1
|
Karaca AC, Boostani S, Assadpour E, Tan C, Zhang F, Jafari SM. Pickering emulsions stabilized by prolamin-based proteins as innovative carriers of bioactive compounds. Adv Colloid Interface Sci 2024; 333:103246. [PMID: 39208623 DOI: 10.1016/j.cis.2024.103246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 06/21/2024] [Accepted: 07/02/2024] [Indexed: 09/04/2024]
Abstract
Pickering emulsions (PEs) can be used as efficient carriers for encapsulation and controlled release of different bioactive compounds. Recent research has revealed the potential of prolamins in development of nanoparticle- and emulsion-based carriers which can improve the stability and bioavailability of bioactive compounds. Prolamin-based particles have been effectively used as stabilizers of various PEs including single PEs, high internal phase PEs, multiple PEs, novel triphasic PEs, and PE gels due to their tunable self-assembly behaviors. Prolamin particles can be fabricated via different techniques including anti-solvent precipitation, dissolution followed by pH adjustment, heating, and ion induced aggregation. Particles fabricated from prolamins alone or in combination with other hydrocolloids or polyphenols have also been used for stabilization of different PEs which were shown to be effective carriers for food bioactives, providing improved stability and functionality. This article covers the recent advances in various PEs stabilized by prolamin particles as innovative carriers for bioactive ingredients. Strategies applied for fabrication of prolamin particles and prolamin-based carriers are discussed. Emerging techno-functional applications of prolamin-based PEs and possible challenges are also highlighted.
Collapse
Affiliation(s)
- Asli Can Karaca
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469 Istanbul, Turkey
| | - Sareh Boostani
- Shiraz Pharmaceutical Products Technology Incubator, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Elham Assadpour
- Food Industry Research Co., Gorgan, Iran; Food and Bio-Nanotech International Research Center (Fabiano), Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Chen Tan
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, China-Canada Joint Lab of Food Nutrition and Health (Beijing), School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Fuyuan Zhang
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China.
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran; Halal Research Center of IRI, Iran Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran.
| |
Collapse
|
2
|
Yang F, Wang Y, He H, Wang G, Yang M, Hong M, Huang J, Wang Y. Construction of highly stable, monodisperse water-in-water Pickering emulsions with full particle coverage using a composite system of microfluidics and helical coiled tube. Colloids Surf B Biointerfaces 2024; 242:114079. [PMID: 39029247 DOI: 10.1016/j.colsurfb.2024.114079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/23/2024] [Accepted: 07/05/2024] [Indexed: 07/21/2024]
Abstract
Water-in-water (W/W) Pickering emulsions, exhibit considerable potential in the food and pharmaceutical fields owing to their compartmentalization and high biocompatibility. However, constrained by the non-uniform distribution of shear forces during emulsification or the spatial obstruction in polydimethylsiloxane (PDMS) passive microfluidic platform, the existing methods cannot generate monodisperse W/W Pickering emulsions with high particle coverage rate, thereby limiting their applications. Herein, a novel microfluidic system is designed for the preparation of monodisperse and highly particle-covered W/W Pickering emulsions under mild conditions. pH-responsive Polyethylene glycol (PEG)/phosphate aqueous two-phase system (ATPS) is used for the emulsions' preparation. Notably, a coverage rate of 96 ± 3 % is obtained by adjusting the length of the helical coiled tube, as well as the size and contact angle of genipin cross-linked BSA (BSA-GP) particles. Moreover, these W/W Pickering emulsions, with surfaces almost completely covered, can maintain monodisperse (Ncoal = 1.18 ± 0.03) for one day. Furthermore, the results of ranitidine hydrochloride (RH) release demonstrated that the drug release rate of W/W Pickering emulsions in the simulated gastric fluid (SGF) was 10 times faster than that in the neutral solution. We believe that the highly particle-covered monodisperse W/W Pickering emulsions possess great potential applications in bioencapsulation for foods and drug delivery.
