1
|
Shi S, Liu D, Wei C, Li J, Zhao C, Tian Y, Li X, Song R, Song B. A benzo[b]thiophene-derived inhibitor of virus particle assembly via targeting capsid protein residue Arg157. Int J Biol Macromol 2024; 287:138467. [PMID: 39657887 DOI: 10.1016/j.ijbiomac.2024.138467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 12/03/2024] [Accepted: 12/04/2024] [Indexed: 12/12/2024]
Abstract
As a biological macromolecule, the coat protein (CP) of potato virus Y (PVY) mediates the virus' primary pathogenic behaviors. It has been gradually realized that certain residues on the CP are crucial for functions such as virus particle movement and assembly. However, there are few reports of potential drugs successfully targeting these key residues with unique mechanisms of action. Here, we disclose the first new phytovirucide that acts on the key site Arg157 (R157) on the PVY CP. In this investigation, we developed a series of benzo[b]thiophene-based compounds, strategically introducing sulfonamide functionalities to enhance their antiviral performance. Through bio-screening, derivative C54 (EC50 = 69.2 μg/mL for inactive activity) emerged as notably more effective against PVY than the established antiviral agent ningnanmycin (EC50 = 79.6 μg/mL). Mechanistic studies revealed that C54 is an inhibitor of viral particle assembly by specifically binding to the CP residue R157, thereby disrupting its interaction with RNA. These results underscore the promise of C54 as a potent antiviral lead and provide a fresh perspective on the strategic design of inhibitors focusing on viral assembly processes.
Collapse
Affiliation(s)
- Shaojie Shi
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Deguo Liu
- College of Plant Protection, Shandong Agricultural University, NO.61 Daizong Street, Tai'an City, Shandong province 271018, China
| | - Chunle Wei
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Jianzhuan Li
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Chunni Zhao
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Yanping Tian
- College of Plant Protection, Shandong Agricultural University, NO.61 Daizong Street, Tai'an City, Shandong province 271018, China.
| | - Xiangdong Li
- College of Plant Protection, Shandong Agricultural University, NO.61 Daizong Street, Tai'an City, Shandong province 271018, China
| | - Runjiang Song
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Baoan Song
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China.
| |
Collapse
|
2
|
Huang R, Wang W, Lu K, Zhao X. Visible-light-induced cascade radical cyclization to access sulfamoylated benzo[4,5]imidazo[2,1- a]isoquinolin-6(5 H)-ones. Org Biomol Chem 2024. [PMID: 39635756 DOI: 10.1039/d4ob01809e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
We report, for the first time, a visible-light-induced cascade radical sulfamoylation and cyclization of 2-arylbenzoimidazoles using sulfamoyl chlorides as sulfamoylation reagents to access sulfamoylated benzo[4,5]imidazo[2,1-a]isoquinolin-6(5H)-ones. The readily available nature of sulfamoyl chlorides and the metal-free conditions make this method a promising strategy for the synthesis of these compounds.
Collapse
Affiliation(s)
- Rong Huang
- College of Chemistry, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Key laboratory of Inorganic-organic Hybrid Functional Material Chemistry, Ministry of Education, Tianjin Normal University, Tianjin, 300387, China.
| | - Wenbo Wang
- College of Chemistry, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Key laboratory of Inorganic-organic Hybrid Functional Material Chemistry, Ministry of Education, Tianjin Normal University, Tianjin, 300387, China.
| | - Kui Lu
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Xia Zhao
- College of Chemistry, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Key laboratory of Inorganic-organic Hybrid Functional Material Chemistry, Ministry of Education, Tianjin Normal University, Tianjin, 300387, China.
| |
Collapse
|
3
|
Yang X, Liu D, Wei C, Li J, Zhao C, Tian Y, Li X, Song B, Song R. Rational design of 2 H-chromene-based antiphytovirals that inhibit virion assembly by outcompeting virus capsid-RNA interactions. iScience 2024; 27:111210. [PMID: 39555397 PMCID: PMC11565046 DOI: 10.1016/j.isci.2024.111210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/30/2024] [Accepted: 10/16/2024] [Indexed: 11/19/2024] Open
Abstract
Although the determination of the structural basis of potato virus Y (PVY) coat protein (CP) provides the possibility for CP-based antiviral drug design, the role of many specific residues on CP in regulating virion pathogenicity is largely unknown, and fewer small-molecular drugs have been discovered to act on these potential sites. In this study, a series of derivatives of 2,2-dimethyl-2H-chromene are rationally designed by employing a molecular hybridization strategy. We screen a case of phytovirucide C50 that could form a stable H-bond with Ser125 of PVY CP to exert antiviral properties. Ser125 is further identified to be crucial for CP-viral RNA (vRNA) interaction, enabling PVY virion assembly. This interaction can be significantly inhibited through competitive binding with compound C50. The study enhances our understanding of anti-PVY drug mechanisms and provides a basis for developing new CP-targeting virus particle assembly inhibitors.
