1
|
Wu PC, Chao YH, Zhang X, Chen TT, Kuo YH, Lin CC, Chang HH. Evaluation of the potential of Ergostatrien-3β-ol for treating Sjögren's syndrome. Int J Rheum Dis 2024; 27:e15341. [PMID: 39498888 DOI: 10.1111/1756-185x.15341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/26/2024] [Accepted: 09/08/2024] [Indexed: 11/07/2024]
Abstract
AIM Ergostatrien-3β-ol (EK100) is a bioactive compound found in the fruiting bodies and mycelia of Antrodia cinnamomea and has anti-inflammatory and immunomodulatory properties. This study aims to evaluate the potential of EK100 as a treatment for Sjögren's syndrome (SS). METHODS We employed a spontaneous SS model in non-obese diabetic (NOD)/Ltj mice to assess the therapeutic potential of EK100. The effects of EK100 were evaluated based on stimulated salivary flow rates, sialadenitis, expression of inflammatory cytokines in salivary glands, and profiles of T cell subsets in the spleen. Additionally, in vitro experiments were conducted to assess the impact of EK100 on Th17 cell differentiation and dendritic cell (DC) maturation. RESULTS EK100 treatment significantly increased salivary flow rates, suppressed lymphocyte infiltration, and decreased the concentrations of anti-SSA/Ro and anti-SSB/La autoantibodies. EK100 also downregulated the expression of various inflammatory cytokines in the salivary glands and reduced the populations of Th1 and Th17 cells in the spleens of NOD/Ltj mice. In vitro experiments confirmed that EK100 inhibited the differentiation of Th17 cells and the maturation of DCs. CONCLUSION Our findings suggest that EK100 may offer a promising therapeutic avenue for the treatment of SS by modulating the interaction between Th17 cells and DCs.
Collapse
Affiliation(s)
- Po-Chang Wu
- Doctoral Program in Translational Medicine, National Chung Hsing University, Taichung, Taiwan
- Rong Hsing Translational Medicine Research Center, National Chung Hsing University, Taichung, Taiwan
- Rheumatology and Immunology Center, China Medical University Hospital, Taichung, Taiwan
- School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan
| | - Ya-Husan Chao
- Doctoral Program in Translational Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Xiang Zhang
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
| | - Tzu-Ting Chen
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Yueh-Hsiung Kuo
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Chinese Medicine, China Medical University, Taichung, Taiwan
- Department of Biotechnology, Asia University, Taichung, Taiwan
- Chinese Medicine Research Center, China Medical University, Taichung, Taiwan
| | - Chih-Chen Lin
- Doctoral Program in Translational Medicine, National Chung Hsing University, Taichung, Taiwan
- Advanced Plant and Food Crop Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
- Department of Pharmacology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Hen-Hong Chang
- Chinese Medicine Research Center, China Medical University, Taichung, Taiwan
- Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
- Department of Chinese Medicine, China Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
2
|
Zhong W, Zhang Q. Atractylodin: An Alkyne Compound with Anticancer Potential. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2024:1-29. [PMID: 39192675 DOI: 10.1142/s0192415x24500551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Atractylodin is one of the main active ingredients of Atractylodis Rhizoma. It has various pharmacological properties, such as antigastric ulcer, immune regulation, antibacterial, anti-inflammatory, antitumor, anti-oxidant, and neuroprotective properties. In the past few decades, atractylodin has attracted the attention of researchers due to its excellent therapeutic effects. This paper aims to review the pharmacology of atractylodin, focusing mainly on its pharmacological effects in tumor treatment. Atractylodin exerts its antitumor effect by regulating different signaling pathways to induce important biological events such as apoptosis, cell cycle arrest, and autophagy, inhibiting cancer cell invasion and metastasis. In the process of cell apoptosis, atractylodin mainly induces cancer cell apoptosis by downregulating the Notch signaling pathway, affecting multiple upstream and downstream targets. In addition, atractylodin induces autophagy in cancer cells by regulating various signaling pathways such as PI3K/AKT/mTOR, p38MAPK, and hypothalamic Sirt1 and p-AMPK. Atractylodin effectively induces G1/M and G2/M phase arrest under the action of multiple signaling pathways. Among them, the pathways related to G1/M are more widely stagnated. In inhibiting the migration and invasion of cancer cells, atractylodin mainly regulates the Wnt signaling pathway, downregulates the expression of N-cadherin in cancer cells, and then blocks the PI3K/AKT/mTOR signaling pathway, inhibiting the phosphorylation of PI3K, AKT, and mTOR proteins, thereby having a significant impact on the invasion and migration of cancer cells. This paper systematically reviews the research progress on the antitumor effects and mechanisms of atractylodin, hoping to provide a reference and theoretical basis for its clinical application and new drug development.
Collapse
Affiliation(s)
- Wenxia Zhong
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - Qi Zhang
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| |
Collapse
|
3
|
Liu F, Wang Y, Li D, Yang T. Atractylodin ameliorates lipopolysaccharide-induced depressive-like behaviors in mice through reducing neuroinflammation and neuronal damage. J Neuroimmunol 2024; 390:578349. [PMID: 38669915 DOI: 10.1016/j.jneuroim.2024.578349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/26/2024] [Accepted: 04/21/2024] [Indexed: 04/28/2024]
Abstract
Depression is a psychiatric disorder associated with multiple factors including microglia-mediated neuroinflammation. Although atractylodin exerted a variety of biological activities, however the effect of atractylodin on neuroinflammation-related depression was still unclear. In this study, the lipopolysaccharide (LPS)-induced mouse model was used to explore the antidepressant effects and molecular mechanisms of atractylodin. The results showed that atractylodin increased sugar preference, also reduced immobility time in FST and TST. Further study showed atractylodin reduced the oxidative stress and the activation of microglia in mouse hippocampus, also inhibited the level of cytokine release, especially IL-1β. The results of western blotting showed that atractylodin significantly inhibited the expression of NLRP3 and pro-IL1β via inhibition of NF-κB pathway. Our studies showed that atractylodin upregulated BDNF/Akt pathway in mouse hippocampus. Therefore, this study firstly indicated that atractylodin can ameliorate lipopolysaccharide-induced depressive-like behaviors in mice through reducing neuroinflammation and neuronal damage, and its molecular mechanism may be associated with the decrease of the expression of NLRP3 inflammasome and upregulation of BDNF/Akt pathway.
Collapse
Affiliation(s)
- Feng Liu
- Department of Neurosurgery, Ankang Central Hospital, Ankang, Shaanxi, China
| | - Yaping Wang
- Department of Neurosurgery, Ankang Central Hospital, Ankang, Shaanxi, China.
| | - Dongbo Li
- Department of Neurosurgery, Ankang Central Hospital, Ankang, Shaanxi, China
| | - Tao Yang
- Department of Neurosurgery, Ankang Central Hospital, Ankang, Shaanxi, China
| |
Collapse
|
4
|
Chen L, Zhang S, Wang Y, Sun H, Wang S, Wang D, Duan Y, Niu J, Wang Z. Integrative analysis of transcriptome and metabolome reveals the sesquiterpenoids and polyacetylenes biosynthesis regulation in Atractylodes lancea (Thunb.) DC. Int J Biol Macromol 2023; 253:127044. [PMID: 37742891 DOI: 10.1016/j.ijbiomac.2023.127044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/14/2023] [Accepted: 09/21/2023] [Indexed: 09/26/2023]
Abstract
Atractylodes lancea (Thunb.) is a perennial medicinal herb, with its dry rhizomes are rich in various sesquiterpenoids and polyacetylenes components (including atractylodin, atractylon and β-eudesmol). However, the contents of these compounds are various and germplasms specific, and the mechanisms of biosynthesis in A. lancea are still unknown. In this study, we identified the differentially expressed candidate genes and metabolites involved in the biosynthesis of sesquiterpenoids and polyacetylenes, and speculated the anabolic pathways of these pharmaceutical components by transcriptome and metabolomic analysis. In the sesquiterpenoids biosynthesis, a total of 28 differentially expressed genes (DEGs) and 6 differentially expressed metabolites (DEMs) were identified. The beta-Selinene is likely to play a role in the synthesis of atractylon and β-eudesmol. Additionally, the polyacetylenes biosynthesis showed the presence of 3 DEGs and 4 DEMs. Notably, some fatty acid desaturase (FAB2 and FAD2) significantly down-regulated in polyacetylenes biosynthesis. The gamma-Linolenic acid is likely involved in the biosynthesis of polyacetylenes and thus further synthesis of atractylodin. Overall, these studies have investigated the biosynthetic pathways of atractylodin, atractylon and β-eudesmol in A. lancea for the first time, and present potential new anchor points for further exploration of sesquiterpenoids and polyacetylenes compound biosynthesis pathways in A. lancea.
Collapse
Affiliation(s)
- Lijun Chen
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, The People's Republic of China
| | - Shenfei Zhang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, The People's Republic of China
| | - Yufei Wang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, The People's Republic of China
| | - Hongxia Sun
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, The People's Republic of China
| | - Shiqiang Wang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, The People's Republic of China
| | - Donghao Wang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, The People's Republic of China
| | - Yizhong Duan
- College of Life Sciences, Yulin University, Yulin, Shaanxi 719000, China
| | - Junfeng Niu
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, The People's Republic of China.
| | - Zhezhi Wang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, The People's Republic of China.
| |
Collapse
|
5
|
Zhang C, Wang H, Lyu C, Wang Y, Sun J, Zhang Y, Xiang Z, Guo X, Wang Y, Qin M, Wang S, Guo L. Authenticating the geographic origins of Atractylodes lancea rhizome chemotypes in China through metabolite marker identification. FRONTIERS IN PLANT SCIENCE 2023; 14:1237800. [PMID: 37841605 PMCID: PMC10569125 DOI: 10.3389/fpls.2023.1237800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 08/30/2023] [Indexed: 10/17/2023]
Abstract
Introduction Atractylodes lancea is widely distributed in East Asia, ranging from Amur to south-central China. The rhizome of A. lancea is commonly used in traditional Chinese medicine, however, the quality of products varies across different regions with different geochemical characteristics. Method This study aimed to identify the chemotypes of A. lancea from different areas and screen for chemical markers by quantifying volatile organic compounds (VOCs) using a targeted metabolomics approach based on GC-MS/MS. Results The A. lancea distributed in Hubei, Anhui, Shaanxi, and a region west of Henan province was classified as the Hubei Chemotype (HBA). HBA is characterized by high content of β-eudesmol and hinesol with lower levels of atractylodin and atractylon. In contrast, the Maoshan Chemotype (MA) from Jiangsu, Shandong, Shanxi, Hebei, Inner Mongolia, and other northern regions, exhibited high levels of atractylodin and atractylon. A total of 15 categories of VOCs metabolites were detected and identified, revealing significant differences in the profiles of terpenoid, heterocyclic compound, ester, and ketone among different areas. Multivariate statistics indicated that 6 compounds and 455 metabolites could serve as candidate markers for differentiating A. lancea obtained from the southern, northern, and Maoshan areas. Discussion This comprehensive analysis provides a chemical fingerprint of selected A. lancea. Our results highlight the potential of metabolite profiling combined with chemometrics for authenticating the geographical origin of A. lancea.