Collapse
Affiliation(s)
- Feng Yang
- School of Life Sciences and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, PR China
| | - Yilan Wang
- School of Life Sciences and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, PR China
| | - Huatao He
- School of Life Sciences and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, PR China
| | - Guanxiong Wang
- School of Life Sciences and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, PR China
| | - Menghan Yang
- School of Life Sciences and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, PR China
| | - Meiying Hong
- School of Life Sciences and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, PR China
| | - Jin Huang
- Southwest Univ, Sch Chem & Chem Engn, Chongqing Key Lab Soft Matter Mat Chem & Funct Mfg, Chongqing 400715, PR China; Southwest Univ, State Key Lab Silkworm Genome Biol, Chongqing 400715, PR China.
| | - Yaolei Wang
- School of Life Sciences and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, PR China.
| |
Collapse
|
3
|
Zhou T, Liu Z, Ma X, Cen C, Huang Z, Lu Y, Kong T, Qi C. Thermally-resilient, phase-invertible, ultra-stable all-aqueous compartments by pH-modulated protein colloidal particles. J Colloid Interface Sci 2024; 665:413-421. [PMID: 38537589 DOI: 10.1016/j.jcis.2024.03.155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 03/05/2024] [Accepted: 03/23/2024] [Indexed: 04/17/2024]
Abstract
The essence of compartmentalization in cells is the inspiration behind the engineering of synthetic counterparts, which has emerged as a significant engineering theme. Here, we report the formation of ultra-stable water-in-water (W/W) emulsion droplets. These W/W droplets demonstrate previously unattained stability across a broad pH spectrum and exhibit resilience at temperatures up to 80℃, overcoming the challenge of insufficient robustness in dispersed droplets of aqueous two-phase systems (ATPS). The exceptional robustness is attributed to the strong anchoring of micelle-like casein colloidal particles at the PEO/DEX interface, which maintains stability under varying environmental conditions. The increased surface hydrophobicity of these particles at high temperatures contributes to the formation of thermally-stable droplets, enduring temperatures as high as 80℃. Furthermore, our study illustrates the adaptable affinity of micelle-like casein colloidal particles towards the PEO/DEX-rich phase, enabling the formation of stable DEX-in-PEO emulsions at lower pH levels, and PEO-in-DEX emulsions as the pH rises above the isoelectric point. The robust nature of these W/W emulsions unlocks new possibilities for exploring various biochemical reactions within synthetic subcellular modules and lays a solid foundation for the development of novel biomimetic materials.
Collapse
Affiliation(s)
- Tao Zhou
- College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen Guangdong 518000, China
| | - Zhou Liu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518000, China
| | - Xudong Ma
- College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen Guangdong 518000, China
| | - Chaofeng Cen
- Department of Biomedical Engineering, School of Medicine, Shenzhen University, Shenzhen, Guangdong 518000, China
| | - Zhangwei Huang
- College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen Guangdong 518000, China
| | - Yi Lu
- Department of Biomedical Engineering, School of Medicine, Shenzhen University, Shenzhen, Guangdong 518000, China
| | - Tiantian Kong
- Department of Biomedical Engineering, School of Medicine, Shenzhen University, Shenzhen, Guangdong 518000, China; Department of Urology, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong 518000, China.
| | - Cheng Qi
- College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen Guangdong 518000, China.
