1
|
Li T, Jin Y, Wu J, Ren Z. Beyond energy provider: multifunction of lipid droplets in embryonic development. Biol Res 2023; 56:38. [PMID: 37438836 DOI: 10.1186/s40659-023-00449-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 06/23/2023] [Indexed: 07/14/2023] Open
Abstract
Since the discovery, lipid droplets (LDs) have been recognized to be sites of cellular energy reserves, providing energy when necessary to sustain cellular life activities. Many studies have reported large numbers of LDs in eggs and early embryos from insects to mammals. The questions of how LDs are formed, what role they play, and what their significance is for embryonic development have been attracting the attention of researchers. Studies in recent years have revealed that in addition to providing energy for embryonic development, LDs in eggs and embryos also function to resist lipotoxicity, resist oxidative stress, inhibit bacterial infection, and provide lipid and membrane components for embryonic development. Removal of LDs from fertilized eggs or early embryos artificially leads to embryonic developmental arrest and defects. This paper reviews recent studies to explain the role and effect mechanisms of LDs in the embryonic development of several species and the genes involved in the regulation. The review contributes to understanding the embryonic development mechanism and provides new insight for the diagnosis and treatment of diseases related to embryonic developmental abnormalities.
Collapse
Affiliation(s)
- Tai Li
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education & Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, College of Animal Science, Huazhong Agricultural University, Wuhan, 430070, Hubei, P. R. China
| | - Yi Jin
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education & Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, College of Animal Science, Huazhong Agricultural University, Wuhan, 430070, Hubei, P. R. China
| | - Jian Wu
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education & Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, College of Animal Science, Huazhong Agricultural University, Wuhan, 430070, Hubei, P. R. China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Zhuqing Ren
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education & Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, College of Animal Science, Huazhong Agricultural University, Wuhan, 430070, Hubei, P. R. China.
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, 430070, China.
- Hubei Hongshan Laboratory, Wuhan, China.
| |
Collapse
|
2
|
Jin M, Fei X, Li T, Lu Z, Chu M, Di R, He X, Wang X, Wei C. Transcriptome study digs out BMP2 involved in adipogenesis in sheep tails. BMC Genomics 2022; 23:457. [PMID: 35725366 PMCID: PMC9210821 DOI: 10.1186/s12864-022-08657-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 05/25/2022] [Indexed: 12/22/2022] Open
Abstract
Background Hu sheep and Tibetan sheep in China are characterized by fat tails and thin tails, respectively. Several transcriptomes have been conducted in different sheep breeds to identify the differentially expressed genes (DEGs) underlying this trait. However, these studies identified different DEGs in different sheep breeds. Results Hence, RNA sequencing was performed on Hu sheep and Tibetan sheep. We obtained a total of 45.57 and 43.82 million sequencing reads, respectively. Two libraries mapped reads from 36.93 and 38.55 million reads after alignment to the reference sequences. 2108 DEGs were identified, including 1247 downregulated and 861 upregulated DEGs. GO and KEGG analyses of all DEGs demonstrated that pathways were enriched in the regulation of lipolysis in adipocytes and terms related to the chemokine signalling pathway, lysosomes, and glycosaminoglycan degradation. Eight genes were selected for validation by RT–qPCR. In addition, the transfection of BMP2 overexpression into preadipocytes resulted in increased PPAR-γ expression and expression. BMP2 potentially induces adipogenesis through LOX in preadipocytes. The number of lipid drops in BMP2 overexpression detected by oil red O staining was also greater than that in the negative control. Conclusion In summary, these results showed that significant genes (BMP2, HOXA11, PPP1CC and LPIN1) are involved in the regulation of adipogenesis metabolism and suggested novel insights into metabolic molecules in sheep fat tails. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08657-8.
Collapse
Affiliation(s)
- Meilin Jin
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.,College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xiaojuan Fei
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Taotao Li
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zengkui Lu
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Mingxing Chu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ran Di
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaoyun He
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiangyu Wang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Caihong Wei
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.
| |
Collapse
|
3
|
Desmet S, Saeys Y, Verstaen K, Dauwe R, Kim H, Niculaes C, Fukushima A, Goeminne G, Vanholme R, Ralph J, Boerjan W, Morreel K. Maize specialized metabolome networks reveal organ-preferential mixed glycosides. Comput Struct Biotechnol J 2021; 19:1127-1144. [PMID: 33680356 PMCID: PMC7890092 DOI: 10.1016/j.csbj.2021.01.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 01/06/2021] [Accepted: 01/07/2021] [Indexed: 12/13/2022] Open
Abstract
Despite the scientific and economic importance of maize, little is known about its specialized metabolism. Here, five maize organs were profiled using different reversed-phase liquid chromatography-mass spectrometry methods. The resulting spectral metadata, combined with candidate substrate-product pair (CSPP) networks, allowed the structural characterization of 427 of the 5,420 profiled compounds, including phenylpropanoids, flavonoids, benzoxazinoids, and auxin-related compounds, among others. Only 75 of the 427 compounds were already described in maize. Analysis of the CSPP networks showed that phenylpropanoids are present in all organs, whereas other metabolic classes are rather organ-enriched. Frequently occurring CSPP mass differences often corresponded with glycosyl- and acyltransferase reactions. The interplay of glycosylations and acylations yields a wide variety of mixed glycosides, bearing substructures corresponding to the different biochemical classes. For example, in the tassel, many phenylpropanoid and flavonoid-bearing glycosides also contain auxin-derived moieties. The characterized compounds and mass differences are an important step forward in metabolic pathway discovery and systems biology research. The spectral metadata of the 5,420 compounds is publicly available (DynLib spectral database, https://bioit3.irc.ugent.be/dynlib/).
Collapse
Affiliation(s)
- Sandrien Desmet
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium.,Center for Plant Systems Biology, VIB, B-9052 Gent, Belgium
| | - Yvan Saeys
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, B-9052 Gent, Belgium.,Data Mining and Modelling for Biomedicine, Center for Inflammation Research, VIB, B-9052 Gent, Belgium
| | - Kevin Verstaen
- Data Mining and Modelling for Biomedicine, Center for Inflammation Research, VIB, B-9052 Gent, Belgium
| | - Rebecca Dauwe
- Unité de Recherche BIOPI EA3900, Université de Picardie Jules Verne, 80000 Amiens, France
| | - Hoon Kim
- Department of Biochemistry and the U.S. Department of Energy Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin, Madison, WI 53726, United States
| | - Claudiu Niculaes
- Plant Breeding, TUM School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Freising, Germany
| | - Atsushi Fukushima
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan
| | - Geert Goeminne
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium.,VIB Metabolomics Core Ghent, VIB, B-9052 Gent, Belgium
| | - Ruben Vanholme
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium.,Center for Plant Systems Biology, VIB, B-9052 Gent, Belgium
| | - John Ralph
- Department of Biochemistry and the U.S. Department of Energy Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin, Madison, WI 53726, United States
| | - Wout Boerjan
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium.,Center for Plant Systems Biology, VIB, B-9052 Gent, Belgium
| | - Kris Morreel
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium.,Center for Plant Systems Biology, VIB, B-9052 Gent, Belgium
| |
Collapse
|