notably, vasodilatation, anti-inflammation, and vascular reconstruction reversal of ACEIPs are strongly correlated. However, the related molecular mechanisms underlying signal transduction regulation in vivo remain unclear. We provide a comprehensive update of the ACE-Ang II-G protein-coupled type 1 angiotensin receptor (AT1R) axis signaling and its functional significance for potential translation into therapeutic strategies, particularly targeting AT1R by ACEIPs, as well as specific related signaling pathways. Future studies are expected to verify the biosynthetic regulatory mechanism of ACEIPs via the NRPS pathway, the effect of gut microbiota metabolism on vascular dysfunction and rigorous studies of ACE-Ang II-AT1R signaling pathways mediated by ACEIPs in large animals and humans.
Collapse
Affiliation(s)
- Qiang Wu
- International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology of Hunan Province, Central South University of Forestry and Technology, Changsha, China.,College of Food and Chemical Engineering, Shaoyang University, Shaoyang, China
| | - Feijun Luo
- International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology of Hunan Province, Central South University of Forestry and Technology, Changsha, China.,College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
| | - Xiao-Ling Wang
- International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology of Hunan Province, Central South University of Forestry and Technology, Changsha, China
| | - Qinlu Lin
- International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology of Hunan Province, Central South University of Forestry and Technology, Changsha, China.,College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
| | - Gao-Qiang Liu
- International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology of Hunan Province, Central South University of Forestry and Technology, Changsha, China
| |
Collapse
|
19
|
He Z, Liu G, Qiao Z, Cao Y, Song M. Novel Angiotensin-I Converting Enzyme Inhibitory Peptides Isolated From Rice Wine Lees: Purification, Characterization, and Structure-Activity Relationship. Front Nutr 2021; 8:746113. [PMID: 34568409 PMCID: PMC8460919 DOI: 10.3389/fnut.2021.746113] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 08/17/2021] [Indexed: 11/24/2022] Open
Abstract
The bioactive peptides that can inhibit angiotensin-I converting enzyme (ACE, EC. 3. 4.15.1) are considered as possible cures of hypertension. Food-derived angiotensin-I converting enzyme inhibitory (ACEi) peptides have gained more attention because of their reduced side effects. In this study, we reported the method for purifying ACEi peptides from the lees of traditional Chinese rice wine and evaluated the product's biochemical properties. After three steps of reversed-phase high-performance liquid chromatography (RP-HPLC), for the first time, we isolated, purified, and identified two novel peptides: LIIPQH and LIIPEH, both of which showed strong ACEi activity (IC50-values of 120.10 ± 9.31 and 60.49±5.78 μg/ml, respectively). They were further categorized as mixed-type ACE inhibitors and were stable against both ACE and gastrointestinal enzymes during in vitro digestion. Together, these results suggest that the rice wine lees that produced as a by-product during rice wine production can be utilized in various fields related to functional foods and antihypertensive medicine.
Collapse
Affiliation(s)
- Zeqi He
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Sciences, South China Agricultural University, Guangzhou, China
| | - Guo Liu
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Sciences, South China Agricultural University, Guangzhou, China
| | - Zijiao Qiao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Sciences, South China Agricultural University, Guangzhou, China
| | - Yong Cao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Sciences, South China Agricultural University, Guangzhou, China
| | - Mingyue Song
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Sciences, South China Agricultural University, Guangzhou, China
| |
Collapse
|
20
|
Lu Y, Wang Y, Huang D, Bian Z, Lu P, Fan D, Wang X. Inhibitory mechanism of angiotensin-converting enzyme inhibitory peptides from black tea. J Zhejiang Univ Sci B 2021; 22:575-589. [PMID: 34269010 DOI: 10.1631/jzus.b2000520] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The aim of this work is to discover the inhibitory mechanism of tea peptides and to analyse the affinities between the peptides and the angiotensin-converting enzyme (ACE) as well as the stability of the complexes using in vitro and in silico methods. Four peptide sequences identified from tea, namely peptides I, II, III, and IV, were used to examine ACE inhibition and kinetics. The half maximal inhibitory concentration (IC50) values of the four peptides were (210.03±18.29), (178.91±5.18), (196.31±2.87), and (121.11±3.38) μmol/L, respectively. The results of Lineweaver-Burk plots showed that peptides I, II, and IV inhibited ACE activity in an uncompetitive manner, which requires the presence of substrate. Peptide III inhibited ACE in a non-competitive manner, for which the presence of substrate is not necessary. The docking simulations showed that the four peptides did not bind to the active sites of ACE, indicating that the four peptides are allosteric inhibitors. The binding free energies calculated from molecular dynamic (MD) simulation were -72.47, -42.20, -52.10, and -67.14 kcal/mol (1 kcal=4.186 kJ), respectively. The lower IC50 value of peptide IV may be attributed to its stability when docking with ACE and changes in the flexibility and unfolding of ACE. These four bioactive peptides with ACE inhibitory ability can be incorporated into novel functional ingredients of black tea.