Collapse
Affiliation(s)
- Xiong Yang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R & D of Fine Chemicals of Guizhou University, Guiyang City, Guizhou Province 550025, P.R. China
| | - Deguo Liu
- College of Plant Protection, Shandong Agricultural University, Tai’an City, Shandong Province 271018, P.R. China
| | - Chunle Wei
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R & D of Fine Chemicals of Guizhou University, Guiyang City, Guizhou Province 550025, P.R. China
| | - Jianzhuan Li
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R & D of Fine Chemicals of Guizhou University, Guiyang City, Guizhou Province 550025, P.R. China
| | - Chunni Zhao
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R & D of Fine Chemicals of Guizhou University, Guiyang City, Guizhou Province 550025, P.R. China
| | - Yanping Tian
- College of Plant Protection, Shandong Agricultural University, Tai’an City, Shandong Province 271018, P.R. China
| | - Xiangdong Li
- College of Plant Protection, Shandong Agricultural University, Tai’an City, Shandong Province 271018, P.R. China
| | - Baoan Song
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R & D of Fine Chemicals of Guizhou University, Guiyang City, Guizhou Province 550025, P.R. China
| | - Runjiang Song
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R & D of Fine Chemicals of Guizhou University, Guiyang City, Guizhou Province 550025, P.R. China
| |
Collapse
|
4
|
Liu X, Zhang Y, Zou Y, Yan C, Chen J. Recent Advances and Outlook of Benzopyran Derivatives in the Discovery of Agricultural Chemicals. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:12300-12318. [PMID: 38800848 DOI: 10.1021/acs.jafc.3c09244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Scaffold structures, new mechanisms of action, and targets present enormous challenges in the discovery of novel pesticides. The discovery of new scaffolds is the basis for the continuous development of modern agrochemicals. Identification of a good scaffold such as triazole, carbamate, methoxy acrylate, pyrazolamide, pyrido-pyrimidinone mesoionic, and bisamide often leads to the development of a new series of pesticides. In addition, pesticides with the same target, including the inhibitors of succinate dehydrogenase (SDH), oxysterol-binding-protein, and p-hydroxyphenyl pyruvate dioxygenase (HPPD), may have the same or similar scaffold structure. Recent years have witnessed significant progress in the discovery of new pesticides using natural products as scaffolds or bridges. In recent years, there have been increasing reports on the application of natural benzopyran compounds in the discovery of new pesticides, especially osthole and coumarin. A systematic and comprehensive review of benzopyran active compounds in the discovery of new agricultural chemicals is helpful to promote the discussion and development of benzopyran active compounds. Therefore, this work systematically reviewed the research and application of benzopyran derivatives in the discovery of agricultural chemicals, summarized the antiviral, herbicidal, antibacterial, fungicidal, insecticidal, nematicidal and acaricidal activities of benzopyran active compounds, and discussed the structural-activity relationship and mechanism of action. In addition, some active fragments were recommended to further optimize the chemical structure of benzopyran active compounds based on reference information.
Collapse
Affiliation(s)
- Xing Liu
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Yong Zhang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Yue Zou
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Chongchong Yan
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Jixiang Chen
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| |
Collapse
|
5
|
Wu Z, Zhang C, Huang Y, Tao N, Wang T, Cai X, Wang Z, Li X. Tryptanthrin Derivative B1 Binds Viral Genome-Linked Protein (VPg) of Potato Virus Y. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:5699-5709. [PMID: 38462724 DOI: 10.1021/acs.jafc.4c01306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Potato virus Y (PVY) is a plant virus that is known to be responsible for substantial economic losses in agriculture. Within the PVY genome, viral genome-linked protein (VPg) plays a pivotal role in the viral translation process. In this study, VPg was used as a potential target for analyzing the antiviral activity of tryptanthrin derivatives. In vitro, the dissociation constants of B1 with PVY VPg were 0.69 μmol/L (measured by microscale thermophoresis) and 4.01 μmol/L (measured via isothermal titration calorimetry). B1 also strongly bound to VPg proteins from three other Potyviruses. Moreover, in vivo experiments demonstrated that B1 effectively suppressed the expression of the PVY gene. Molecular docking experiments revealed that B1 formed a hydrogen bond with N121 and that no specific binding occurred between B1 and the PVY VPgN121A mutant. Therefore, N121 is a key amino acid residue in PVY VPg involved in B1 binding. These results highlight the potential of PVY VPg as a potential target for the development of antiviral agents.