| |
Collapse
|
4
|
Hu X, Zhu C, Hu Z, Shen W, Ji Z, Li F, Guo C. Effect of zein-pectin composite particles on the stability and rheological properties of gelatin/hydroxypropyl methylcellulose water-water systems. Int J Biol Macromol 2024; 269:131846. [PMID: 38663702 DOI: 10.1016/j.ijbiomac.2024.131846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 04/06/2024] [Accepted: 04/23/2024] [Indexed: 05/06/2024]
Abstract
To improve the compatibility of gelatin (GA) and hydroxypropyl methylcellulose (HPMC), we investigated the effects of zein-pectin composite particles (ZCPs) with various zein/pectin ratios (1:0, 1:0.5, 1:1, 1:1.5, and 1:2) on the physical stability, microstructure, and rheological properties of the GA/HPMC water-water systems. With increasing pectin ratio, the particle size of the composite particles increased from 234.53 ± 1.48 nm to 1111.00 ± 26.91 nm, and their zeta potential decreased from 20.60 mV to below -34.77 mV. Macroscopic and microstructure observations indicated that pectin-modified ZCPs could effectively inhibit phase separation behavior between GA and HPMC. Compared to pure HPMC, the GA/HPMC water-water systems possessed a higher viscosity and dynamic modulus at room temperatures but lower gel temperatures (reduction of about 11 %). The viscosity and modulus of the water-water systems increased with increasing pectin ratio in ZCPs. However, the ratio had no impact on the gel-sol (sol-gel) transition temperatures (not statistically significant (P < 0.05)). This study may serve as a reference for advancing the processability of HPMC.
Collapse
Affiliation(s)
- Xinnan Hu
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Chengkai Zhu
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Zhongze Hu
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Wangyang Shen
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan 430023, China
| | - Zhili Ji
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan 430023, China.
| | - Fang Li
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Cheng Guo
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| |
Collapse
|
5
|
Hao R, Chen Z, Wu Y, Li D, Qi B, Lin C, Zhao L, Xiao T, Zhang K, Wu J. Improving the survival of Lactobacillus plantarum FZU3013 by phase separated caseinate/alginate gel beads. Int J Biol Macromol 2024; 260:129447. [PMID: 38232889 DOI: 10.1016/j.ijbiomac.2024.129447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 11/11/2023] [Accepted: 01/10/2024] [Indexed: 01/19/2024]
Abstract
The phase separation behavior of mixed solution of caseinate (Cas) and alginate (Alg) was investigated. Lactobacillus plantarum FZU3013 was encapsulated using 4 % Cas/1 % Alg gel beads with a phase-separated structure. The bacteria were predominantly distributed in the Alg-rich continuous phase. The use of 4 % Cas/1 % Alg beads resulted in higher encapsulation efficiency for L. plantarum FZU3013 compared to 1 % Alg beads. After 5 weeks of storage at 4 °C, the viable count in 4 % Cas/1 % Alg beads was 8.3 log CFU/g, which was 1.1 log CFU/g higher than that of the 1 % Alg beads. When 1 % Alg beads of the smallest size were subjected to in vitro digestion, no viable bacteria could be detected at the end of the digestion, whereas the 4 % Cas/1 % Alg beads of the smallest size had a viable count of 3.9 log CFU/g. When the size of the 4 % Cas/1 % Alg beads was increased to 1000 μm, the viable count was 7.0 log CFU/g after digestion. The results of infrared spectroscopy and zeta potential indicated that hydrogen bonding and electrostatic interactions between caseinate and alginate reinforced the structure of the gel beads and improved the protection for L. plantarum FZU 3013.
Collapse
Affiliation(s)
- Ruiying Hao
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Zhiyang Chen
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Ya Wu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Dongdong Li
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Binxi Qi
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Chenxin Lin
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Lan Zhao
- College of Life Science, Fujian Normal University, Fuzhou, Fujian 350117, China
| | - Tingting Xiao
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Kunfeng Zhang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Jia Wu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, China.