Collapse
Affiliation(s)
- Yating Lu
- Tea Research Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Yu Wang
- Tea Research Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Danyi Huang
- Tea Research Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Zhuang Bian
- Tea Research Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Peng Lu
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Dongmei Fan
- Tea Research Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Xiaochang Wang
- Tea Research Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
21
|
Sierra L, Fan H, Zapata J, Wu J. Antioxidant peptides derived from hydrolysates of red tilapia (Oreochromis sp.) scale. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111631] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
22
|
Udenigwe CC, Abioye RO, Okagu IU, Obeme-Nmom JI. Bioaccessibility of bioactive peptides: recent advances and perspectives. Curr Opin Food Sci 2021. [DOI: 10.1016/j.cofs.2021.03.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
23
|
Li J, Su J, Chen M, Chen J, Ding W, Li Y, Yin H. Two novel potent ACEI peptides isolated from Pinctada fucata meat hydrolysates using in silico analysis: identification, screening and inhibitory mechanisms. RSC Adv 2021; 11:12172-12182. [PMID: 35423777 PMCID: PMC8696521 DOI: 10.1039/d0ra10476k] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 03/09/2021] [Indexed: 12/21/2022] Open
Abstract
The aim of this study was to discover potent angiotensin-converting enzyme (ACE) inhibitory (ACEI) peptides from Pinctada fucata (P. fucata) for treating hypertension and to characterize them using in silico analysis. The P. fucata proteins were hydrolyzed by Alcalase®, a serine endopeptidase with broad selectivity, at various times (0, 2, 4, 6, 8, 10 h). The degree of hydrolysis (DH) and ACEI activity of the different hydrolysates were measured. Considering the molecular weight and ACEI activity, the 10 h hydrolysate was purified by a series of traditional separation methods, including ultrafiltration, gel G-25 chromatography, and reversed-phase high-performance liquid chromatography (RP-HPLC), with ACEI activity as a guide. The results showed two fractions, C17 and C18, eluted by means of semi-preparative RP-HPLC, and showed the highest ACEI activities of 80.33 ± 2.70% and 81.66 ± 0.29%, respectively, at 1 mg mL-1. The two fractions were then identified using liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) and their MS/MS spectra data were subjected to de novo sequencing. Subsequently, the potential ACEI peptides were screened by in silico methods, namely, to analyze the average local confidence (ALC) value obtained from the sequencing software and the P-value from the Pepsite 2. In total, 13 potential ACEI peptide sequences were obtained and identified from the two fractions by LC-ESI-MS/MS, and two novel tetrapeptides, FRVW (607.3314 Da) and LPYY (555.2881 Da), were screened for synthesis according to the in silico analysis. The in vitro ACEI tests indicated that FRVW and LPYY had IC50 values of 18.34 and 116.26 μM, respectively. The Lineweaver-Burk plot showed that FRVW was a noncompetitive inhibitor, and LPYY was shown to be a mixed-mode type inhibitor. A stability study against ACE indicated that both peptides were hydrolyzed by ACE to some extent, the higher ACEI activity following incubation with ACE indicating that they should be classified as pro-drug substrates. Molecular docking results showed that hydrophobic amino acids (HAAs) within peptides formed vital interactions including hydrogen bonds, electrostatic forces, van der Waals forces and Pi-Pi interactions with ACE residues, which stabilized the enzyme-peptide complex. Furthermore, the docking results accorded with the inhibition kinetic mode. Our study demonstrated that FRVW and LPYY isolated from P. fucata have potential applications as antihypertensive agents.