Collapse
Affiliation(s)
- Chengcai Zhang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hongyang Wang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Chaogeng Lyu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yiheng Wang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jiahui Sun
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yan Zhang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zengxu Xiang
- College of Horticulture of Nanjing Agricultural University, Nanjing, China
| | - Xiuzhi Guo
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuefeng Wang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ming Qin
- Dexing Research and Training Center of Chinese Medical Sciences, China Academy of Chinese Medical Science, Dexing, China
| | - Sheng Wang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- Dexing Research and Training Center of Chinese Medical Sciences, China Academy of Chinese Medical Science, Dexing, China
| | - Lanping Guo
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
6
|
Zou L, Yang Y, Wang Z, Fu X, He X, Song J, Li T, Ma H, Yu T. Lysine Malonylation and Its Links to Metabolism and Diseases. Aging Dis 2023; 14:84-98. [PMID: 36818560 PMCID: PMC9937698 DOI: 10.14336/ad.2022.0711] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 07/11/2022] [Indexed: 11/18/2022] Open
Abstract
Malonylation is a recently identified post-translational modification with malonyl-coenzyme A as the donor. It conserved both in prokaryotes and eukaryotes. Recent advances in the identification and quantification of lysine malonylation by bioinformatic analysis have improved our understanding of its role in the regulation of protein activity, interaction, and localization and have elucidated its involvement in many biological processes. Malonylation has been linked to diverse physiological processes, including metabolic disorders, inflammation, and immune regulation. This review discusses malonylation in theory, describes the underlying mechanism, and summarizes the recent progress in malonylation research. The latest findings point to novel functions of malonylation and highlight the mechanisms by which malonylation regulates a variety of cellular processes. Our review also marks the association between lysine malonylation, the enzymes involved, and various diseases, and discusses promising diagnostic and therapeutic biomolecular targets for future clinical applications.
Collapse
Affiliation(s)
- Lu Zou
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Yanyan Yang
- Department of Immunology, Basic Medicine School, Qingdao University, Qingdao, China.
| | - Zhibin Wang
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Xiuxiu Fu
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Xiangqin He
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Jiayi Song
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Tianxiang Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Huibo Ma
- Department of Vascular Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Tao Yu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China.,Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, China.,Correspondence should be addressed to: Dr. Tao Yu, Center for Regenerative Medicine, Institute for Translational Medicine, the Affiliated Hospital of Qingdao University, Qingdao, China.
| |
Collapse
|
7
|
Qu L, Wang C, Xu H, Li L, Liu Y, Wan Q, Xu K. Atractylodin targets GLA to regulate D-mannose metabolism to inhibit osteogenic differentiation of human valve interstitial cells and ameliorate aortic valve calcification. Phytother Res 2023; 37:477-489. [PMID: 36199227 DOI: 10.1002/ptr.7628] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/22/2022] [Accepted: 09/03/2022] [Indexed: 11/07/2022]
Abstract
Atractylodin (ATL) has been reported to exert anti-inflammatory effects. Osteogenic changes induced by inflammation in valve interstitial cells (VICs) play a key role in the development of calcified aortic valve disease (CAVD). This study aimed to investigate the anti-calcification effects of ATL on aortic valves. Human VICs (hVICs) were exposed to osteogenic induction medium (OM) containing ATL to investigate cell viability, osteogenic gene and protein expression, and anti-calcification effects. Gas chromatography-mass spectroscopy (GC-MS) metabolomics analysis was used to detect changes in the metabolites of hVICs stimulated with OM before and after ATL administration. The compound-reaction-enzyme-gene network was used to identify drug targets. Gene interference was used to verify the targets. ApoE-/- mice fed a high-fat (HF) diet were used to evaluate the inhibition of aortic valve calcification by ATL. Treatment with 20 μM ATL in OM prevented calcified nodule accumulation and decreases in the gene and protein expression levels of ALP, RUNX2, and IL-1β. Differential metabolite analysis showed that D-mannose was highly associated with the anti-calcification effect of ATL. The addition of D-mannose prevented calcified nodule accumulation and inhibited succinate-mediated HIF-1α activation and IL-1β production. The target of ATL was identified as GLA. Silencing of the GLA gene (si-GLA) reversed the anti-osteogenic differentiation of ATL. In vivo, ATL ameliorated aortic valve calcification by preventing decreases in GLA expression and the up-regulation of IL-1β expression synchronously. In conclusion, ATL is a potential drug for the treatment of CAVD by targeting GLA to regulate D-mannose metabolism, thereby inhibiting succinate-mediated HIF-1α activation and IL-1β production.
Collapse
Affiliation(s)
- Linghang Qu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Chunli Wang
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Haiying Xu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Lanqing Li
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Yanju Liu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | | | | |
Collapse
|
8
|
Heo G, Kim Y, Kim EL, Park S, Rhee SH, Jung JH, Im E. Atractylodin Ameliorates Colitis via PPARα Agonism. Int J Mol Sci 2023; 24:802. [PMID: 36614242 PMCID: PMC9821687 DOI: 10.3390/ijms24010802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 01/05/2023] Open
Abstract
Atractylodin is a major compound in the rhizome of Atractylodes lancea, an oriental herbal medicine used for the treatment of gastrointestinal diseases, including dyspepsia, nausea, and diarrhea. Recent studies have shown that atractylodin exerts anti-inflammatory effects in various inflammatory diseases. Herein, we investigated the anti-colitis effects of atractylodin and its molecular targets. We determined the non-cytotoxic concentration of atractylodin (50 μM) using a cell proliferation assay in colonic epithelial cells. We found that pretreatment with atractylodin significantly inhibits tumor necrosis factor-α-induced phosphorylation of nuclear factor-κ-light-chain-enhancer of activated B in HCT116 cells. Through docking simulation analysis, luciferase assays, and in vitro binding assays, we found that atractylodin has an affinity for peroxisome proliferator-activated receptor alpha (PPARα). Daily administration of atractylodin (40 mg/kg) increased the survival rate of mice in a dextran sodium sulfate-induced colitis mouse model. Thus, atractylodin can be a good strategy for colitis therapy through inducing PPARα-dependent pathways.
Collapse
Affiliation(s)
- Gwangbeom Heo
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Yuju Kim
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Eun-La Kim
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Soyeong Park
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Sang Hoon Rhee
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA
| | - Jee H. Jung
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
- Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea
| | - Eunok Im
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
- Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
9
|
Umbreen H, Zhang X, Tang KT, Lin CC. Regulation of Myeloid Dendritic Cells by Synthetic and Natural Compounds for the Treatment of Rheumatoid Arthritis. Int J Mol Sci 2022; 24:ijms24010238. [PMID: 36613683 PMCID: PMC9820359 DOI: 10.3390/ijms24010238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/12/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022] Open
Abstract
Different subsets of dendritic cells (DCs) participate in the development of rheumatoid arthritis (RA). In particular, myeloid DCs play a key role in the generation of autoreactive T and B cells. Herein, we undertook a literature review on those synthetic and natural compounds that have therapeutic efficacy/potential for RA and act through the regulation of myeloid DCs. Most of these compounds inhibit both the maturation of DCs and their secretion of inflammatory cytokines and, subsequently, alter the downstream T-cell response (suppression of Th1 and Th17 responses while expanding the Treg response). The majority of the synthetic compounds are approved for the treatment of patients with RA, which is consistent with the importance of DCs in the pathogenesis of RA. All of the natural compounds are derived from plants. Their DC-modulating effect has been demonstrated both in vitro and in vivo. In addition, these natural products ameliorate arthritis in rodents and are potential therapeutics for human RA.
Collapse
Affiliation(s)
- Hira Umbreen
- Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan
| | - Xiang Zhang
- Department of Molecular Medicine and Surgery, Karolinska Institute, 171 76 Stockholm, Sweden
| | - Kuo-Tung Tang
- Division of Allergy, Immunology, and Rheumatology, Taichung Veterans General Hospital, Taichung 407, Taiwan
- Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Ph.D. Program in Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan
- Correspondence: (K.-T.T.); (C.-C.L.); Tel.: +886-4-23592525 (ext. 3334) (K.-T.T.); +886-4-23592525 (ext. 3003) (C.-C.L.); Fax: +886-4-23503285 (K.-T.T. & C.-C.L.)
| | - Chi-Chien Lin
- Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan
- Ph.D. Program in Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan
- Department of Medical Research, Taichung Veterans General Hospital, Taichung 407, Taiwan
- Institute of Biomedical Science, The iEGG and Animal Biotechnology Center, National Chung-Hsing University, Taichung 402, Taiwan
- Department of Medical Research, China Medical University Hospital, Taichung 404, Taiwan
- Department of Pharmacology, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Correspondence: (K.-T.T.); (C.-C.L.); Tel.: +886-4-23592525 (ext. 3334) (K.-T.T.); +886-4-23592525 (ext. 3003) (C.-C.L.); Fax: +886-4-23503285 (K.-T.T. & C.-C.L.)