| |
Collapse
|
6
|
Pu C, Luo Y, Sun Y, Zhang J, Cui H, Li M, Sun Q, Tang W. Water in water emulsion stabilized by liposomes developed from whey protein isolate and xanthan gum: Environmental stability and photoprotection effect for riboflavin. Int J Biol Macromol 2024; 262:130036. [PMID: 38354924 DOI: 10.1016/j.ijbiomac.2024.130036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 02/01/2024] [Accepted: 02/05/2024] [Indexed: 02/16/2024]
Abstract
The purpose of this work is to explore the feasibility of water in water (W/W) emulsion stabilized with liposomes as a water-soluble nutraceutical carrier. A W/W emulsion system composed of xanthan gum (XG) and whey protein isolate (WPI) with different amount (0.2 %, 0.4 %, and 0.6 %) of liposomes as stabilizer was constructed. Fast green staining observation showed that XG was the internal phase and WPI was the continuous phase respectively. Confocal laser scanning microscopy revealed that with the increase of liposomes concentration from 0.4 % to 0.6 %, the interface thickness of the W/W emulsions was approximately twice that of the 0.2 % liposome-stabilized emulsion.The emulsions remained stable under neutral and weakly alkaline conditions. The droplet sizes of the emulsions were little affected by ionic strength. The binding constant (Ka) for XG to riboflavin (12.22) was approximately 5 times that for WPI to riboflavin (2.46), suggesting that riboflavin had a stronger binding affinity for the XG molecule compared to WPI. The fluorescence spectra of riboflavin showed that 0.4 % and 0.6 % liposome stabilized emulsions could effectively retard the photodegradation of riboflavin under ultraviolet irradiation. The successful construction of liposomes stabilized W/W emulsion provides a novel strategy for delivering water-soluble bioactive substances.
Collapse
Affiliation(s)
- Chuanfen Pu
- School of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China.
| | - Yongxue Luo
- School of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Yue Sun
- School of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Jie Zhang
- School of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Hanwen Cui
- School of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Man Li
- School of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Qingjie Sun
- School of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Wenting Tang
- School of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
7
|
Zhao S, Deng X, Wang Y, Chen S, Liu X, Liu F. Co-delivery of hydrophobic β-carotene and hydrophilic riboflavin by novel water-in-oleic acid-in-water (W/OA/W) emulsions. Food Chem 2024; 432:137224. [PMID: 37657349 DOI: 10.1016/j.foodchem.2023.137224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 08/15/2023] [Accepted: 08/18/2023] [Indexed: 09/03/2023]
Abstract
Hydrophobic β-carotene and hydrophilic riboflavin offer a wide range of health benefits, but their limited stability and bioaccessibility pose challenges to their use in the food industry. This study developed a water-in-oleic acid-in-water (W/OA/W) emulsion. The effects of internal/external water phase emulsifiers were investigated on their microstructure, encapsulation efficiency, and stability. Only 0.05 wt% soybean-derived phosphatidylcholine was required as a lipophilic emulsifier to produce W/OA/W emulsions that can encapsulate both hydrophobic β-carotene and hydrophilic riboflavin. Compared to the commercial pea protein isolate (PPI), the PPI-xylooligosaccharide conjugate demonstrated superior performance as hydrophilic emulsifiers in stabilizing W/OA/W emulsions. The W/OA/W emulsion co-delivery system improved the thermal stability, light stability, and bioaccessibility of β-carotene, as well as the light stability of riboflavin. Overall, the W/OA/W emulsion holds great promise for application in natural food and for co-delivering hydrophobic and hydrophilic bioactive ingredients.
Collapse
Affiliation(s)
- Sheliang Zhao
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Xiaofan Deng
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Yutang Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Shuai Chen
- School of Public Health, Wuhan University, Wuhan 430071, Hubei, PR China
| | - Xuebo Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China.
| | - Fuguo Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China.