Collapse
Affiliation(s)
- Zilin Wu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Chun Zhang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Yuanqin Huang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Na Tao
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Tao Wang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Xiaobo Cai
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Zhenchao Wang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
- College of Pharmacy, Guizhou University, Guiyang 550025, China
| | - Xiangyang Li
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| |
Collapse
|
6
|
Zhang GL, Wang ZC, Li CP, Chen DP, Li ZR, Li Y, Ouyang GP. Discovery of tryptanthrin analogues bearing F and piperazine moieties as novel phytopathogenic antibacterial and antiviral agents. PEST MANAGEMENT SCIENCE 2024; 80:1026-1038. [PMID: 37842924 DOI: 10.1002/ps.7834] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 10/08/2023] [Accepted: 10/11/2023] [Indexed: 10/17/2023]
Abstract
BACKGROUND Plant bacterial infections and plant viruses seriously affect the yield and quality of crops. Based on the various activities of tryptanthrin, a series of tryptanthrin analogues bearing F and piperazine moieties were designed, synthesized, and evaluated for their biological activities against three plant bacteria and tobacco mosaic virus (TMV). RESULTS Bioassay results indicated that compounds 6a-6l displayed excellent antibacterial activities in vitro and 6a-6c and 6g exhibited better antiviral activities against TMV than commercial ribavirin. In particular, 6b showed the most effect on Xanthomonas oryzae pv. oryzae (Xoo) with a half-maximal effective concentration (EC50 ) of 1.26 μg mL-1 , compared with the commercial pesticide bismerthiazol (BT; EC50 = 34.3 μg mL-1 ) and thiodiazole copper (TC; EC50 = 73.3 μg mL-1 ). Meanwhile, 6a also had the best antiviral activity at 500 μg mL-1 for curative, protection, and inactivation purposes, compared with ribavirin in vivo. CONCLUSION Compound 6b could cause changes in bacterial morphology, induce the accumulation of reactive oxygen species, promote apoptosis of bacterial cells, inhibit the formation of biofilm, and block the growth of Xoo cells. Proteomic analysis revealed major differences in the bacterial secretory system pathways T2SS and T6SS, which inhibited membrane transport. Molecular docking revealed that 6a and 6g could interact with TMV coat protein preventing virus assembly. These results suggest that tryptanthrin analogues bearing F and piperazine moieties could be promising candidate agents for antibacterial and antiviral use in agricultural production. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Guang-Long Zhang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Zhen-Chao Wang
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, China
| | - Cheng-Peng Li
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, China
| | - Dan-Ping Chen
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, China
| | - Zhu-Rui Li
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, China
| | - Yan Li
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, China
| | - Gui-Ping Ouyang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, China
- Guizhou Engineering Laboratory for Synthetic Drugs, Guizhou University, Guiyang, China
| |
Collapse
|
7
|
Peng M, Zhang S, Zhao K, Zheng Y, Li X. Plant Regulation Functions of Novel Phthalimide Compounds Based on AtPYL2. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:12325-12332. [PMID: 37534830 DOI: 10.1021/acs.jafc.3c02809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
Novel agents contain the structure of phthalimide, which has antibacterial, insecticidal, and herbicidal activities. Recently, studies reported that these compounds can bind to plant hormone receptors and play important regulatory roles. In this study, the functions of agents were studied with in vitro and in vivo assays. The abscisic acid (ABA) receptor pyrabactin resistant-like 2 (PYL2) protein in Arabidopsis thaliana was expressed, purified, and crystallized; the analysis results of the crystal structure showed three AtPYL2 subunits in each asymmetric unit. The affinity of compounds Z1-Z11 to the AtPYL2 protein was tested by microscale thermophoresis (MST) and then verified by isothermal titration calorimetry (ITC). Furthermore, the binding pockets were found using molecular docking to verify the target relationships. Relevant in vivo assays for seed germination and a root growth assay were conducted, with the plant samples being treated with target compounds. The results show that the compounds Z3, Z5, and Z10 target AtPYL2 and that the dissociation constants for binding by MST were 3.59, 3.54, and 3.97 μmol/L, respectively, among them, and the molecular docking results showed that compounds Z3, Z5, and Z10 formed hydrophobic interactions with amino acid residues through hydrogen or halogen bonding. This highlights their potential as an ABA receptor protein agonist. On the other hand, in vivo, compounds Z3, Z5, and Z10 had different inhibitory effects on seed germination, with compound Z5 inhibiting the root growth of A. thaliana and compound Z10 affecting root growth. In conclusion, these compounds could regulate plant growth and could be further developed as new plant-regulating agents.
Collapse
Affiliation(s)
- Mingyao Peng
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang, Guizhou 550025, People's Republic of China
- College of Tea Science, Guizhou University, Huaxi District, Guiyang, Guizhou 550025, People's Republic of China
| | - Shanqi Zhang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang, Guizhou 550025, People's Republic of China
| | - Kunhong Zhao
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang, Guizhou 550025, People's Republic of China
| | - Yuguo Zheng
- Key Laboratory of Chemical Synthesis and Environmental Pollution Control Remediation Technology, Minzu Normal University of Xingyi, Xingyi, Guizhou 562400, People's Republic of China
| | - Xiangyang Li
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang, Guizhou 550025, People's Republic of China
| |
Collapse
|
8
|
Zou Y, Zhang Y, Liu X, Song H, Cai Q, Wang S, Yi C, Chen J. Research Progress of Benzothiazole and Benzoxazole Derivatives in the Discovery of Agricultural Chemicals. Int J Mol Sci 2023; 24:10807. [PMID: 37445983 DOI: 10.3390/ijms241310807] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/24/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Benzoxazole and benzothiazole have a broad spectrum of agricultural biological activities, such as antibacterial, antiviral, and herbicidal activities, which are important fused heterocyclic scaffold structures in agrochemical discovery. In recent years, great progress has been made in the research of benzoxazoles and benzothiazoles, especially in the development of herbicides and insecticides. With the widespread use of benzoxazoles and benzothiazoles, there may be more new products containing benzoxazoles and benzothiazoles in the future. We systematically reviewed the application of benzoxazoles and benzothiazoles in discovering new agrochemicals in the past two decades and summarized the antibacterial, fungicidal, antiviral, herbicidal, and insecticidal activities of the active compounds. We also discussed the structural-activity relationship and mechanism of the active compounds. This work aims to provide inspiration and ideas for the discovery of new agrochemicals based on benzoxazole and benzothiazole.