Collapse
Affiliation(s)
- Jiao Li
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences Guangzhou 510301 China
- Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences Guangzhou 510301 China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou) Guangzhou 511458 China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences Beijing 100049 China
| | - Jilei Su
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences Guangzhou 510301 China
- Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences Guangzhou 510301 China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou) Guangzhou 511458 China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences Beijing 100049 China
| | - Min Chen
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences Guangzhou 510301 China
- Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences Guangzhou 510301 China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou) Guangzhou 511458 China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences Beijing 100049 China
| | - Jiao Chen
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine Nanjing 210028 China
- Laboratory of Cellular and Molecular Biology, Jiangsu Province Academy of Traditional Chinese Medicine Nanjing 210028 China
| | - Wenping Ding
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences Guangzhou 510301 China
- Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences Guangzhou 510301 China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou) Guangzhou 511458 China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences Beijing 100049 China
| | - Yanqun Li
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences Guangzhou 510301 China
- Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences Guangzhou 510301 China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou) Guangzhou 511458 China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences Beijing 100049 China
| | - Hao Yin
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences Guangzhou 510301 China
- Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences Guangzhou 510301 China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou) Guangzhou 511458 China
| |
Collapse
|
24
|
Feng X, Liao D, Sun L, Wu S, Lan P, Wang Z, Li C, Zhou Q, Lu Y, Lan X. Affinity Purification of Angiotensin Converting Enzyme Inhibitory Peptides from Wakame (Undaria Pinnatifida) Using Immobilized ACE on Magnetic Metal Organic Frameworks. Mar Drugs 2021; 19:177. [PMID: 33807119 PMCID: PMC8004985 DOI: 10.3390/md19030177] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 03/14/2021] [Accepted: 03/20/2021] [Indexed: 12/25/2022] Open
Abstract
Angiotensin-I-converting enzyme (ACE) inhibitory peptides derived from marine organism have shown a blood pressure lowering effect with no side effects. A new affinity medium of Fe3O4@ZIF-90 immobilized ACE (Fe3O4@ZIF-90-ACE) was prepared and used in the purification of ACE inhibitory peptides from Wakame (Undaria pinnatifida) protein hydrolysate (<5 kDa). The Fe3O4@ZIF-90 nanoparticles were prepared by a one-pot synthesis and crude ACE extract from pig lung was immobilized onto it, which exhibited excellent stability and reusability. A novel ACE inhibitory peptide, KNFL (inhibitory concentration 50, IC50 = 225.87 μM) was identified by affinity purification using Fe3O4@ZIF-90-ACE combined with reverse phase-high performance liquid chromatography (RP-HPLC) and MALDI-TOF mass spectrometry. Lineweaver-Burk analysis confirmed the non-competitive inhibition pattern of KNFL, and molecular docking showed that it bound at a non-active site of ACE via hydrogen bonds. This demonstrates that affinity purification using Fe3O4@ZIF-90-ACE is a highly efficient method for separating ACE inhibitory peptides from complex protein mixtures and the purified peptide KNFL could be developed as a functional food ingredients against hypertension.
Collapse
Affiliation(s)
- Xuezhen Feng
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China; (X.F.); (L.S.); (Z.W.); (C.L.); (Q.Z.)
- Medical College, Guangxi University of Science and Technology, Liuzhou 545006, China; (S.W.); (Y.L.)
| | - Dankui Liao
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China; (X.F.); (L.S.); (Z.W.); (C.L.); (Q.Z.)
| | - Lixia Sun
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China; (X.F.); (L.S.); (Z.W.); (C.L.); (Q.Z.)
| | - Shanguang Wu
- Medical College, Guangxi University of Science and Technology, Liuzhou 545006, China; (S.W.); (Y.L.)
| | - Ping Lan
- Guangxi Key Laboratory of Polysaccharide Materials and Modifications, School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning 530008, China;
| | - Zefen Wang
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China; (X.F.); (L.S.); (Z.W.); (C.L.); (Q.Z.)
| | - Chunzhi Li
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China; (X.F.); (L.S.); (Z.W.); (C.L.); (Q.Z.)
| | - Qian Zhou
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China; (X.F.); (L.S.); (Z.W.); (C.L.); (Q.Z.)
| | - Yuan Lu
- Medical College, Guangxi University of Science and Technology, Liuzhou 545006, China; (S.W.); (Y.L.)