| |
Collapse
|
10
|
Xu L, Zhou Y, Xu J, Xu X, Lu G, Lv Q, Wei L, Deng X, Shen X, Feng H, Wang J. Anti-inflammatory, antioxidant and anti-virulence roles of atractylodin in attenuating Listeria monocytogenes infection. Front Immunol 2022; 13:977051. [PMID: 36389842 PMCID: PMC9651212 DOI: 10.3389/fimmu.2022.977051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/18/2022] [Indexed: 11/26/2022] Open
Abstract
Background Listeria monocytogenes (L. monocytogenes), as a pandemic foodborne pathogen, severely threatens food security and public health care worldwide, which evolves multiple bacterial virulence factors (such as listeriolysin O, LLO) for manipulating the immune response of L. monocytogenes-host interactions. Methods Hemolysis assay was employed to screen a potential LLO inhibitor and the underlying mechanisms were investigated using molecular dynamics (MD) simulation and oligomerization assay. The effects of candidates on immune response were examined by qRT-PCR and immunoblotting analysis. Histological analysis, ELISA assay and biochemistry detection were conducted to assess in vivo efficacy of candidates. Results In the present study, natural terpenoid atractylodin was characterized as an alternative drug candidate for the treatment of L. monocytogenes by the regulation of LLO function and host Nrf2/NLRP3 signaling pathway. Notably, in vivo infection model by L. monocytogenes also highlighted that atractylodin treatment provided effective therapeutic benefits, as evidenced by decreased bacterial burden and diminished inflammation. Congruently, the survival rate of L. monocytogenes-infection mice increased significantly from 10.0% to 40.0% by atractylodin treatment. Conclusion Collectively, our study showed for the first time that atractylodin has tremendous potential to attenuate L. monocytogenes pathogenicity by blocking LLO pore formation and mediating the suppression of inflammation and oxidative stress, providing a promising therapeutic strategy and broadening the applications of atractylodin against L. monocytogenes infection.
Collapse
Affiliation(s)
- Lei Xu
- Department of Respiratory Medicine, Center for Pathogen Biology and Infectious Diseases, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, China
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yonglin Zhou
- Department of Respiratory Medicine, Center for Pathogen Biology and Infectious Diseases, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, China
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Jingwen Xu
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xiangzhu Xu
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Gejin Lu
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Qianghua Lv
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Lijuan Wei
- Hebei Veterinary Medicine Technology Innovation Center, Shijiazhuang, China
| | - Xuming Deng
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xue Shen
- Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun, China
| | - Haihua Feng
- Department of Respiratory Medicine, Center for Pathogen Biology and Infectious Diseases, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, China
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
- *Correspondence: Jianfeng Wang, ; Haihua Feng,
| | - Jianfeng Wang
- Department of Respiratory Medicine, Center for Pathogen Biology and Infectious Diseases, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, China
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
- *Correspondence: Jianfeng Wang, ; Haihua Feng,
| |
Collapse
|
11
|
Cheng WJ, Yang HT, Chiang CC, Lai KH, Chen YL, Shih HL, Kuo JJ, Hwang TL, Lin CC. Deer Velvet Antler Extracts Exert Anti-Inflammatory and Anti-Arthritic Effects on Human Rheumatoid Arthritis Fibroblast-Like Synoviocytes and Distinct Mouse Arthritis. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2022; 50:1617-1643. [PMID: 35850642 DOI: 10.1142/s0192415x22500689] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease that causes joint deformity and disability. Deer velvet antler (DA), a traditional Chinese medicine, has been used to treat various types of arthritis for several thousands of years, but the underlying mechanisms are unknown. Herein, we investigated the anti-arthritic and anti-inflammatory effects of DA in vitro and in vivo. The ethyl acetate layer of DA ethanol extract (DA-EE-EA) was used to treat tumor necrosis factor (TNF)-[Formula: see text]-stimulated fibroblast-like synoviocyte MH7A cells, collagen-induced arthritis DBA/1 mice, and SKG mice with zymosan-induced arthritis. DA-EE-EA reduced nitric oxide production, prostaglandin E2 levels, and levels of pro-inflammatory cytokines including interleukin (IL)-1[Formula: see text], IL-6, and IL-8 in MH7A cells. DA-EE-EA also downregulated the phosphorylation of mitogen-activated protein kinase p38 and c-Jun N-terminal kinase and the translocation of nuclear factor kappa B p65. Intraperitoneal injection of DA-EE-EA for 3 weeks substantially reduced clinical arthritis scores in vivo models. Pathohistological images of the hind paws showed that DA-EE-EA reduced immune cell infiltration, synovial hyperplasia, and cartilage damage. The levels of pro-inflammatory cytokines, such as tumor necrosis factor alpha, IL-1[Formula: see text], IL-6, IL-8, IL-17A, and interferon-gamma, decreased in the hind paw homogenates of DA-EE-EA-treated mice. We also identified several potential components, such as hexadecanamide, oleamide, erucamide, and lysophosphatidylcholines, that might contribute to the anti-inflammatory effects of DA-EE-EA. In conclusion, DA-EE-EA has the potential to treat RA by regulating inflammatory responses. However, the individual components of DA-EE-EA and the underlying anti-inflammatory mechanisms need further investigation in future studies.
Collapse
Affiliation(s)
- Wei-Jen Cheng
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Center for Traditional Chinese Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Hsuan-Tzu Yang
- Division of Thoracic and Cardiovascular Surgery, Department of Surgery, Linkou Medical Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Chih-Chao Chiang
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Puxin Fengze Chinese Medicine Clinic, Taoyuan, Taiwan
| | - Kuei-Hung Lai
- Graduate Institute of Pharmacognosy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Yu-Li Chen
- Research Center for Chinese Herbal Medicine, Research Center for Food and Cosmetic Safety and Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan
| | - Huei-Lin Shih
- Division of Chinese Internal Medicine, Center of Traditional Chinese Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Jong-Jen Kuo
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Graduate Institute of Traditional Chinese Medicine, School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Center for Traditional Chinese Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Tsong-Long Hwang
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Research Center for Chinese Herbal Medicine, Research Center for Food and Cosmetic Safety and Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan
- Department of Chemical Engineering, Ming-Chi University of Technology, New Taipei, Taiwan
| | - Chi-Chien Lin
- Institute of Biomedical Science, College of Life Sciences, National Chung-Hsing University, Taichung, Taiwan
- Department of Pharmacology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Medical Research China Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
12
|
Xi X, Ye Q, Fan D, Cao X, Wang Q, Wang X, Zhang M, Xu Y, Xiao C. Polycyclic Aromatic Hydrocarbons Affect Rheumatoid Arthritis Pathogenesis via Aryl Hydrocarbon Receptor. Front Immunol 2022; 13:797815. [PMID: 35392076 PMCID: PMC8981517 DOI: 10.3389/fimmu.2022.797815] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 02/28/2022] [Indexed: 12/13/2022] Open
Abstract
Rheumatoid arthritis (RA), the most common autoimmune disease, is characterized by symmetrical synovial inflammation of multiple joints with the infiltration of pro-inflammatory immune cells and increased cytokines (CKs) levels. In the past few years, numerous studies have indicated that several factors could affect RA, such as mutations in susceptibility genes, epigenetic modifications, age, and race. Recently, environmental factors, particularly polycyclic aromatic hydrocarbons (PAHs), have attracted increasing attention in RA pathogenesis. Therefore, exploring the specific mechanisms of PAHs in RA is vitally critical. In this review, we summarize the recent progress in understanding the mechanisms of PAHs and aryl hydrocarbon receptors (AHRs) in RA. Additionally, the development of therapeutic drugs that target AHR is also reviewed. Finally, we discuss the challenges and perspectives on AHR application in the future.
Collapse
Affiliation(s)
- Xiaoyu Xi
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.,Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Qinbin Ye
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.,Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Danping Fan
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China.,Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
| | - Xiaoxue Cao
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China.,Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
| | - Qiong Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.,Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Xing Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.,Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Mengxiao Zhang
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Yuan Xu
- Department of Traditional Chinese Medicine (TCM) Rheumatology, China-Japan Friendship Hospital, Beijing, China
| | - Cheng Xiao
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China.,Department of Emergency, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
13
|
Li Y, Yang C, Jia K, Wang J, Wang J, Ming R, Xu T, Su X, Jing Y, Miao Y, Liu C, Lin N. Fengshi Qutong capsule ameliorates bone destruction of experimental rheumatoid arthritis by inhibiting osteoclastogenesis. JOURNAL OF ETHNOPHARMACOLOGY 2022; 282:114602. [PMID: 34492323 DOI: 10.1016/j.jep.2021.114602] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 09/01/2021] [Accepted: 09/02/2021] [Indexed: 05/28/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Bone destruction plays a key role in damaging the joint function of rheumatoid arthritis (RA). Fengshi Qutong capsule (FSQTC) consisting of 19 traditional Chinese medicines has been used for treating RA in China for many years. Preliminary studies show that FSQTC has analgesic activity and inhibits synovial angiogenesis of collagen-induced arthritis (CIA), but its role on bone destruction of RA is still unclear. AIM OF THE STUDY To explore the effect of FSQTC on bone destruction of RA and the possible mechanism of osteoclastogenesis in vivo and in vitro. MATERIALS AND METHODS LC-MS system was used to detect the quality control components of FSQTC. The anti-arthritic effect of FSQTC on CIA rats was evaluated by arthritis score, arthritis incidence and histopathology evaluation of inflamed joints. The effect of treatment with FSQTC on bone destruction of joint tissues was determined with X-ray and micro-CT quantification, and on bone resorption marker CTX-I and formation marker osteocalcin in sera were detected by ELISA. Then, osteoclast differentiation and mature were evaluated by TRAP staining, actin ring immunofluorescence and bone resorption assay both in joints and RANKL-induced RAW264.7 cells. In addition, RANKL, OPG, IL-1β and TNFα in sera were evaluated by ELISA. The molecular mechanisms of the inhibitions were elucidated by analyzing the protein and gene expression of osteoclastic markers CTSK, MMP-9 and β3-Integrin, transcriptional factors c-Fos and NFATc1, as well as phosphorylation of ERK1/2, JNK and P38 in joints and in RANKL-induced RAW264.7 cells using western blot and/or qPCR. RESULTS In this study, 12 major quality control components were identified. Our data showed that FSQTC significantly increased bone mineral density, volume fraction, trabecular thickness, and decreased trabecular separation of inflamed joints both at periarticular and extra-articular locations in CIA rats. FSQTC also diminished the level of CTX-I and simultaneously increased osteocalcin in sera of CIA rats. The effects were accompanied by reductions of osteoclast differentiation, bone resorption, and expression of osteoclastic markers (CTSK, MMP-9 and β3-Integrin) in joints. Interestingly, FSQTC treatment could reduce the protein level of RANKL, increase the expression of OPG, and decrease the ratio of RANKL to OPG in inflamed joints and sera of CIA rats. In addition, FSQTC inhibited the levels of pro-inflammatory cytokines implicated in bone resorption, such as IL-1β and TNFα in sera. When RAW264.7 cells were treated with RANKL, FSQTC inhibited the formation of TRAP + multinucleated cells, actin ring and the bone-resorbing activity in dose-dependent manners. Furthermore, FSQTC reduced the RANKL-induced expression of osteoclastic genes and proteins and transcriptional factors (c-Fos and NFATc1), as well as phosphorylation of mitogen-activated protein kinases (MAPKs). CONCLUSION FSQTC may inhibit bone destruction of RA by its anti-osteoclastogenic activity both in vivo and in vitro.