| |
Collapse
|
8
|
Li P, Jiang L, Lan L, Liu F, Liu Z, Huang Y, Dan Y. Sustainable polylactide materials with the function of blocking a specific wavelength of light based on aloe-emodin. Int J Biol Macromol 2023; 247:125744. [PMID: 37423438 DOI: 10.1016/j.ijbiomac.2023.125744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 06/18/2023] [Accepted: 07/06/2023] [Indexed: 07/11/2023]
Abstract
Polylactide, a biodegradable polymer, can alleviate white pollution, but the use of polylactide in food packaging is limited by high transmittance to light with a specific wavelength, UV (185-400 nm) and short-wavelength visible (400-500 nm) light. Herein, the polylactide end-capped with renewable light absorber aloe-emodin (PLA-En), is blended with commercial polylactide (PLA) to fabricate the polylactide film with the function of blocking light with a specific wavelength, PLA/PLA-En film. Only 40 % of light around 287 and 430 nm transmits through PLA/PLA-En film incorporating 3 mass% of PLA-En, while the film still maintains good mechanical properties and high transparency more than 90 % at 660 nm because of the good compatibility with PLA. The PLA/PLA-En film exhibits stable light-blocking properties under light irradiation and anti-solvent migration under the immersion of fat simulant. Almost no PLA-En migrated out of the film with the molecular weight of PLA-En only 2.89 × 104 g/mol. Compared with PLA film and commercial PE plastic wrap, the designed PLA/PLA-En film exhibits a better preservative effect on riboflavin and milk for inhibiting the production of 1O2. This study offers a green strategy for developing UV and short-wavelength light protective food package film based on renewable resource.
Collapse
Affiliation(s)
- Pengfei Li
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China
| | - Long Jiang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China
| | - Lidan Lan
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China
| | - Fei Liu
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China
| | - Zhi Liu
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China
| | - Yun Huang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China.
| | - Yi Dan
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China.
| |
Collapse
|
9
|
Yan S, Regenstein JM, Zhang S, Huang Y, Qi B, Li Y. Edible particle-stabilized water-in-water emulsions: Stabilization mechanisms, particle types, interfacial design, and practical applications. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
|
10
|
Wang Y, Zhang L, Li T, Wang Y, Jiang J, Zhang X, Huang J, Xia B, Wang S, Dong W. Zein Coacervate as a New Coating Material for temperature-triggered microcapsule and fruit preservation. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2023]
|
11
|
Chen JF, Luo ZJ, Wang JM, Ruan QJ, Guo J, Yang XQ. Fabrication of stable Pickering double emulsion with edible chitosan/soy β-conglycinin complex particles via one-step emulsification strategy. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
12
|
Pickering high internal phase emulsions with excellent UV protection property stabilized by Spirulina protein isolate nanoparticles. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
13
|
Properties and stability of water-in-water emulsions stabilized by microfibrillated bacterial cellulose. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
14
|
Xiao J, Tian W, Abdullah, Wang H, Chen M, Huang Q, Zhang M, Lu M, Song M, Cao Y. Updated design strategies for oral delivery systems: maximized bioefficacy of dietary bioactive compounds achieved by inducing proper digestive fate and sensory attributes. Crit Rev Food Sci Nutr 2022; 64:817-836. [PMID: 35959723 DOI: 10.1080/10408398.2022.2109583] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Interest in the application of dietary bioactive compounds (DBC) in healthcare and pharmaceutical industries has motivated researchers to develop functional delivery systems (FDS) aiming to maximize their bioefficacy. As the direct and indirect health benefiting effects of DBC are acknowledged, traditional design principle of FDS aiming at improving the bioavailability of intact DBC is challenged by the updated one, where the maximized bioefficacy of DBC delivered by FDS will be achieved via rationally absorbed at target sites with proper metabolism pathways. This article briefly summarized the absorption and metabolic fates of orally digested DBC along with their direct and indirect mechanisms to perform health benefiting effects. Current strategies in designing the next generation FDS with an emphasis on their modulation effects on the distribution portion between the upper and lower digestive tract, portal vein and lymphatic absorption, human digestive and gut microbiota enzymatic mediated metabolism were highlighted. Updated research progresses of FDS in adjusting sensory attributes of food end products and inducing synergistic effects rooting from matrix materials and co-delivered cargos were also discussed. Challenges as well as future perspectives concerning the precise nutrition and the critical role of delivery systems in dietary intervention were proposed.