| | - Xiongdiao Lan
- Guangxi Key Laboratory of Polysaccharide Materials and Modifications, School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning 530008, China;
| |
Collapse
|
25
|
Liu X, Wang Z, Gao Y, Liu C, Wang J, Fang L, Min W, Zhang JL. Molecular dynamics investigation on the interaction of human angiotensin-converting enzyme with tetrapeptide inhibitors. Phys Chem Chem Phys 2021; 23:6685-6694. [PMID: 33710217 DOI: 10.1039/d1cp00172h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Angiotensin-converting enzyme (ACE) is a well-known zinc metalloenzyme whose physiological functions are vital to blood pressure regulation and management of hypertension. The development of more efficient peptide inhibitors is of great significance for the prevention and treatment of hypertension. In this research, molecular dynamics (MD) simulations were implemented to study the specific binding mechanism and interaction between human ACE (hACE) and tetrapeptides, YIHP, YKHP, YLVR, and YRHP. The calculation of relative binding free energy on the one hand verified that YLVR, an experimentally identified inhibitor, has a stronger inhibitory effect and, on the other hand, indicated that YRHP is the "best" inhibitor with the strongest binding affinity. Inspection of atomic interactions discriminated the specific binding mode of each tetrapeptide inhibitor with hACE and explained the difference of their affinity. Moreover, in-depth analysis of the MD production trajectories, including clustering, principal component analysis, and dynamic network analysis, determined the dynamic correlation between tetrapeptides and hACE and obtained the communities' distribution of a protein-ligand complex. The present study provides essential insights into the binding mode and interaction mechanism of the hACE-peptide complex, which paves a path for designing effective anti-hypertensive peptides.
Collapse
Affiliation(s)
- Xiaoting Liu
- College of Food Science and Engineering, National Engineering Laboratory of Wheat and Corn Deep Processing, Jilin Agricultural University, Changchun 130118, Jilin, People's Republic of China.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Proteolysis of tilapia skin collagen: Identification and release behavior of ACE-inhibitory peptides. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110502] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
27
|
Lu X, Sun Q, Zhang L, Wang R, Gao J, Jia C, Huang J. Dual-enzyme hydrolysis for preparation of ACE-inhibitory peptides from sesame seed protein: Optimization, separation, and identification. J Food Biochem 2021; 45:e13638. [PMID: 33543791 DOI: 10.1111/jfbc.13638] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 01/15/2021] [Accepted: 01/18/2021] [Indexed: 01/16/2023]
Abstract
To prepare and identify ACE-inhibitory peptides originated from sesame seed protein, peptides with strong ACE-inhibitory activities were obtained via the optimization of protease and hydrolysis conditions, and these peptides were purified and identified by membrane separation, gel filtration, and liquid chromatography-mass spectrometry. Results showed that the dual-enzyme comprised alcalase and trypsin with the enzyme activity ratio of 3:7 was suitable to produce ACE-inhibitory peptides. The highest ACE-inhibitory activity of 98.10 ± 0.26% was obtained at the following parameters, pH 8.35, E/S ratio of 6,145 U/g, and hydrolysis time of 4.4 hr. ISGAQPSLR and VVISAPSK ranked the first and second ACE-inhibitory activity among 15 identified ACE-inhibitory peptides. Both peptides influenced ACE via binding with the S1 pocket, S2 pocket, and Zn2+ ion. ISGAQPSLR even impacted the S1' pocket. ISGAQPSLR and VVISAPSK acted as a competitive and noncompetitive inhibitor, respectively. ACE-inhibitory peptides derivated from sesame seed protein have potential applications in functional food. PRACTICAL APPLICATIONS: Although sesame seed protein is proven as the precursor of ACE-inhibitory peptide, preparing ACE-inhibitory peptide from sesame seed protein is still suffering from insufficient information on hydrolysis condition and the peptide sequence. Therefore, the performance of the typical protease on preparing ACE-inhibitory peptide from sesame seed protein has been evaluated, the effect of the amino acid composition of sesame seed protein and cleavage specificity of protease on the generation of ACE-inhibitory peptide has been investigated, hydrolysis conditions have been optimized, the peptide sequence has been identified to illuminate the effect of sesame seed protein fraction on the formation of ACE-inhibitory peptide and discuss the structural characteristics. ACE-inhibitory peptides originating from sesame seed protein could apply in functional food. It is promising for dual-enzyme hydrolysis to utilize in preparation of high-value bioactive peptides.