Collapse
Affiliation(s)
- Yiqun Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Chao Yang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Kexin Jia
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jinxia Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jingxia Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Ruirui Ming
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Tengteng Xu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Xiaohui Su
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yu Jing
- Tonghua Golden-Horse Pharmaceutical Industry Co.,Ltd, Beijing, 100028, China
| | - Yandong Miao
- Tonghua Golden-Horse Pharmaceutical Industry Co.,Ltd, Beijing, 100028, China
| | - Chunfang Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Na Lin
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
14
|
Chen L, Tang YL, Liu ZH, Pan Y, Jiao RQ, Kong LD. Atractylodin inhibits fructose-induced human podocyte hypermotility via anti-oxidant to down-regulate TRPC6/p-CaMK4 signaling. Eur J Pharmacol 2021; 913:174616. [PMID: 34780752 DOI: 10.1016/j.ejphar.2021.174616] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 10/08/2021] [Accepted: 11/02/2021] [Indexed: 01/15/2023]
Abstract
High fructose has been reported to drive glomerular podocyte oxidative stress and then induce podocyte foot process effacement in vivo, which could be partly regarded as podocyte hypermotility in vitro. Atractylodin possesses anti-oxidative effect. The aim of this study was to explore whether atractylodin prevented against fructose-induced podocyte hypermotility via anti-oxidative property. In fructose-exposed conditionally immortalized human podocytes, we found that atractylodin inhibited podocyte hypermotility, and up-regulated slit diaphragm proteins podocin and nephrin, and cytoskeleton protein CD2-associated protein (CD2AP), α-Actinin-4 and synaptopodin expression, which were consistent with its anti-oxidative activity evidenced by up-regulation of catalase (CAT) and superoxide dismutase (SOD) 1 expression, and reduction of reactive oxygen species (ROS) production. Atractylodin also significantly suppressed expression of transient receptor potential channels 6 (TRPC6) and phosphorylated Ca2+/calmodulin-dependent protein kinase IV (CaMK4) in cultured podocytes with fructose exposure. Additionally, in fructose-exposed podocytes, CaMK4 siRNA up-regulated synaptopodin and reduced podocyte hypermotility, whereas, silencing of TRPC6 by siRNA decreased p-CaMK4 expression, inhibited podocyte hypermotility, showing TRPC6/p-CaMK4 signaling activation in podocyte hypermotility under fructose condition. Just like atractylodin, antioxidant N-acetyl-L-cysteine (NAC) could inhibit TRPC6/p-CaMK4 signaling activation to reduce fructose-induced podocytes hypermotility. These results first demonstrated that the anti-oxidative property of atractylodin may contribute to the suppression of podocyte hypermotility via inhibiting TRPC6/p-CaMK4 signaling and restoring synaptopodin expression abnormality.
Collapse
Affiliation(s)
- Li Chen
- Institute of Chinese Medicine, School of Life Sciences, Nanjing University, Nanjing, 210023, PR China
| | - Ya-Li Tang
- Institute of Chinese Medicine, School of Life Sciences, Nanjing University, Nanjing, 210023, PR China
| | - Zhi-Hong Liu
- Institute of Chinese Medicine, School of Life Sciences, Nanjing University, Nanjing, 210023, PR China
| | - Ying Pan
- Institute of Chinese Medicine, School of Life Sciences, Nanjing University, Nanjing, 210023, PR China
| | - Rui-Qing Jiao
- Institute of Chinese Medicine, School of Life Sciences, Nanjing University, Nanjing, 210023, PR China
| | - Ling-Dong Kong
- Institute of Chinese Medicine, School of Life Sciences, Nanjing University, Nanjing, 210023, PR China.
| |
Collapse
|
15
|
Yu Y, Yang Q, Wang Z, Ding Q, Li M, Fang Y, He Q, Zhu YZ. The Anti-Inflammation and Anti-Nociception Effect of Ketoprofen in Rats Could Be Strengthened Through Co-Delivery of a H 2S Donor, S-Propargyl-Cysteine. J Inflamm Res 2021; 14:5863-5875. [PMID: 34785926 PMCID: PMC8590460 DOI: 10.2147/jir.s333326] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 10/11/2021] [Indexed: 01/20/2023] Open
Abstract
PURPOSE Ketoprofen (KETO) is a traditional non-steroidal anti-inflammatory drug (NSAIDs) with good analgesic and antipyretic effects. However, as NASIDs, the toxicity of KETO towards gastrointestinal (GI) system might limit its clinical use. S-propargyl-cysteine (SPRC) is an excellent endogenous H2S donor showed wide application in the field of anti-inflammation, anti-oxidative stress, or even the protection of cardiovascular system through the elevation of endogenous H2S concentration. As recently studies reported, co-administration of H2S donor might potentially mitigate the GI toxicity and relevant side effects induced by series of NSAIDs. METHODS In this study, we established a SPRC and KETO co-encapsulated poly (lactic-co-glycolic acid) microsphere (SK@MS), and its particle size, morphology, storage stability and in vitro release profile were firstly investigated. The elevation of endogenous H2S level of SK@MS was then calculated, and the pharmacodynamic study (anti-inflammation and analgesic effects) of SK@MS, SPRC, and KETO towards adjuvant induced arthritis (AIA) in rats were also studied. Finally, to test the potential side effect, the heart, liver, spleen, lung, kidney, stomach, small intestine, and large intestine were resected from rats and examined by H&E staining. RESULTS A monodispersed SK@MS could be observed under the SEM, and particle size was calculated around 25.12 μm. The loading efficiency (LE) for SPRC and KETO were 6.67% and 2.64%, respectively, while the encapsulation efficiency (EE) for SPRC and KETO were 37.20% and 68.28%, respectively. SK@MS showed a sustained release of SPRC and KETO in vitro, which was up-to 15 days. SK@MS could achieve a long-term elevation of the H2S concentration in vivo, while SPRC showed an instant H2S elevation and metabolize within 6 h. Interestingly, the KETO did not show any influence on the H2S concentration in vivo. After establishment of AIA model, neither SPRC nor KETO showed scarcely anti-inflammation and anti-nociception effect, while conversely, SK@MS showed an obvious mitigation towards paw edema and pain in AIA rats, which indicated an improved anti-inflammation and anti-nociception effect when co-delivery of SRC and KETO. Besides, low stimulation towards major organs in rats observed in any experimental group. CONCLUSION A monodispersed was successfully prepared in this study, and SK@MS showed a sustained SPRC and KETO release in vitro and H2S release in vivo. In the pharmacodynamics study, SK@MS not only exhibited an excellent anti-inflammation and analgesic effects in AIA rats but also showed low stimulation towards rats.
Collapse
Affiliation(s)
- Yue Yu
- State Key Laboratory of Quality Research in Chinese Medicine & School of Pharmacy, Macau University of Science and Technology, Taipa, Macau SAR, People's Republic of China
| | - Qinyan Yang
- State Key Laboratory of Quality Research in Chinese Medicine & School of Pharmacy, Macau University of Science and Technology, Taipa, Macau SAR, People's Republic of China
| | - Zhou Wang
- State Key Laboratory of Quality Research in Chinese Medicine & School of Pharmacy, Macau University of Science and Technology, Taipa, Macau SAR, People's Republic of China
| | - Qian Ding
- State Key Laboratory of Quality Research in Chinese Medicine & School of Pharmacy, Macau University of Science and Technology, Taipa, Macau SAR, People's Republic of China
| | - Meng Li
- State Key Laboratory of Quality Research in Chinese Medicine & School of Pharmacy, Macau University of Science and Technology, Taipa, Macau SAR, People's Republic of China
| | - Yudong Fang
- State Key Laboratory of Quality Research in Chinese Medicine & School of Pharmacy, Macau University of Science and Technology, Taipa, Macau SAR, People's Republic of China
| | - Qida He
- State Key Laboratory of Quality Research in Chinese Medicine & School of Pharmacy, Macau University of Science and Technology, Taipa, Macau SAR, People's Republic of China
| | - Yi Zhun Zhu
- State Key Laboratory of Quality Research in Chinese Medicine & School of Pharmacy, Macau University of Science and Technology, Taipa, Macau SAR, People's Republic of China
- Shanghai Key Laboratory of Bioactive Small Molecules & School of Pharmacy, Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
16
|
Wang Y, Chen S, Du K, Liang C, Wang S, Owusu Boadi E, Li J, Pang X, He J, Chang YX. Traditional herbal medicine: Therapeutic potential in rheumatoid arthritis. JOURNAL OF ETHNOPHARMACOLOGY 2021; 279:114368. [PMID: 34197960 DOI: 10.1016/j.jep.2021.114368] [Citation(s) in RCA: 97] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 06/16/2021] [Accepted: 06/23/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease influenced by diverse endogenous and exogenous factors. It is characterized by cartilage and bone destruction. The current conventional allopathic therapy is expensive and carries adverse side effects. Recently, there were some ethnopharmacological studies on RA including anti-RA effects and therapeutic targets of distinct dosage forms of traditional herbal medicines (THMs). AIM OF THE REVIEW This review provides a brief overview of the current understanding of the potential pharmacological mechanisms of THMs (active constituents, extracts and prescriptions) in RA. This study is intended to provide comprehensive information and reference for exploring new therapeutic strategies of THMs in the RA treatment. MATERIALS AND METHODS This review captured scientific literatures invivo and vitro experiments on effects of anti-RA THMs published between 2016 and 2021 from journals and electronic databases (e.g. PubMed, Elsevier, Science Direct, Web of Science and Google Scholar). Relevant literatures were searched and analyzed by using keywords such as 'rheumatoid arthritis AND traditional herbal medicines', 'rheumatoid arthritis AND immune cells', 'rheumatoid arthritis AND inflammation', 'rheumatoid arthritis AND miRNA', 'rheumatoid arthritis AND Angiogenesis', 'rheumatoid arthritis AND oxidative stress', 'rheumatoid arthritis AND osteoclasts', 'rheumatoid arthritis AND CIA model', 'rheumatoid arthritis AND AA model' AND 'rheumatoid arthritis herbal prescription'. RESULTS Experiments in vitro and in vivo jointly demonstrated the potential of THMs in the RA treatment. There are plentiful therapeutic targets in RA. THMs and active ingredients could alleviate RA symptoms through different therapeutic targets, such as immunoregulation, inflammation, fibroblast-like synoviocytes (FLSs), microRNAs (miRNAs), angiogenesis, oxidative stress, osteoclasts and multiple targets interaction. Anti-RA THMs, active ingredients and prescriptions through corresponding therapeutic targets were summarized and classified. CONCLUSIONS Flavonoids, phenolic acids, alkaloids and triterpenes of THMs are identified as the main components to ameliorate RA. Regulation of different and multiple related therapeutic targets by THMs and their active ingredients were associated with greater therapeutic benefits, among which inflammation is the main therapeutic target. Nonetheless, further studies are required to unravel the complexities and in-depth mechanisms of THMs in alleviating RA.