Collapse
Affiliation(s)
- Yue Zou
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Yong Zhang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Xing Liu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Hongyi Song
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Qingfeng Cai
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Sheng Wang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Chongfen Yi
- Guizhou Rice Research Institute, Guizhou Academy of Agricultural Sciences, Guiyang 550025, China
| | - Jixiang Chen
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| |
Collapse
|
9
|
Gan X, Zhang W, Lan S, Hu D. Novel Cyclized Derivatives of Ferulic Acid as Potential Antiviral Agents through Activation of Photosynthesis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:1369-1380. [PMID: 36626162 DOI: 10.1021/acs.jafc.2c06422] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
To further develop new antiviral agents, several novel cyclized derivatives of ferulic acid were designed and synthesized. Their antiviral activities were evaluated against the cucumber mosaic virus (CMV), pepper mild mottle virus (PMMoV), and tomato spotted wilt virus (TSWV). The results showed that some ferulic acid derivatives exhibited desirable antiviral activities. Particularly, compound 5e exhibited excellent protective activities against CMV, PMMoV, and TSWV, with EC50 values of 167.2, 102.5, and 145.8 μg mL-1, respectively, which were superior to those obtained for trans-ferulic acid (581.7, 611.2, and 615.4 μg mL-1), dufulin (312.6, 302.5, and 298.2 μg mL-1), and ningnanmycin (264.3, 282.5, and 276.5 μg mL-1). Thereafter, the protective mechanisms of 5e were evaluated through photosynthesis evaluation, transcriptome profiling, and proteomic analysis. The results indicated that 5e significantly activated the expression levels of photosynthesis-related regulatory genes and proteins in tobacco plants and promoted the accumulation of defense molecules to resist viral infection. Thus, the findings of this study indicated that novel cyclized ferulic acid derivatives are potential antiviral agents that act via regulating photosynthesis in the host.
Collapse
Affiliation(s)
- Xiuhai Gan
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Wei Zhang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Shichao Lan
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
- School of Biological Sciences, Guizhou Education University, Guiyang 550018, China
| | - Deyu Hu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| |
Collapse
|
10
|
Jin J, Shen T, Shu L, Huang Y, Deng Y, Li B, Jin Z, Li X, Wu J. Recent Achievements in Antiviral Agent Development for Plant Protection. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:1291-1309. [PMID: 36625507 DOI: 10.1021/acs.jafc.2c07315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Plant virus disease is the second most prevalent plant diseases and can cause extensive loss in global agricultural economy. Extensive work has been carried out on the development of novel antiplant virus agents for preventing and treating plant virus diseases. In this review, we summarize the achievements of the research and development of new antiviral agents in the recent five years and provide our own perspective on the future development in this highly active research field.
Collapse
Affiliation(s)
- Jiamiao Jin
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Tingwei Shen
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Liangzhen Shu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Yixian Huang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Youlin Deng
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Benpeng Li
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Zhichao Jin
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Xiangyang Li
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Jian Wu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| |
Collapse
|
11
|
Wei C, Yang X, Shi S, Bai L, Hu D, Song R, Song B. 3-Hydroxy-2-oxindole Derivatives Containing Sulfonamide Motif: Synthesis, Antiviral Activity, and Modes of Action. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:267-275. [PMID: 36537356 DOI: 10.1021/acs.jafc.2c06881] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
3-Hydroxy-2-oxindole motif constitutes a core structure in numerous natural products and imparts notable biological activities. Here, we describe the design and synthesis of four series of novel 3-substituted-3-hydroxy-2-oxindole derivatives containing sulfonamide moiety along with their antiviral activities against potato virus Y (PVY). Compound 10b displayed optimal antiviral activity and superior anti-PVY activity compared with the lead compound and commercial Ningnanmycin in terms of curative and protective effects. Additionally, 10b considerably inhibited PVY systemic infection in Nicotiana benthamiana. Physiological and biochemical analyses revealed that the activities of the four crucial defense-related enzymes increased in the tobacco plant following treatment with 10b. RNA-sequencing analysis revealed that 10b substantially induced the upregulation of 38 differentially expressed genes, which were enriched in the photosynthesis pathway. These findings suggest that 10b is a promising antiviral agrochemical that can effectively control PVY infection and trigger plant host immunity to develop virus resistance. This study provides novel molecular entities and ideas for developing new pesticides.