Collapse
Affiliation(s)
- Xin Lu
- Research Center for Agricultural and Sideline Products Processing, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, P.R. China
| | - Qiang Sun
- Research Center for Agricultural and Sideline Products Processing, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, P.R. China
| | - Lixia Zhang
- Research Center for Agricultural and Sideline Products Processing, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, P.R. China
| | - Ruidan Wang
- Research Center for Agricultural and Sideline Products Processing, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, P.R. China
| | - Jinhong Gao
- Research Center for Agricultural and Sideline Products Processing, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, P.R. China
| | - Cong Jia
- Research Center for Agricultural and Sideline Products Processing, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, P.R. China
| | - Jinian Huang
- Research Center for Agricultural and Sideline Products Processing, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, P.R. China
| |
Collapse
|
28
|
Purification and identification of novel ACE inhibitory and ACE2 upregulating peptides from spent hen muscle proteins. Food Chem 2020; 345:128867. [PMID: 33352405 DOI: 10.1016/j.foodchem.2020.128867] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 12/08/2020] [Accepted: 12/08/2020] [Indexed: 12/31/2022]
Abstract
The study explored the use of spent hen, a major egg industry byproduct, as the starting material for preparing antihypertensive peptides. While previous studies were focused mainly on ACE inhibitory (ACEi) peptides, this work also studied peptides with ACE2 upregulating (ACE2u) activity, an emerging target for treating hypertension. Spent hen muscle protein hydrolysate prepared by thermoase (SPH-T) exhibited both ACEi and ACE2u activities. After ultrafiltration and chromatographic fractionation, five potent ACEi peptides, VRP, LKY, VRY, KYKA, and LKYKA, with IC50 values of 0.034-5.77 μg/mL, respectively, and four ACE2u peptides, VKW, VHPKESF, VVHPKESF and VAQWRTKYETDAIQRTEELEEAKKK, which increased ACE2 expression by 0.52-0.84 folds, respectively, were identified; VKW also showed ACEi activity. All peptides, except for VRP, are susceptible to degradation during the simulated gastrointestinal digestion. Our study supports the potential use of spent hens as antihypertensive functional food ingredients and nutraceuticals.
Collapse
|
29
|
Kaur A, Kehinde BA, Sharma P, Sharma D, Kaur S. Recently isolated food-derived antihypertensive hydrolysates and peptides: A review. Food Chem 2020; 346:128719. [PMID: 33339686 DOI: 10.1016/j.foodchem.2020.128719] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 11/06/2020] [Accepted: 11/20/2020] [Indexed: 12/13/2022]
Abstract
Hypertension is a non-communicable disease characterized by elevated blood pressure, and a prominent metabolic syndrome of modern age. Food-borne bioactive peptides have shown considerable potencies as suitable therapeutic agents for hypertension. The peptide inhibition of the angiotensin I-converting enzyme (ACE) from its default biochemical conversion of Ang I to Ang II has been studied and more relatively adopted in several studies. This review offers an examination of the isolation of concomitant proteins in foods, their hydrolysis into peptides and the biofunctionality checks of those peptides based on their anti-hypertensive potentialities. Furthermore, critical but concise details about methodologies and analytical techniques used in the purification of such peptides are discussed. This review is a beneficial literature supplement for scholars and provides functional awareness material for the food-aligned alternative therapy for hypertension. In addition, it points researchers in the direction of adopting food materials and associated by-products as natural sources for the isolation biologically active peptides.
Collapse
Affiliation(s)
- Arshdeep Kaur
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Jalandhar-Delhi GT Road, Phagwara 144411, Punjab, India
| | | | - Poorva Sharma
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Jalandhar-Delhi GT Road, Phagwara 144411, Punjab, India.