Collapse
Affiliation(s)
- Yuan Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Shujing Chen
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Kunze Du
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Chunxiao Liang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Shuangqi Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Evans Owusu Boadi
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Jin Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Xiaoli Pang
- Academy of Nursing, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jun He
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yan-Xu Chang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| |
Collapse
|
17
|
Qu L, Lin X, Liu C, Ke C, Zhou Z, Xu K, Cao G, Liu Y. Atractylodin Attenuates Dextran Sulfate Sodium-Induced Colitis by Alleviating Gut Microbiota Dysbiosis and Inhibiting Inflammatory Response Through the MAPK Pathway. Front Pharmacol 2021; 12:665376. [PMID: 34335244 PMCID: PMC8320761 DOI: 10.3389/fphar.2021.665376] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/14/2021] [Indexed: 12/14/2022] Open
Abstract
In this study, we investigated the therapeutic effects and mechanism of atractylodin (ATL) on dextran sulfate sodium (DSS)-induced ulcerative colitis in mice. We found that atractylodin could significantly reverse the effects of DSS-induced ulcerative colitis, such as weight loss, disease activity index score; shorten the colon length, and reverse the pathological changes in the colon of mice. Atractylodin could inhibit the activation of colonic macrophages by inhibiting the MAPK pathway and alleviate intestinal inflammation in the mouse model of ulcerative colitis. Moreover, it could protect the intestinal barrier by inhibiting the decrease of the tight junction proteins, ZO-1, occludin, and MUC2. Additionally, atractylodin could decrease the abundance of harmful bacteria and increase that of beneficial bacteria in the intestinal tract of mice, effectively improving the intestinal microecology. In an LPS-induced macrophage model, atractylodin could inhibit the MAPK pathway and expression of the inflammatory factors of macrophages. Atractylodin could also inhibit the production of lactate, which is the end product of glycolysis; inhibit the activity of GAPDH, which is an important rate-limiting enzyme in glycolysis; inhibit the malonylation of GAPDH, and, thus, inhibit the translation of TNF-α. Therefore, ours is the first study to highlight the potential of atractylodin in the treatment of ulcerative colitis and reveal its possible mechanism.
Collapse
Affiliation(s)
- Linghang Qu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Xiong Lin
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Chunlian Liu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Chang Ke
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Zhongshi Zhou
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China.,Center for Hubei TCM Processing Technology Engineering, Wuhan, China
| | - Kang Xu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China.,Center for Hubei TCM Processing Technology Engineering, Wuhan, China
| | - Guosheng Cao
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China.,Center for Hubei TCM Processing Technology Engineering, Wuhan, China
| | - Yanju Liu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China.,Center for Hubei TCM Processing Technology Engineering, Wuhan, China
| |
Collapse
|
18
|
Yu Y, Wang Z, Yang Q, Ding Q, Wang R, Li Z, Fang Y, Liao J, Qi W, Chen K, Li M, Zhu YZ. A novel dendritic mesoporous silica based sustained hydrogen sulfide donor for the alleviation of adjuvant-induced inflammation in rats. Drug Deliv 2021; 28:1031-1042. [PMID: 34060389 PMCID: PMC8172227 DOI: 10.1080/10717544.2021.1921075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Purpose S-propargyl-cysteine (SPRC), an excellent endogenous hydrogen sulfide (H2S) donor, could elevate H2S levels via the cystathionine γ-lyase (CSE)/H2S pathway both in vitro and in vivo. However, the immediate release of H2S in vivo and daily administration of SPRC potentially limited its clinical use. Methods To solve the fore-mentioned problem, in this study, the dendritic mesoporous silica nanoparticles (DMSN) was firstly prepared, and a sustained H2S delivery system consisted of SPRC and DMSN (SPRC@DMSN) was then constructed. Their release profiles, both in vitro and in vivo, were investigated, and their therapeutical effect toward adjuvant-induced arthritis (AIA) rats was also studied. Results The spherical morphology of DMSN could be observed under scanning Electron Microscope (SEM), and the transmission electron microscope (TEM) images showed a central-radiational pore channel structure of DMSN. DMSN showed excellent SPRC loading capacity and attaining a sustained releasing ability than SPRC both in vitro and in vivo, and the prolonged SPRC releasing could further promote the release of H2S in a sustained manner through CSE/H2S pathway both in vitro and in vivo. Importantly, the SPRC@DMSN showed promising anti-inflammation effect against AIA in rats was also observed. Conclusions A sustained H2S releasing donor consisting of SPRC and DMSN was constructed in this study, and this sustained H2S releasing donor might be of good use for the treatment of AIA.
Collapse
Affiliation(s)
- Yue Yu
- State Key Laboratory of Quality Research in Chinese Medicine & School of Pharmacy, Macau University of Science and Technology, Taipa, China
| | - Zhou Wang
- State Key Laboratory of Quality Research in Chinese Medicine & School of Pharmacy, Macau University of Science and Technology, Taipa, China
| | - Qinyan Yang
- State Key Laboratory of Quality Research in Chinese Medicine & School of Pharmacy, Macau University of Science and Technology, Taipa, China
| | - Qian Ding
- State Key Laboratory of Quality Research in Chinese Medicine & School of Pharmacy, Macau University of Science and Technology, Taipa, China
| | - Ran Wang
- State Key Laboratory of Quality Research in Chinese Medicine & School of Pharmacy, Macau University of Science and Technology, Taipa, China
| | - Zhaoyi Li
- State Key Laboratory of Quality Research in Chinese Medicine & School of Pharmacy, Macau University of Science and Technology, Taipa, China
| | - Yudong Fang
- State Key Laboratory of Quality Research in Chinese Medicine & School of Pharmacy, Macau University of Science and Technology, Taipa, China
| | - Junyi Liao
- State Key Laboratory of Quality Research in Chinese Medicine & School of Pharmacy, Macau University of Science and Technology, Taipa, China
| | - Wei Qi
- State Key Laboratory of Quality Research in Chinese Medicine & School of Pharmacy, Macau University of Science and Technology, Taipa, China
| | - Keyuan Chen
- State Key Laboratory of Quality Research in Chinese Medicine & School of Pharmacy, Macau University of Science and Technology, Taipa, China
| | - Meng Li
- State Key Laboratory of Quality Research in Chinese Medicine & School of Pharmacy, Macau University of Science and Technology, Taipa, China
| | - Yi Zhun Zhu
- State Key Laboratory of Quality Research in Chinese Medicine & School of Pharmacy, Macau University of Science and Technology, Taipa, China.,Shanghai Key Laboratory of Bioactive Small Molecules & School of Pharmacy, Fudan University, Shanghai, China
| |
Collapse
|
19
|
Gao L, Wang Y, Zhang W, Zhu X, Gao Q, Xiao Y, Chen K, Liu F, Chen L. Novel in vivo and in vitro mechanisms of positive inotropic effect of atractylodin. Clin Exp Pharmacol Physiol 2021; 48:686-696. [PMID: 32931027 DOI: 10.1111/1440-1681.13406] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 09/01/2020] [Accepted: 09/06/2020] [Indexed: 11/28/2022]
Abstract
This study was to investigate the inotropic effect of atractylodin and its underlying mechanism. The cardiac pressure-volume loop (P-V loop), Langendroff-perfused isolated rat heart, patch-clamp, Ca2+ transient and western blot techniques were used. The results demonstrated that atractylodin (3 mg/kg, ip) remarkably increased the left ventricular stroke work, cardiac output, stroke volume, heart rate, ejection fraction, end-systolic pressure, peak rates of rise and fall of left ventricular pressures (+dP/dtmax , -dP/dtmax ), the slopes of end-systolic pressure-volume relationship (also named as end-systolic elastance, Ees) and reducing end-systolic volume and end-diastolic volume in the in vivo rat study. Also, atractylodin (3 mg/kg, ip) significantly decreased diastolic blood pressure and the arterial elastance (Ea) without significant systolic blood pressure change. In addition, atractylodin (0.1, 1, 10 µmol/L) also increased the isolated rat heart left ventricular developed pressure which is the difference between the systolic and diastolic pressure in non-pacing and pacing modes. Furthermore, JMV-2959 (1 μmol/L), a ghrelin receptor unbiased antagonist, blocked the increased left ventricular developed pressure of atractylodin in isolated rat hearts. Finally, atractylodin (5 µmol/L) increased the amplitude of Ca2+ transient by enhancing SERCA2a activity, the sarcoplasmic reticulum Ca2+ content and the phosphorylation of phospholamban at 16-serine. These results demonstrated that atractylodin had a positive inotropic effect by enhancing SERCA2a activity which might be mediated by acting ghrelin receptor in myocardium. In conclusion, atractylodin which had the positive inotropic effect and decreased diastolic blood pressure might serve as an agent for the treatment of heart failure in clinical settings.