Collapse
Affiliation(s)
- Chunle Wei
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Xiong Yang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Shaojie Shi
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Lian Bai
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Deyu Hu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Runjiang Song
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Baoan Song
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| |
Collapse
|
12
|
Peng F, Liu T, Zhu Y, Liu F, Cao X, Wang Q, Liu L, Xue W. Novel 1,3,4-oxadiazole sulfonate/carboxylate flavonoid derivatives: synthesis and biological activity. PEST MANAGEMENT SCIENCE 2023; 79:274-283. [PMID: 36148624 DOI: 10.1002/ps.7197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 08/07/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND With the long-term use of traditional bactericides and antiviral agents, drug resistance has become increasingly prominent, resulting in impaired crop growth and yields. Based on this, the introduction of small molecular active groups into natural products has become the direction of research for green pesticides. RESULTS In this study, novel 1,3,4-oxadiazole sulfonate/carboxylate flavonoid derivatives were explored. Among them, D4 exhibited good inhibitory effects on plant bacteria. It is worth mentioning that D4 (15 μg ml-1 ) exhibited an excellent median effective concentration (EC50 ) value against Xanthomonas oryzae pv. oryzae (Xoo), which was better than bismerthiazol (73 μg ml-1 ) and thiodiazole copper (100 μg ml-1 ). The EC50 for D4 was much lower than the two positive controls (bismerthiazol, thiodiazole copper), making D4 more potent in this assay of bacterial growth inhibition. In addition, mechanism research using scanning electron microscopy revealed that D4 could cause deformation or rupture of the cell membranes of Xoo and Pseudomonas syringae pv. actinidiae. Moreover, D4 exhibited the best EC50 for in vivo curative (132 μg ml-1 ) and protective (101 μg ml-1 ) activities against tobacco mosaic virus, which were more effective than ningnanmycin. Microscale thermophoresis data suggested that D4 [dissociation constant (Kd ) = 0.038 ± 0.011 μmol L-1 ] exhibited a stronger binding capacity than the control agent ningnanmycin (Kd = 4.707 ± 2.176 μmol L-1 ). CONCLUSION The biological activity data and mode of action demonstrated that D4 had the best antibacterial and antiviral effects. Compound D4 discovered in the current work may be a very promising agricultural drug. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Feng Peng
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering; Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education; Research and Development Center for Fine Chemicals, Guizhou University, Guiyang, People's Republic of China
| | - Tingting Liu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering; Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education; Research and Development Center for Fine Chemicals, Guizhou University, Guiyang, People's Republic of China
| | - Yunying Zhu
- School of Chemical Engineering, Guizhou Institute of Technology, Guiyang, People's Republic of China
| | - Fang Liu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering; Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education; Research and Development Center for Fine Chemicals, Guizhou University, Guiyang, People's Republic of China
| | - Xiao Cao
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering; Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education; Research and Development Center for Fine Chemicals, Guizhou University, Guiyang, People's Republic of China
| | - Qifan Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering; Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education; Research and Development Center for Fine Chemicals, Guizhou University, Guiyang, People's Republic of China
| | - Liwei Liu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering; Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education; Research and Development Center for Fine Chemicals, Guizhou University, Guiyang, People's Republic of China
| | - Wei Xue
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering; Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education; Research and Development Center for Fine Chemicals, Guizhou University, Guiyang, People's Republic of China
| |
Collapse
|
13
|
Ghased E, Lordejani HA, Vedaei M, Massah AR. Solvent-free synthesis and antibacterial evaluation of novel mercaptobenzenesulfonamides. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2022. [DOI: 10.1007/s13738-022-02712-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
14
|
Moskalik MY. Sulfonamides with Heterocyclic Periphery as Antiviral Agents. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010051. [PMID: 36615245 PMCID: PMC9822084 DOI: 10.3390/molecules28010051] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/16/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022]
Abstract
Sulfonamides are the basic motifs for a whole generation of drugs from a large group of antibiotics. Currently, research in the field of the new sulfonamide synthesis has received a "second wind", due to the increase in the synthetic capabilities of organic chemistry and the study of their medical and biological properties of a wide spectrum of biological activity. New reagents and new reactions make it possible to significantly increase the number of compounds with a sulfonamide fragment in combination with other important pharmacophore groups, such as, for example, a wide class of N-containing heterocycles. The result of these synthetic possibilities is the extension of the activity spectrum-along with antibacterial activity, many of them exhibit other types of biological activity. Antiviral activity is also observed in a wide range of sulfonamide derivatives. This review provides examples of the synthesis of sulfonamide compounds with antiviral properties that can be used to develop drugs against coxsackievirus B, enteroviruses, encephalomyocarditis viruses, adenoviruses, human parainfluenza viruses, Ebola virus, Marburg virus, SARS-CoV-2, HIV and others. Since over the past three years, viral infections have become a special problem for public health throughout the world, the development of new broad-spectrum antiviral drugs is an extremely important task for synthetic organic and medicinal chemistry. Sulfonamides can be both sources of nitrogen for building a nitrogen-containing heterocyclic core and the side chain substituents of a biologically active substance. The formation of the sulfonamide group is often achieved by the reaction of the N-nucleophilic center in the substrate molecule with the corresponding sulfonylchloride. Another approach involves the use of sulfonamides as the reagents for building a nitrogen-containing framework.
Collapse
Affiliation(s)
- Mikhail Yu Moskalik
- Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, 1 Favorsky Street, 664033 Irkutsk, Russia
| |
Collapse
|
15
|
Iwan D, Kamińska K, Denel-Bobrowska M, Olejniczak AB, Wojaczyńska E. Chiral sulfonamides with various N-heterocyclic and aromatic units – Synthesis and antiviral activity evaluation. Biomed Pharmacother 2022; 153:113473. [DOI: 10.1016/j.biopha.2022.113473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/14/2022] [Accepted: 07/23/2022] [Indexed: 11/30/2022] Open
|
16
|
Wan S, Wu N, Yan Y, Yang Y, Tian G, An L, Bao X. Design, synthesis, crystal structure, and in vitro antibacterial activities of sulfonamide derivatives bearing the 4-aminoquinazoline moiety. Mol Divers 2022:10.1007/s11030-022-10484-8. [PMID: 35779170 DOI: 10.1007/s11030-022-10484-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/10/2022] [Indexed: 11/29/2022]
Abstract
A total of 66 sulfonamide derivatives bearing the 4-aminoquinazoline moiety were designed and synthesized, and their structures were fully characterized by 1H NMR, 13C NMR, and HRMS techniques. Among them, the structures of compounds 5A10 and 5B11 were further confirmed through X-ray single-crystal diffraction analyses. The bioassay results indicated that some of the target compounds displayed higher inhibition activities in vitro against the tested phytopathogenic bacteria. For example, compound 5A26 exhibited a strong anti-Xanthomonas oryzae pv. oryzicola (Xoc) efficacy with an EC50 (half-maximal effective concentration) value of 30.6 μg/mL, over twofold more active than control agent bismerthiazol (BMT). Additionally, compound 5B14 had a good antibacterial effect against the phytopathogen Xanthomonas axonopodis pv. citric (Xac) with EC50 = 34.5 μg/mL, significantly better than control agent BMT (71.5 μg/mL). The anti-Xoc mechanistic studies showed that compound 5A26 exerted its antibacterial efficacy by increasing the permeability of bacterial membrane, decreasing the content of extracellular polysaccharides, and triggering morphological changes of bacterial cells.