Collapse
Affiliation(s)
- Jie Xiao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Wenni Tian
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Abdullah
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Haonan Wang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Meimiao Chen
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Qingrong Huang
- Department of Food Science, Rutgers, the State University of New Jersey, New Jersey, New Brunswick, USA
| | - Man Zhang
- Department of Food Science, Rutgers, the State University of New Jersey, New Jersey, New Brunswick, USA
| | - Muwen Lu
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Mingyue Song
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Yong Cao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
15
|
Merland T, Waldmann L, Guignard O, Tatry MC, Wirotius AL, Lapeyre V, Garrigue P, Nicolai T, Benyahia L, Ravaine V. Thermo-induced inversion of water-in-water emulsion stability by bis-hydrophilic microgels. J Colloid Interface Sci 2022; 608:1191-1201. [PMID: 34735854 DOI: 10.1016/j.jcis.2021.10.074] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 10/12/2021] [Accepted: 10/13/2021] [Indexed: 12/11/2022]
Abstract
HYPOTHESIS Stabilization of water-in-water (W/W) emulsions resulting from the separation of polymeric phases such as dextran (DEX) and poly(ethyleneoxide) (PEO) is highly challenging, because of the very low interfacial tensions between the two phases and because of the interface thickness extending over several nanometers. In the present work, we present a new type of stabilizers, based on bis-hydrophilic, thermoresponsive microgels, incorporating in the same structure poly(N-isopropylacrylamide) (pNIPAM) chains having an affinity for the PEO phase and dextran moieties. We hypothesize that these particles allow better control of the stability of the W/W emulsions. EXPERIMENTS The microgels were synthesized by copolymerizing the NIPAM monomer with a multifunctional methacrylated dextran. They were characterized by dynamic light scattering, zeta potential measurements and nuclear magnetic resonance as a function of temperature. Microgels with different compositions were tested as stabilizers of droplets of the PEO phase dispersed in the DEX phase (P/D) or vice-versa (D/P), at different concentrations and temperatures. FINDINGS Only microgels with the highest DEX content revealed excellent stabilizing properties for the emulsions by adsorbing at the droplet surface, thus demonstrating the fundamental role of bis-hydrophilicity. At room temperature, both pNIPAM and DEX chains were swollen by water and stabilized better D/P emulsions. However, above the volume phase transition temperature (VPTT ≈ 32 °C) of pNIPAM the microgels shrunk and stabilized better P/D emulsions. At all temperatures, excess microgels partitioned more to the PEO phase. The change in structure and interparticle interaction induced by heating can be exploited to control the W/W emulsion stability.
Collapse
Affiliation(s)
- Théo Merland
- Institut des Molécules et Matériaux du Mans (IMMM), UMR 6283 CNRS - Le Mans Université, 1, Avenue Olivier Messiaen, 72085 Le Mans Cedex 9, France
| | - Léa Waldmann
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, F-33400 Talence, France
| | - Oksana Guignard
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, F-33400 Talence, France
| | | | | | - Véronique Lapeyre
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, F-33400 Talence, France
| | - Patrick Garrigue
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, F-33400 Talence, France
| | - Taco Nicolai
- Institut des Molécules et Matériaux du Mans (IMMM), UMR 6283 CNRS - Le Mans Université, 1, Avenue Olivier Messiaen, 72085 Le Mans Cedex 9, France
| | - Lazhar Benyahia
- Institut des Molécules et Matériaux du Mans (IMMM), UMR 6283 CNRS - Le Mans Université, 1, Avenue Olivier Messiaen, 72085 Le Mans Cedex 9, France.
| | - Valérie Ravaine
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, F-33400 Talence, France.