| | - Deepansh Sharma
- Amity Institute of Microbial Technology, Amity University Rajasthan, India
| | - Sawinder Kaur
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Jalandhar-Delhi GT Road, Phagwara 144411, Punjab, India
| |
Collapse
|
30
|
Aminopeptidase N inhibitory peptides derived from hen eggs: Virtual screening, inhibitory activity, and action mechanisms. FOOD BIOSCI 2020. [DOI: 10.1016/j.fbio.2020.100703] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
31
|
Spent Hen Protein Hydrolysate with Good Gastrointestinal Stability and Permeability in Caco-2 Cells Shows Antihypertensive Activity in SHR. Foods 2020; 9:foods9101384. [PMID: 33019511 PMCID: PMC7601532 DOI: 10.3390/foods9101384] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 09/19/2020] [Accepted: 09/22/2020] [Indexed: 12/17/2022] Open
Abstract
Spent hens are a major byproduct of the egg industry but are rich in muscle proteins that can be enzymatically transformed into bioactive peptides. The present study aimed to develop a spent hen muscle protein hydrolysate (SPH) with antihypertensive activity. Spent hen muscle proteins were hydrolyzed by nine enzymes, either individually or in combination; 18 SPHs were assessed initially for their in vitro angiotensin-converting enzyme (ACE) inhibitory activity, and three SPHs, prepared by Protex 26L (SPH-26L), pepsin (SPH-P), and thermoase (SPH-T), showed promising activity and peptide yield. These three hydrolysates were further assessed for their angiotensin-converting enzyme 2 (ACE2) upregulating, antioxidant, and anti-inflammatory activities; only SPH-T upregulated ACE2 expression, while all three SPHs showed antioxidant and anti-inflammatory activities. During simulated gastrointestinal digestion, ACE2 upregulating, ACE inhibitory and antioxidant activities of SPH-T were not affected, but those of SPH-26L and SPH-P were reduced. ACE inhibitory activity of gastrointestinal-digested SPH-T was not affected after the permeability study in Caco-2 cells, while ACE2 upregulating, antioxidant and anti-inflammatory activities were improved; nine novel peptides with five–eight amino acid residues were identified from the Caco-2 permeate. Among these three hydrolysates, only SPH-T reduced blood pressure significantly when given orally at a daily dose of 1000 mg/kg body weight to spontaneously hypertensive rats. SPH-T can be developed into a promising functional food ingredient against hypertension, contributing to a more sustainable utilization for spent hens while generating extra revenue for the egg industry.
Collapse
|
32
|
Moreno-Fernández S, Garcés-Rimón M, Miguel M. Egg-derived peptides and hydrolysates: A new bioactive treasure for cardiometabolic diseases. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.08.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
33
|
Yu Z, Wang L, Wu S, Zhao W, Ding L, Liu J. In vivo
anti‐hypertensive effect of peptides from egg white and its molecular mechanism with ACE. Int J Food Sci Technol 2020. [DOI: 10.1111/ijfs.14756] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Zhipeng Yu
- College of Food Science and Engineering Bohai University Jinzhou121013China
| | - Li Wang
- College of Food Science and Engineering Bohai University Jinzhou121013China
| | - Sijia Wu
- College of Food Science and Engineering Bohai University Jinzhou121013China
| | - Wenzhu Zhao
- College of Food Science and Engineering Bohai University Jinzhou121013China
| | - Long Ding
- College of Food Science and Engineering Northwest A&F University Yangling712100China
| | - Jingbo Liu
- Lab of Nutrition and Functional Food Jilin University Changchun130062China
| |
Collapse
|
34
|
Li Y, Zhang H, Zhang S, Yan X, Shao Y, Jiang Y. Egg White peptide KPHAEVVLR promotes skin fibroblasts migration and mice skin wound healing by stimulating cell membrane Hsp90α secretion. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.03.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
35
|
Xiao N, Zhao Y, Yao Y, Wu N, Xu M, Du H, Tu Y. Biological Activities of Egg Yolk Lipids: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:1948-1957. [PMID: 32009394 DOI: 10.1021/acs.jafc.9b06616] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
As one of six dietary nutrients, lipid derived from different food matrices has been extensively studied and has an appropriate application in food, medicine, and cosmetic industry. Egg is a richly nutritive food, of which proteins and lipids possess excellent functional characteristics and biological activities. In recent years, egg yolk lipid has been successively separated and investigated, such as egg yolk oil, phospholipids, and fatty acids, which have anti-inflammatory activity, antioxidant activity, cardiovascular protection, and memory improvement, involving the regulation of cell function and physiological homeostatic balance. In this paper, the biological activities and underlying benefit of egg yolk lipids and fat-soluble components have been highlighted and summarized. Meanwhile, the quantitative data of egg yolk lipids needed to achieve any of the described biological effects and recommended concentrations relevant for dietary intake are reviewed. Finally, current challenges and crucial issues of high-efficiency utilization of egg yolk lipids are also discussed.