Collapse
Affiliation(s)
- Li Gao
- Jiangsu key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Taizhou Fourth People's Hospital, Taizhou, China
| | - Yuwei Wang
- Jiangsu key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wenhui Zhang
- Jiangsu key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiaojia Zhu
- Jiangsu key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Qianwen Gao
- Jiangsu key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yujie Xiao
- Jiangsu key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Kesu Chen
- Department of Respiratory, Inpatient Wards for Senior Cadres, General Hospital of Eastern Theater Command, PLA, Nanjing, China
| | - Fuming Liu
- First Affiliated Hospital, Nanjing University of Chinese Medicine, Nanjing, China
| | - Long Chen
- Jiangsu key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Institute of Chinese Medicine of Taizhou China Medical City, Taizhou, China
| |
Collapse
|
20
|
Tang KT, Lin CC, Lin SC, Wang JH, Tsai SW. Kurarinone Attenuates Collagen-Induced Arthritis in Mice by Inhibiting Th1/Th17 Cell Responses and Oxidative Stress. Int J Mol Sci 2021; 22:ijms22084002. [PMID: 33924467 PMCID: PMC8069507 DOI: 10.3390/ijms22084002] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/08/2021] [Accepted: 04/09/2021] [Indexed: 12/18/2022] Open
Abstract
Kurarinone is a flavanone, extracted from Sophora flavescens Aiton, with multiple biological effects. Here, we determine the therapeutic potential of kurarinone and elucidate the interplay between kurarinone and the autoimmune disease rheumatoid arthritis (RA). Arthritis was recapitulated by induction of bovine collagen II (CII) in DBA/1 mice as a collagen-induced arthritis (CIA) model. After the establishment of the CIA, kurarinone was given orally from day 21 to 42 (100 mg/kg/day) followed by determination of the severity based on a symptom scoring scale and with histopathology. Levels of cytokines, anti-CII antibodies, and the proliferation and lineages of T cells from the draining lymph nodes were measured using ELISA and flow cytometry, respectively. The expressional changes, including STAT1, STAT3, Nrf2, KEAP-1, and heme oxygenase-1 (HO-1) changes in the paw tissues, were evaluated by Western blot assay. Oxidative stress featured with malondiadehyde (MDA) and hydrogen peroxide (H2O2) activities in paw tissues were also evaluated. Results showed that kurarinone treatment reduced arthritis severity of CIA mice, as well as their levels of proinflammatory cytokines, TNF-α, IL-6, IFN-γ, and IL-17A, in the serum and paw tissues. T cell proliferation was also reduced by kurarinone even under the stimulation of CII and anti-CD3 antibody. In addition, kurarinone reduced STAT1 and STAT3 phosphorylation and the proportions of Th1 and Th17 cells in lymph nodes. Moreover, kurarinone suppressed the production of MDA and H2O2. All while promoting enzymatic activities of key antioxidant enzymes, SOD and GSH-Px. In the paw tissues, upregulation of Nrf-2 and HO-1, and downregulation of KEAP-1 were observed. Overall, kurarinone showed an anti-inflammatory effect by inhibiting Th1 and Th17 cell differentiation and an antioxidant effect exerted in part through activating the Nrf-2/KEAP-1 pathway. These beneficial effects in CIA mice contributed to the amelioration of their arthritis, indicating that kurarinone might be an adjunct treatment option for rheumatoid arthritis.
Collapse
Affiliation(s)
- Kuo-Tung Tang
- Program in Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan; (K.-T.T.); (C.-C.L.)
- Faculty of Medicine, National Yang-Ming University, Taipei 112, Taiwan
- Division of Allergy, Immunology and Rheumatology, Taichung Veterans General Hospital, Taichung 407, Taiwan
| | - Chi-Chien Lin
- Program in Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan; (K.-T.T.); (C.-C.L.)
- Institute of Biomedical Science, The iEGG and Animal Biotechnology Center, National Chung-Hsing University, Taichung 402, Taiwan
- Department of Medical Research, China Medical University Hospital, Taichung 404, Taiwan
- Department of Medical Research, Taichung Veterans General Hospital, Taichung 407, Taiwan
- Department of Pharmacology, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Shih-Chao Lin
- Bachelor Degree Program in Marine Biotechnology, College of Life Sciences, National Taiwan Ocean University, Keelung 202, Taiwan;
| | - Jou-Hsuan Wang
- Department of Physical Medicine and Rehabilitation, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung 427, Taiwan;
| | - Sen-Wei Tsai
- Department of Physical Medicine and Rehabilitation, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung 427, Taiwan;
- School of Medicine, Tzu Chi University, Hualien 970, Taiwan
- Correspondence:
| |
Collapse
|
21
|
Kanda H, Yang Y, Duan S, Kogure Y, Wang S, Iwaoka E, Ishikawa M, Takeda S, Sonoda H, Mizuta K, Aoki S, Yamamoto S, Noguchi K, Dai Y. Atractylodin Produces Antinociceptive Effect through a Long-Lasting TRPA1 Channel Activation. Int J Mol Sci 2021; 22:3614. [PMID: 33807167 PMCID: PMC8036394 DOI: 10.3390/ijms22073614] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/27/2021] [Accepted: 03/27/2021] [Indexed: 12/11/2022] Open
Abstract
Atractylodin (ATR) is a bioactive component found in dried rhizomes of Atractylodes lancea (AL) De Candolle. Although AL has accumulated empirical evidence for the treatment of pain, the molecular mechanism underlying the anti-pain effect of ATR remains unclear. In this study, we found that ATR increases transient receptor potential ankyrin-1 (TRPA1) single-channel activity in hTRPA1 expressing HEK293 cells. A bath application of ATR produced a long-lasting calcium response, and the response was completely diminished in the dorsal root ganglion neurons of TRPA1 knockout mice. Intraplantar injection of ATR evoked moderate and prolonged nociceptive behavior compared to the injection of allyl isothiocyanate (AITC). Systemic application of ATR inhibited AITC-induced nociceptive responses in a dose-dependent manner. Co-application of ATR and QX-314 increased the noxious heat threshold compared with AITC in vivo. Collectively, we concluded that ATR is a unique agonist of TRPA1 channels, which produces long-lasting channel activation. Our results indicated ATR-mediated anti-nociceptive effect through the desensitization of TRPA1-expressing nociceptors.
Collapse
Affiliation(s)
- Hirosato Kanda
- Department of Pharmacy, School of Pharmacy, Hyogo University of Health Sciences, Kobe 650-8530, Japan; (H.K.); (Y.Y.); (S.D.); (Y.K.); (S.W.); (E.I.); (M.I.); (S.T.); (H.S.); (K.M.); (S.A.); (S.Y.)
- Department of Anatomy and Neuroscience, Hyogo College of Medicine, Nishinomiya 663-8501, Japan;
- Traditional Medicine Research Center, Chinese Medicine Confucius Institute at Hyogo College of Medicine, Nishinomiya 663-8501, Japan
| | - Yanjing Yang
- Department of Pharmacy, School of Pharmacy, Hyogo University of Health Sciences, Kobe 650-8530, Japan; (H.K.); (Y.Y.); (S.D.); (Y.K.); (S.W.); (E.I.); (M.I.); (S.T.); (H.S.); (K.M.); (S.A.); (S.Y.)
- Department of Pathophysiology, Shenyang Medical College, Shenyang 110034, China
| | - Shaoqi Duan
- Department of Pharmacy, School of Pharmacy, Hyogo University of Health Sciences, Kobe 650-8530, Japan; (H.K.); (Y.Y.); (S.D.); (Y.K.); (S.W.); (E.I.); (M.I.); (S.T.); (H.S.); (K.M.); (S.A.); (S.Y.)
| | - Yoko Kogure
- Department of Pharmacy, School of Pharmacy, Hyogo University of Health Sciences, Kobe 650-8530, Japan; (H.K.); (Y.Y.); (S.D.); (Y.K.); (S.W.); (E.I.); (M.I.); (S.T.); (H.S.); (K.M.); (S.A.); (S.Y.)
| | - Shenglan Wang
- Department of Pharmacy, School of Pharmacy, Hyogo University of Health Sciences, Kobe 650-8530, Japan; (H.K.); (Y.Y.); (S.D.); (Y.K.); (S.W.); (E.I.); (M.I.); (S.T.); (H.S.); (K.M.); (S.A.); (S.Y.)
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Emiko Iwaoka
- Department of Pharmacy, School of Pharmacy, Hyogo University of Health Sciences, Kobe 650-8530, Japan; (H.K.); (Y.Y.); (S.D.); (Y.K.); (S.W.); (E.I.); (M.I.); (S.T.); (H.S.); (K.M.); (S.A.); (S.Y.)
| | - Miku Ishikawa
- Department of Pharmacy, School of Pharmacy, Hyogo University of Health Sciences, Kobe 650-8530, Japan; (H.K.); (Y.Y.); (S.D.); (Y.K.); (S.W.); (E.I.); (M.I.); (S.T.); (H.S.); (K.M.); (S.A.); (S.Y.)
| | - Saki Takeda
- Department of Pharmacy, School of Pharmacy, Hyogo University of Health Sciences, Kobe 650-8530, Japan; (H.K.); (Y.Y.); (S.D.); (Y.K.); (S.W.); (E.I.); (M.I.); (S.T.); (H.S.); (K.M.); (S.A.); (S.Y.)
| | - Hidemi Sonoda
- Department of Pharmacy, School of Pharmacy, Hyogo University of Health Sciences, Kobe 650-8530, Japan; (H.K.); (Y.Y.); (S.D.); (Y.K.); (S.W.); (E.I.); (M.I.); (S.T.); (H.S.); (K.M.); (S.A.); (S.Y.)
| | - Kyoka Mizuta
- Department of Pharmacy, School of Pharmacy, Hyogo University of Health Sciences, Kobe 650-8530, Japan; (H.K.); (Y.Y.); (S.D.); (Y.K.); (S.W.); (E.I.); (M.I.); (S.T.); (H.S.); (K.M.); (S.A.); (S.Y.)
| | - Shunji Aoki
- Department of Pharmacy, School of Pharmacy, Hyogo University of Health Sciences, Kobe 650-8530, Japan; (H.K.); (Y.Y.); (S.D.); (Y.K.); (S.W.); (E.I.); (M.I.); (S.T.); (H.S.); (K.M.); (S.A.); (S.Y.)
| | - Satoshi Yamamoto
- Department of Pharmacy, School of Pharmacy, Hyogo University of Health Sciences, Kobe 650-8530, Japan; (H.K.); (Y.Y.); (S.D.); (Y.K.); (S.W.); (E.I.); (M.I.); (S.T.); (H.S.); (K.M.); (S.A.); (S.Y.)
| | - Koichi Noguchi
- Department of Anatomy and Neuroscience, Hyogo College of Medicine, Nishinomiya 663-8501, Japan;
| | - Yi Dai
- Department of Pharmacy, School of Pharmacy, Hyogo University of Health Sciences, Kobe 650-8530, Japan; (H.K.); (Y.Y.); (S.D.); (Y.K.); (S.W.); (E.I.); (M.I.); (S.T.); (H.S.); (K.M.); (S.A.); (S.Y.)