Collapse
Affiliation(s)
- Suran Wan
- School of Chemistry and Chemical Engineering, Guizhou University, Guiyang, 550025, People's Republic of China.,State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, 550025, People's Republic of China
| | - Nan Wu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, 550025, People's Republic of China
| | - Ya Yan
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, 550025, People's Republic of China
| | - Yehui Yang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, 550025, People's Republic of China
| | - Guangmin Tian
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, 550025, People's Republic of China
| | - Lian An
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, 550025, People's Republic of China
| | - Xiaoping Bao
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, 550025, People's Republic of China.
| |
Collapse
|
17
|
Li C, Song R, He S, Wu S, Wu S, Wu Z, Hu D, Song B. First Discovery of Imidazo[1,2- a]pyridine Mesoionic Compounds Incorporating a Sulfonamide Moiety as Antiviral Agents. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:7375-7386. [PMID: 35675121 DOI: 10.1021/acs.jafc.2c01813] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The applications of mesoionic compounds and their analogues as agents against plant viruses remain unexplored. This was the first evaluation of the antiviral activities of mesoionic compounds on this issue. Our study involved the design and synthesis of a series of novel imidazo[1,2-a]pyridine mesoionic compounds containing a sulfonamide moiety and the assessment of their antiviral activities against potato virus Y (PVY). Compound A33 was assessed on the basis of three-dimensional quantitative structure-activity relationship (3D-QSAR) model analysis and displayed good curative, protective, and inactivating activity effects against PVY at 500 mg/L, up to 51.0, 62.0, and 82.1%, respectively, which were higher than those of commercial ningnanmycin (NNM, at 47.2, 50.1, and 81.4%). Significantly, defensive enzyme activities and proteomics results showed that compound A33 could enhance the defense response by activating the activity of defense enzymes, inducing the glycolysis/gluconeogenesis pathway of tobacco to resist PVY infection. Therefore, our study indicates that compound A33 could be applied as a potential viral inhibitor.
Collapse
Affiliation(s)
- Chunyi Li
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, Guizhou 550025, People's Republic of China
| | - Runjiang Song
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, Guizhou 550025, People's Republic of China
| | - Siqi He
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, Guizhou 550025, People's Republic of China
| | - Sikai Wu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, Guizhou 550025, People's Republic of China
| | - Shang Wu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, Guizhou 550025, People's Republic of China
| | - Zengxue Wu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, Guizhou 550025, People's Republic of China
| | - Deyu Hu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, Guizhou 550025, People's Republic of China
| | - Baoan Song
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, Guizhou 550025, People's Republic of China
| |
Collapse
|
18
|
Chen J, Luo X, Chen Y, Wang Y, Peng J, Xing Z. Recent Research Progress: Discovery of Anti-Plant Virus Agents Based on Natural Scaffold. Front Chem 2022; 10:926202. [PMID: 35711962 PMCID: PMC9196591 DOI: 10.3389/fchem.2022.926202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 05/13/2022] [Indexed: 12/26/2022] Open
Abstract
Plant virus diseases, also known as “plant cancers”, cause serious harm to the agriculture of the world and huge economic losses every year. Antiviral agents are one of the most effective ways to control plant virus diseases. Ningnanmycin is currently the most successful anti-plant virus agent, but its field control effect is not ideal due to its instability. In recent years, great progress has been made in the research and development of antiviral agents, the mainstream research direction is to obtain antiviral agents or lead compounds based on structural modification of natural products. However, no antiviral agent has been able to completely inhibit plant viruses. Therefore, the development of highly effective antiviral agents still faces enormous challenges. Therefore, we reviewed the recent research progress of anti-plant virus agents based on natural products in the past decade, and discussed their structure-activity relationship (SAR) and mechanism of action. It is hoped that this review can provide new inspiration for the discovery and mechanism of action of novel antiviral agents.