| |
Collapse
|
16
|
Fang Q, Li R, Li P, Yuan Y, Zhuang H, Zhang C. Interaction between soy protein isolate and surfactant at the interface of antibacterial nanoemulsions loaded with riboflavin tetra butyrate. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Qiangsheng Fang
- School of Materials Science and Engineering Jilin University Changchun 130022 China
| | - Rui Li
- School of Materials Science and Engineering Jilin University Changchun 130022 China
| | - Peihong Li
- School of Materials Science and Engineering Jilin University Changchun 130022 China
| | - Yuan Yuan
- College of Food Science and Engineering Jilin University Changchun 130062 China
| | - Hong Zhuang
- College of Food Science and Engineering Jilin University Changchun 130062 China
| | - Chunling Zhang
- School of Materials Science and Engineering Jilin University Changchun 130022 China
| |
Collapse
|
17
|
Designing delivery systems for functional ingredients by protein/polysaccharide interactions. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2021.12.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
18
|
Li M, He S. Utilization of zein-based particles in Pickering emulsions: A review. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.2015377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Ming Li
- College of Food Science and Engineering, Tonghua Normal University, Tonghua, Jilin, PR China
- Development Engineering Center of Edible Plant Resources of Changbai Mountain, Tonghua Normal University, Tonghua, Jilin, PR China
| | - Shudong He
- Key Laboratory for Agricultural Products Processing of Anhui Province, School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, PR China
| |
Collapse
|
19
|
Djoullah A, Saurel R. Controlled release of riboflavin encapsulated in pea protein microparticles prepared by emulsion-enzymatic gelation process. J FOOD ENG 2021. [DOI: 10.1016/j.jfoodeng.2020.110276] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
20
|
Advances in food emulsions and foams: reflections on research in the neo-Pickering era. Curr Opin Food Sci 2020. [DOI: 10.1016/j.cofs.2019.12.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
21
|
Zhao Z, Lu M, Mao Z, Xiao J, Huang Q, Lin X, Cao Y. Modulation of interfacial phenolic antioxidant distribution in Pickering emulsions via interactions between zein nanoparticles and gallic acid. Int J Biol Macromol 2020; 152:223-233. [PMID: 32068060 DOI: 10.1016/j.ijbiomac.2020.02.136] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 02/06/2020] [Accepted: 02/13/2020] [Indexed: 12/14/2022]
Abstract
The impacts of protein nanoparticles on the interfacial distribution of antioxidants and the oxidative stability in Pickering emulsions are attracting increasing research interests. In the present work, the distribution of gallic acid (GA) in zein nanoparticles-stabilized Pickering emulsions (ZPE) was determined by employing a pseudophase kinetic model. The interfacial distribution of GA was found to be favored in ZPEs with higher zein nanoparticle concentration (Czein). Upon increasing Czein, the interfacial loading of nanoparticles (Γ) dominated the modulation of %GAI via hydrogen bonding between zein nanoparticles and GA. The interfacial percentage of GA (%GAI) increased from 28% to 39% as Γ increased from 0.48 to 1.12 mg/m2. In the presence of GA, a direct correlation between Czein or Γ and oxidation stability was recognized, whereas the oxidative stability showed a non-linear dependence on either Czein or Γ in the absence of GA. By excluding antioxidant effects of zein nanoparticles, we found that the %GAI, which was regulated by Γ, took the leading role over the physical barrier effect on the oxidative stability of emulsions. The present work extends our current knowledge on how protein based nanoparticles manipulate the interfacial distribution of antioxidant and then affect the oxidative stability of emulsions.
Collapse
Affiliation(s)
- Zijun Zhao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, Guangdong, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong, China
| | - Muwen Lu
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, Guangdong, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong, China
| | - Zhu Mao
- Research Center for High-performance Organic and Polymer Photo-electric, Functional Films, State Key Laboratory of OEMT, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Jie Xiao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, Guangdong, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong, China.
| | - Qingrong Huang
- Department of Food Science, Rutgers, the State University of New Jersey, 65 Dudley Road, New Brunswick, NJ 08901, USA
| | - Xuechun Lin
- School of Applied Chemistry and Biological Technology, Shenzhen Polytechnic, Shenzhen 518055, China
| | - Yong Cao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, Guangdong, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong, China
| |
Collapse
|
22
|
Tailor it up! How we are rolling towards designing the functionality of emulsions in the mouth and gastrointestinal tract. Curr Opin Food Sci 2020. [DOI: 10.1016/j.cofs.2020.06.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|