- Department of Anatomy and Neuroscience, Hyogo College of Medicine, Nishinomiya 663-8501, Japan;
- Traditional Medicine Research Center, Chinese Medicine Confucius Institute at Hyogo College of Medicine, Nishinomiya 663-8501, Japan
| |
Collapse
|
22
|
Liu X, Xia X, Wang X, Zhou J, Sung LA, Long J, Geng X, Zeng Z, Yao W. Tropomodulin1 Expression Increases Upon Maturation in Dendritic Cells and Promotes Their Maturation and Immune Functions. Front Immunol 2021; 11:587441. [PMID: 33552047 PMCID: PMC7856346 DOI: 10.3389/fimmu.2020.587441] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 12/03/2020] [Indexed: 12/12/2022] Open
Abstract
Dendritic cells (DCs) are the most potent antigen-presenting cells. Upon maturation, DCs express costimulatory molecules and migrate to the lymph nodes to present antigens to T cells. The actin cytoskeleton plays key roles in multiple aspects of DC functions. However, little is known about the mechanisms and identities of actin-binding proteins that control DC maturation and maturation-associated functional changes. Tropomodulin1 (Tmod1), an actin-capping protein, controls actin depolymerization and nucleation. We found that Tmod1 was expressed in bone marrow-derived immature DCs and was significantly upregulated upon lipopolysaccharide (LPS)-induced DC maturation. By characterizing LPS-induced mature DCs (mDCs) from Tmod1 knockout mice, we found that compared with Tmod1+/+ mDCs, Tmod1-deficient mDCs exhibited lower surface expression of costimulatory molecules and chemokine receptors and reduced secretion of inflammatory cytokines, suggesting that Tmod1 deficiency retarded DC maturation. Tmod1-deficient mDCs also showed impaired random and chemotactic migration, deteriorated T-cell stimulatory ability, and reduced F-actin content and cell stiffness. Furthermore, Tmod1-deficient mDCs secreted high levels of IFN-β and IL-10 and induced immune tolerance in an experimental autoimmune encephalomyelitis (EAE) mouse model. Mechanistically, Tmod1 deficiency affected TLR4 signaling transduction, resulting in the decreased activity of MyD88-dependent NFκB and MAPK pathways but the increased activity of the TRIF/IRF3 pathway. Rescue with exogenous Tmod1 reversed the effect of Tmod1 deficiency on TLR4 signaling. Therefore, Tmod1 is critical in regulating DC maturation and immune functions by regulating TLR4 signaling and the actin cytoskeleton. Tmod1 may be a potential target for modulating DC functions, a strategy that would be beneficial for immunotherapy for several diseases.
Collapse
Affiliation(s)
- Xianmei Liu
- School of Basic Medical Sciences, School of Biology and Engineering, Guizhou Medical University, Guiyang, China
- Hemorheology Center, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Xue Xia
- School of Basic Medical Sciences, School of Biology and Engineering, Guizhou Medical University, Guiyang, China
- Hemorheology Center, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Xifu Wang
- Department of Emergency, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Jing Zhou
- Hemorheology Center, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Lanping Amy Sung
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, United States
| | - Jinhua Long
- School of Basic Medical Sciences, School of Biology and Engineering, Guizhou Medical University, Guiyang, China
| | - Xueyu Geng
- Hemorheology Center, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Zhu Zeng
- School of Basic Medical Sciences, School of Biology and Engineering, Guizhou Medical University, Guiyang, China
| | - Weijuan Yao
- Hemorheology Center, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Science, Peking University Health Center, Beijing, China
| |
Collapse
|
23
|
Tshering G, Plengsuriyakarn T, Na-Bangchang K, Pimtong W. Embryotoxicity evaluation of atractylodin and β-eudesmol using the zebrafish model. Comp Biochem Physiol C Toxicol Pharmacol 2021; 239:108869. [PMID: 32805444 DOI: 10.1016/j.cbpc.2020.108869] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/11/2020] [Accepted: 08/12/2020] [Indexed: 12/12/2022]
Abstract
Atractylodin and β-eudesmol are the major active ingredients of Atractylodes lancea (Thunb) DC. (AL). Both compounds exhibit various pharmacological activities, including anticancer activity against cholangiocarcinoma. Despite the widespread use of this plant in traditional medicine in China, Japan, Korea, and Thailand, studies of their toxicological profiles are limited. The present study aimed to evaluate the embryotoxicity of atractylodin and β-eudesmol using the zebrafish model. Zebrafish embryos were exposed to a series of concentrations (6.3, 12.5, 25, 50, and 100 μM) of each compound up to 72 h post-fertilization (hpf). The results showed that atractylodin and β-eudesmol induced mortality of zebrafish embryos with the 50% lethal concentration (LC50) of 36.8 and 53.0 μM, respectively. Both compounds also caused embryonic deformities, including pericardial edema, malformed head, yolk sac edema, and truncated body. Only β-eudesmol decreased the hatching rates, while atractylodin reduced the heart rates of the zebrafish embryos. Additionally, both compounds increased reactive oxygen species (ROS) production and altered the transcriptional expression levels of superoxide dismutase 1 (sod1), catalase (cat), and glutathione S-transferase pi 2 (gstp2) genes. In conclusion, atractylodin and β-eudesmol induce mortality, developmental toxicity, and oxidative stress in zebrafish embryos. These findings may imply similar toxicity of both compounds in humans.
Collapse
Affiliation(s)
- Gyem Tshering
- Graduate Studies, Chulabhorn International College of Medicine, Thammasat University, Paholyothin Road, Khlong Luang, Pathum Thani 12120, Thailand
| | - Tullayakorn Plengsuriyakarn
- Graduate Studies, Chulabhorn International College of Medicine, Thammasat University, Paholyothin Road, Khlong Luang, Pathum Thani 12120, Thailand; Center of Excellence in Pharmacology and Molecular Biology of Malaria and Cholangiocarcinoma, Chulabhorn International College of Medicine, Thammasat University, Paholyothin Road, Khlong Luang, Pathum Thani 12120, Thailand; Drug Discovery and Development Center, Thammasat University, Paholyothin Road, Khlong Luang, Pathum Thani 12120, Thailand
| | - Kesara Na-Bangchang
- Graduate Studies, Chulabhorn International College of Medicine, Thammasat University, Paholyothin Road, Khlong Luang, Pathum Thani 12120, Thailand; Center of Excellence in Pharmacology and Molecular Biology of Malaria and Cholangiocarcinoma, Chulabhorn International College of Medicine, Thammasat University, Paholyothin Road, Khlong Luang, Pathum Thani 12120, Thailand; Drug Discovery and Development Center, Thammasat University, Paholyothin Road, Khlong Luang, Pathum Thani 12120, Thailand
| | - Wittaya Pimtong
- Nano Environmental and Health Safety Research Team, National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand.
| |
Collapse
|
24
|
Ding J, Liu M, Xuan Z, Liu ML, Wang N, Jia X. The Protective Effects of the Ethyl Acetate Part of Er MiaoSan on Adjuvant Arthritis Rats by Regulating the Function of Bone Marrow-Derived Dendritic Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2020; 2020:8791657. [PMID: 39295892 PMCID: PMC11410441 DOI: 10.1155/2020/8791657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 10/05/2020] [Accepted: 10/28/2020] [Indexed: 09/21/2024]
Abstract
Aims The aim of this study was to evaluate the protective effects of Er Miao San (EMS) and the regulative function of bone marrow-derived dendritic cells (BMDCs) on adjuvant arthritis (AA) in rats. Methods The ethyl acetate part of EMS (3 g/kg, 1.5 g/kg, and 0.75 g/kg) was orally administered from day 15 after immunization to day 29. The polyarthritis index and paw swelling were measured, the ankle joint pathological changes were observed using hematoxylin-eosin (HE) staining, and the spleen and thymus index were determined. Moreover, T and B cell proliferation were determined using the CCK-8 assay. The expression of BMDC surface costimulatory molecules and inflammatory factors were determined using flow cytometry and ELISA kits, respectively. Results Compared with the AA model rats, the ethyl acetate fraction of EMS obviously reduced paw swelling (from 1.0 to 0.7) and the polyarthritis index (from 12 to 9) (P < 0.01) and improved the severity of histopathology (P < 0.01). The treatment using ethyl acetate fraction of EMS significantly reduced the spleen and thymus index (P < 0.01) and inhibited T and B cell proliferation (P < 0.01). Moreover, EMS significantly modulated the expression of surface costimulatory molecules in BMDCs, including CD40, CD80, CD86, and major histocompatibility complex class II (MHC-II) (P < 0.01). The results also showed that the ethyl acetate part of EMS significant inhibited the levels of proinflammatory cytokines interleukin- (IL-) 23 tumor necrosis factor- (TNF-) α and inflammatory factor prostaglandin (PG) E2 in the supernatant of BMDCs. However, the level of anti-inflammatory cytokine IL-10 was significantly increased (P < 0.01). Conclusion These results suggest that the ethyl acetate part of EMS has better protective effects on AA rats, probably by regulating the function of BMDCs and modulating the balance of cytokines.