Collapse
Affiliation(s)
- Jixiang Chen
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
- *Correspondence: Jixiang Chen,
| | - Xin Luo
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Yifang Chen
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Yu Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Ju Peng
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
- Guizhou Rice Research Institute, Guizhou Academy of Agricultural Sciences, Guiyang, China
| | - Zhifu Xing
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| |
Collapse
|
19
|
Yang Y, Hu D, Wang S, Wang Z, Zu G, Song B. First Discovery of Novel Cytosine Derivatives Containing a Sulfonamide Moiety as Potential Antiviral Agents. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:6026-6036. [PMID: 35575698 DOI: 10.1021/acs.jafc.2c00922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A series of cytosine derivatives containing a sulfonamide moiety were designed and synthesized, and their antiviral activities against pepper mild mottle virus (PMMoV) were systematically evaluated. Then, a three-dimensional quantitative structure-activity relationship (3D-QSAR) model was constructed to study the structure-activity relationship according to the pEC50 of the compounds' protective activities. Next, compound A32 with preferable antiviral activity on PMMoV was obtained based on the CoMSIA and CoMFA models, with an EC50 of 19.5 μg/mL, which was superior to the template molecule A25 (21.3 μg/mL) and ningnanmycin (214.0 μg/mL). In addition, further studies showed that the antiviral activity of compound A32 against PMMoV was in accord with the up-regulation of proteins expressed in the defense response and carbon fixation in photosynthetic organisms. These results indicated that cytosine derivatives containing a sulfonamide moiety could be used as novel potential antiviral agents for further research and development.
Collapse
Affiliation(s)
- Yuyuan Yang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Deyu Hu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Shaobo Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Zhijia Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Guangcheng Zu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Baoan Song
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| |
Collapse
|
20
|
Tian J, Ji R, Wang H, Li S, Zhang G. Discovery of Novel α-Aminophosphonates with Hydrazone as Potential Antiviral Agents Combined With Active Fragment and Molecular Docking. Front Chem 2022; 10:911453. [PMID: 37868694 PMCID: PMC10588822 DOI: 10.3389/fchem.2022.911453] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 04/13/2022] [Indexed: 10/24/2023] Open
Abstract
A series of novel α-aminophosphonate derivatives containing hydrazone were designed and synthesized based on active fragments. Bioassay results demonstrated that title compounds possessed good activities against tobacco mosaic virus. Among them, compounds 6a, 6g, 6i, and 6j were equivalent to the commercial antiviral agents like dufulin. On structure optimization-based molecular docking, compound 6k was synthesized and displayed excellent activity with values of 65.1% curative activity, 74.3% protective activity, and 94.3% inactivation activity, which were significantly superior to the commercial antiviral agents dufulin and ningnanmycin. Therefore, this study indicated that new lead compounds could be developed by adopting a joint strategy with active fragments and molecular docking.
Collapse
Affiliation(s)
- Jia Tian
- Chemistry and Material Science College, Huaibei Normal University, Huaibei, China
| | - Renjing Ji
- Chemistry and Material Science College, Huaibei Normal University, Huaibei, China
| | - Huan Wang
- Chemistry and Material Science College, Huaibei Normal University, Huaibei, China
| | - Siyu Li
- Chemistry and Material Science College, Huaibei Normal University, Huaibei, China
| | - Guoping Zhang
- Chemistry and Material Science College, Huaibei Normal University, Huaibei, China
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, Huaibei Normal University, Huaibei, China
| |
Collapse
|
21
|
Zhao L, Hu D, Wu Z, Wei C, Wu S, Song B. Coumarin Derivatives Containing Sulfonamide and Dithioacetal Moieties: Design, Synthesis, Antiviral Activity, and Mechanism. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:5773-5783. [PMID: 35532345 DOI: 10.1021/acs.jafc.2c00672] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Cucumber mosaic virus (CMV) is currently a known plant virus with the most hosts, broadest distribution, and economic hazard. To develop new antiviral drugs against this serious virus, a new range of coumarin derivatives containing sulfonamide and dithioacetal structures were designed and synthesized, and their anti-CMV activities were detected by the half-leaf dead spot method. The results of the biological activity assay showed that most of the compounds exhibited outstanding anti-CMV activity. Especially, compound C23 displayed the optimal in vivo anti-CMV activity, with an EC50 value of 128 μg/mL, which was remarkably better than that of COS (781 μg/mL) and ningnanmycin (436 μg/mL). Excitingly, we found that compound C23 could be a promising plant activator that significantly increased defense-related enzyme activities and the tobacco chlorophyll content. Furthermore, compound C23 enhanced defense responses against viral infection by inducing the abscisic acid (ABA) pathway in tobacco. This work established a basis for multifunction pesticide discovery involving mechanism of action study and structure optimization.