Collapse
Affiliation(s)
- Nanhai Xiao
- Jiangxi Key Laboratory of Natural Products and Functional Food , Jiangxi Agricultural University , Nanchang , Jiangxi 330045 , People's Republic of China
| | - Yan Zhao
- Engineering Research Center of Biomass Conversion, Ministry of Education , Nanchang University , Nanchang , Jiangxi 330047 , People's Republic of China
- State Key Laboratory of Food Science and Technology , Nanchang University , Nanchang , Jiangxi 330047 , People's Republic of China
| | - Yao Yao
- Jiangxi Key Laboratory of Natural Products and Functional Food , Jiangxi Agricultural University , Nanchang , Jiangxi 330045 , People's Republic of China
| | - Na Wu
- Jiangxi Key Laboratory of Natural Products and Functional Food , Jiangxi Agricultural University , Nanchang , Jiangxi 330045 , People's Republic of China
| | - Mingsheng Xu
- Jiangxi Key Laboratory of Natural Products and Functional Food , Jiangxi Agricultural University , Nanchang , Jiangxi 330045 , People's Republic of China
| | - Huaying Du
- Jiangxi Key Laboratory of Natural Products and Functional Food , Jiangxi Agricultural University , Nanchang , Jiangxi 330045 , People's Republic of China
| | - Yonggang Tu
- Jiangxi Key Laboratory of Natural Products and Functional Food , Jiangxi Agricultural University , Nanchang , Jiangxi 330045 , People's Republic of China
| |
Collapse
|
36
|
Wang R, Lu X, Sun Q, Gao J, Ma L, Huang J. Novel ACE Inhibitory Peptides Derived from Simulated Gastrointestinal Digestion in Vitro of Sesame ( Sesamum indicum L.) Protein and Molecular Docking Study. Int J Mol Sci 2020; 21:E1059. [PMID: 32033479 PMCID: PMC7037947 DOI: 10.3390/ijms21031059] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 02/02/2020] [Accepted: 02/03/2020] [Indexed: 01/31/2023] Open
Abstract
The aim of this study was to isolate and identify angiotensin I-converting enzyme (ACE) inhibitory peptides from sesame protein through simulated gastrointestinal digestion in vitro, and to explore the underlying mechanisms by molecular docking. The sesame protein was enzymatically hydrolyzed by pepsin, trypsin, and α-chymotrypsin. The degree of hydrolysis (DH) and peptide yield increased with the increase of digest time. Moreover, ACE inhibitory activity was enhanced after digestion. The sesame protein digestive solution (SPDS) was purified by ultrafiltration through different molecular weight cut-off (MWCO) membranes and SPDS-VII (< 3 kDa) had the strongest ACE inhibition. SPDS-VII was further purified by NGC Quest™ 10 Plus Chromatography System and finally 11 peptides were identified by Nano UHPLC-ESI-MS/MS (nano ultra-high performance liquid chromatography-electrospray ionization mass spectrometry/mass spectrometry) from peak 4. The peptide GHIITVAR from 11S globulin displayed the strongest ACE inhibitory activity (IC50 = 3.60 ± 0.10 μM). Furthermore, the docking analysis revealed that the ACE inhibition of GHIITVAR was mainly attributed to forming very strong hydrogen bonds with the active sites of ACE. These results identify sesame protein as a rich source of ACE inhibitory peptides and further indicate that GHIITVAR has the potential for development of new functional foods.
Collapse
Affiliation(s)
| | | | | | | | | | - Jinian Huang
- Research Center for Agricultural and Sideline Products Processing, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (R.W.); (X.L.); (Q.S.); (J.G.); (L.M.)
| |
Collapse
|
37
|
Zhao W, Zhang D, Yu Z, Ding L, Liu J. Novel membrane peptidase inhibitory peptides with activity against angiotensin converting enzyme and dipeptidyl peptidase IV identified from hen eggs. J Funct Foods 2020. [DOI: 10.1016/j.jff.2019.103649] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
38
|
Separation and Purification of Antioxidant Peptides from Enzymatically Prepared Scorpion (Buthus martensii Karsch) Protein Hydrolysates. Int J Pept Res Ther 2019. [DOI: 10.1007/s10989-019-09976-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|