Collapse
Affiliation(s)
- Jiemin Ding
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, Anhui 230012, China
- Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei 230012, China
| | - Min Liu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, Anhui 230012, China
- Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei 230012, China
| | - Zihua Xuan
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, Anhui 230012, China
- Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei 230012, China
| | - Meng Li Liu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, Anhui 230012, China
- Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei 230012, China
| | - Ning Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, Anhui 230012, China
- Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei 230012, China
| | - Xiaoyi Jia
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, Anhui 230012, China
- Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei 230012, China
| |
Collapse
|
25
|
Zhang C, Su T, Yu D, Wang F, Yue C, Wang HQ. Revealing active ingredients, potential targets, and action mechanism of Ermiao fang for treating endometritis based on network pharmacology strategy. JOURNAL OF ETHNOPHARMACOLOGY 2020; 260:113051. [PMID: 32505843 DOI: 10.1016/j.jep.2020.113051] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 05/12/2020] [Accepted: 05/30/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ermiao fang (EMF) is a traditional Chinese medicinal herbal formula from ancient times and recorded in the pharmacopeia of the People's Republic of China. It is composed of two typical Chinese herbal medicines, Cortex Phellodendri (Huangbai), the bark of Phellodendron chinensis Schneid. (Rutaceae), and Rhizoma Atractylodis (Cangzhu), the rhizome of Atractylodes lancea (Thunb.) DC. (Compositae). EMF has been clinically used for the treatment of endometritis for many years in China. AIM OF THE STUDY This study was aimed to identify the active ingredients, potential targets, and mechanism of action of EMF for the treatment of endometritis. MATERIALS AND METHODS In this research, the pharmacological effects of EMF on endometritis were first evaluated by establishing a rat model of endometritis. A network pharmacology-based analytical strategy was then used to predict its targets and signaling pathways. An endometritis-related protein target and compound database was built for EMF. The compounds in EMF and those absorbed into the blood were identified by ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UHPLC-Q-TOF/MS). High-throughput virtual screening and molecule docking methods were used to predict the protein targets of EMF. The surface plasmon resonance analysis (SPR) method was used to validate the affinity between the compound and proteins. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis was used to predict the related pathways. Western blotting analysis was used to evaluate the expression of key proteins in the related pathways. RESULTS The animal study showed that EMF could reduce uterine inflammation in rats with endometritis. Then, an ingredient database including 187 compounds and a protein target database including 836 proteins were constructed. Twenty-four compounds in EMF were identified by UHPLC-Q-TOF/MS, among which eight compounds were present in rat plasma after an oral administration of EMF. Afterward, 39 potential target proteins were predicted by the high-throughput screening method, and 20 of them were selected after further screening using molecular docking. Subsequently, an ingredient-target network was constructed, and the target proteins were classified into the NF-κB and MAPK signal pathways by KEGG pathway enrichment analysis. Finally, the affinity between the active ingredients and the target proteins was verified by SPR. The Western blotting analysis showed that EMF significantly inhibited the elevated NF-κB and MAPK pathway proteins in rats with endometritis. CONCLUSIONS EMF exhibited a significant pharmacological effect on rats with endometritis. Network pharmacology analysis revealed that eight compounds were absorbed into the blood after oral administration and interacted with 20 targets. Western blotting analysis indicated that EMF exerted anti-inflammatory effects by inhibiting the NF-κB and MAPK signaling pathway proteins in the treatment of endometritis.
Collapse
Affiliation(s)
- Chao Zhang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| | - Tong Su
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| | - Dan Yu
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| | - Fei Wang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| | - Chunhua Yue
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Hai-Qiao Wang
- Department of Traditional Chinese Medicine, South Campus, Ren Ji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 201112, China.
| |
Collapse
|
26
|
Yang L, Ji C, Li Y, Hu F, Zhang F, Zhang H, Li L, Ren J, Wang Z, Qiu Y. Natural Potent NAAA Inhibitor Atractylodin Counteracts LPS-Induced Microglial Activation. Front Pharmacol 2020; 11:577319. [PMID: 33117168 PMCID: PMC7565389 DOI: 10.3389/fphar.2020.577319] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 09/08/2020] [Indexed: 12/19/2022] Open
Abstract
N-acylethanolamine-hydrolyzing acid amidase (NAAA) is a lysosomal enzyme that inhibits the degradation of palmitoylethanolamide (PEA), an endogenous lipid that induces analgesic, anti-inflammation, and anti-multiple sclerosis through PPARα activation. Only a few potent NAAA inhibitors have been reported to date, which is mainly due to the restricted substrate-binding site of NAAA. Here, we established a high-throughput fluorescence-based assay for NAAA inhibitor screening. Several new classes of NAAA inhibitors were discovered from a small library of natural products. One of these is atractylodin, a polyethylene alkyne compound from the root of Atractylodes lancea (Thunb) DC., which significantly inhibits NAAA activity and has an IC50 of 2.81 µM. Kinetic analyses and dialysis assays suggested that atractylodin engages in competitive inhibition via reversible reaction to the enzyme. Docking assays revealed that atractylodin occupies the catalytic cavity of NAAA, where the atractylodin furan head group has a hydrophobic-related interaction with the backbone of the Trp181 and Leu152 residues of human NAAA. Further investigation indicated that atractylodin significantly increases PEA and OEA levels and dose-dependently inhibits LPS-induced nitrate, TNF-α, IL-1β, and IL-6 pro-inflammatory cytokine release in BV-2 microglia. Our results show that atractylodin elevates cellular PEA levels and inhibits microglial activation by inhibiting NAAA activity, which in turn could contribute to NAAA functional research.
Collapse
Affiliation(s)
- Longhe Yang
- Technical Innovation Center for Utilization of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Chunyan Ji
- Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Xiamen University, Xiamen, China
| | - Yitian Li
- Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Xiamen University, Xiamen, China
| | - Fan Hu
- Technical Innovation Center for Utilization of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Fang Zhang
- Technical Innovation Center for Utilization of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Haiping Zhang
- Center for High Performance Computing, Joint Engineering Research Center for Health Big Data Intelligent Analysis Technology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Long Li
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, China
| | - Jie Ren
- Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Xiamen University, Xiamen, China
| | - Zhaokai Wang
- Technical Innovation Center for Utilization of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Yan Qiu
- Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Xiamen University, Xiamen, China
| |
Collapse
|
27
|
Mechanism of miRNA-based Aconitum leucostomum Worosch. Monomer inhibition of bone marrow-derived dendritic cell maturation. Int Immunopharmacol 2020; 88:106791. [PMID: 32871480 DOI: 10.1016/j.intimp.2020.106791] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 06/15/2020] [Accepted: 07/06/2020] [Indexed: 11/24/2022]
Abstract
Delvestidine (DLTD) is a monomeric compound isolated from Aconitum leucostomum Worosch, a widely used medicine for local treatment of rheumatoid arthritis (RA). Studies have shown that Aconitum leucostomum Worosch. can inhibit maturation of bone marrow-derived dendritic cells (BMDCs). Further, microRNAs (miRNAs) have regulatory effects on DC maturity and function. However, the mechanism underlying DLTD effects on DC maturity and RA remains to be elucidated. This study investigated whether DLTD-mediated inhibition of DC maturation is regulated by miRNAs. LPS-induced mature BMDCs were treated with DLTD for 48 h. CD80 and CD86 expression on BMDCs was detected by flow cytometry, and levels of inflammatory factors IL-6, IL-23, IL-1β, and TNF-α were detected by ELISA and PCR. Further, gene expression and miRNA expression profiles were investigated by bioinformatics analysis and verified by PCR. DLTD was found to inhibit CD80 and CD86 expression on the surface of BMDCs and secretion of inflammatory factors IL-6, IL-23, IL-1β, and TNF-α. In total, 54 differentially expressed miRNAs were detected, including 29 up-regulated and 25 down-regulated miRNAs after DLTD treatment. Analysis of biological information revealed that the differentially expressed target genes mainly regulated biological processes, including cell differentiation, cell cycle, and protein kinase complexes. Additionally, miR-511-3p downstream targets Calcr, Fzd10, and Eps8, were closely related to BMDCs maturation. DLTD may induce BMDCs maturity through regulation of miRNAs that affect Calcr, Fzd10, and Eps8 gene signals.
Collapse
|
28
|
Screening of Molecular Targets of Action of Atractylodin in Cholangiocarcinoma by Applying Proteomic and Metabolomic Approaches. Metabolites 2019; 9:metabo9110260. [PMID: 31683902 PMCID: PMC6918361 DOI: 10.3390/metabo9110260] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 10/29/2019] [Accepted: 10/31/2019] [Indexed: 12/21/2022] Open
Abstract
Cholangiocarcinoma (CCA) is cancer of the bile duct and the highest incidence of CCA in the world is reported in Thailand. Our previous in vitro and in vivo studies identified Atractylodes lancea (Thunb) D.C. as a promising candidate for CCA treatment. The present study aimed to examine the molecular targets of action of atractylodin, the bioactive compound isolated from A. lancea, in CCA cell line by applying proteomic and metabolomic approaches. Intra- and extracellular proteins and metabolites were identified by LC-MS/MS following exposure of CL-6, the CCA cell line, to atractylodin for 24 and 48 h. Analysis of the protein functions and pathways involved was performed using a Venn diagram, PANTHER, and STITCH software. Analysis of the metabolite functions and pathways involved, including the correlation between proteins and metabolites identified was performed using MetaboAnalyst software. Results suggested the involvement of atractylodin in various cell biology processes. These include the cell cycle, apoptosis, DNA repair, immune response regulation, wound healing, blood vessel development, pyrimidine metabolism, the citrate cycle, purine metabolism, arginine and proline metabolism, glyoxylate and dicarboxylate metabolism, the pentose phosphate pathway, and fatty acid biosynthesis. Therefore, it was proposed that the action of atractylodin may involve the destruction of the DNA of cancer cells, leading to cell cycle arrest and cell apoptosis.
Collapse
|