Collapse
Affiliation(s)
- Lei Zhao
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Deyu Hu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Zengxue Wu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Chunle Wei
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Shang Wu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Baoan Song
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| |
Collapse
|
22
|
Yuan T, Wang Z, Liu D, Zeng H, Liang J, Hu D, Gan X. Ferulic acid derivatives with piperazine moiety as potential antiviral agents. PEST MANAGEMENT SCIENCE 2022; 78:1749-1758. [PMID: 35001496 DOI: 10.1002/ps.6794] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/26/2021] [Accepted: 01/09/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Plant virus diseases are difficult to control and severely threaten the productivity of crops, which leads to huge financial losses. To discover the new antiviral drugs, 34 novel ferulic acid derivatives with piperazine moiety were synthesized, and the antiviral activities were systematically screened as well. RESULTS Bioassay results indicated that most of the target compounds had outstanding antiviral activities against tobacco mosaic virus (TMV) and cucumber mosaic virus (CMV) in vivo. In particular, compound E2 exhibited remarkable curative activities to TMV and CMV with EC50 values of 189.0 and 401.7 μg/mL compared to those for ningnanmycin (387.0, 519.3 μg/mL) and ribavirin (542.1, 721.5 μg/mL). And then the mechanisms of compound E2 were studied by chlorophyll content, differentially expressed proteins and genes tests. CONCLUSION The excellent antiviral activity of compound E2 was closely associated with the increase in host photosynthesis, which was confirmed by chlorophyll content, differentially expressed proteins and genes assays. Compound E2 can be considered as a lead structure for the discovery of new antiviral agents. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ting Yuan
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, China
| | - Zhengxing Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, China
| | - Dan Liu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, China
| | - Huanan Zeng
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, China
| | - Juncheng Liang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, China
| | - Deyu Hu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, China
| | - Xiuhai Gan
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, China
| |
Collapse
|
23
|
Liu W, Zhang S, Xiao L, Wan Y, He L, Wang K, Qi Z, Li X. Synthesis and biological activity of novel hydantoin cyclohexyl sulfonamide derivatives as potential antimicrobial agents in agriculture. PEST MANAGEMENT SCIENCE 2022; 78:1438-1447. [PMID: 34921739 DOI: 10.1002/ps.6761] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 11/24/2021] [Accepted: 12/18/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Plant disease is one of the most serious problems in agriculture that can damage crops. Chemical fungicides are widely used to control plant diseases, but have led to resistance and a series of environmental problems. It is, therefore, necessary to develop highly effective and eco-friendly antimicrobial compounds with novel structures. RESULTS A series of novel hydantoin cyclohexyl sulfonamide derivatives were synthesized through an intramolecular condensation reaction. The bioassay results indicated that a majority of the title compounds displayed potent inhibitory activity against Botrytis cinerea, Sclerotinia sclerotiorum and Erwinia carotorora. The in vivo inhibition rate of compound 3h was 91.01% against B. cinerea, which was higher than that of iprodione (84.07%). Compound 3w showed excellent antifungal activity against B. cinerea with a half-maximal effective concentration (EC50 ) of 4.80 μg ml-1 , which is lower than that of iprodione. Compound 3q had an EC50 value of 1.44 μg ml-1 against S. sclerotiorum, which was close to that of iprodione (1.39 μg ml-1 ), and the inhibition rate was also similar to that of iprodione. Compounds 3i and 3w had the best inhibition efficacy against S. sclerotiorum, both on growth of the mycelium and sclerotia and in the greenhouse pot test in vitro. Further study showed that compounds 3h, 3r and 3s have superb antibacterial activity against E. carotorora with EC50 values of 2.65, 4.24 and 4.29 μg ml-1 respectively, and were superior to streptomycin sulfate (5.96 μg ml-1 ). CONCLUSION Because of their excellent antifungal and antibacterial activity against B. cinerea, S. sclerotiorum and E. carotorora, these hydantoin cyclohexyl sulfonamide derivatives could be considered as suitable candidates for new antimicrobial agents. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Wei Liu
- Department of Pesticide Science, Plant Protection College, Shenyang Agricultural University, Shenyang, China
| | - Shen Zhang
- Department of Pesticide Science, Plant Protection College, Shenyang Agricultural University, Shenyang, China
| | - Lifeng Xiao
- Dalian Join King Fine Chemical Co., Ltd., Dalian, China
| | - Ying Wan
- Department of Pesticide Science, Plant Protection College, Shenyang Agricultural University, Shenyang, China
| | - Lu He
- Department of Pesticide Science, Plant Protection College, Shenyang Agricultural University, Shenyang, China
| | - Kai Wang
- Department of Pesticide Science, Plant Protection College, Shenyang Agricultural University, Shenyang, China
| | - Zhiqiu Qi
- Department of Pesticide Science, Plant Protection College, Shenyang Agricultural University, Shenyang, China
| | - Xinghai Li
- Department of Pesticide Science, Plant Protection College, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
24
|
Shi J, He H, Hu D, Song B. Defense Mechanism of Capsicum annuum L. Infected with Pepper Mild Mottle Virus Induced by Vanisulfane. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:3618-3632. [PMID: 35297641 DOI: 10.1021/acs.jafc.2c00659] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Pepper mild mottle virus (PMMoV), an RNA virus, is one of the most devastating pathogens in pepper crops and has a significant influence on global crop yields. PMMoV poses a major threat to the global shortage of pepper plants and other Solanaceae crops due to the lack of an effective antiviral agent. In this study, we have developed a plant immune inducer (vanisulfane), as a "plant vaccine" that boosts plant immunity against PMMoV, and studied its resistance mechanism. The protective activity of vanisulfane against PMMoV was 59.4%. Vanisulfane can enhance the activity of defense enzymes and improve the content of chlorophyll, flavonoids, and total phenols for removing harmful free radicals from plants. Furthermore, vanisulfane was found to enhance defense genes. Label-free quantitative proteomics would tackle disease resistance pathways of vanisulfane. According to Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, differentially abundant proteins (DAPs) are mainly involved in starch and sucrose metabolism, photosynthesis, MAPK signaling pathway, and oxidative phosphorylation pathway. These results are crucial for the discovery of new pesticides, understanding the improvement of plant immunity and the antiviral activity of plant immune inducers.
Collapse
Affiliation(s)
- Jing Shi
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Hongfu He
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Deyu Hu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Baoan Song
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| |
Collapse
|
25
|
Huang W, Shi L, Liu M, Zhang Z, Liu F, Long T, Wen S, Huang D, Wang K, Zhou R, Fang W, Hu H, Ke S. Design, Synthesis, and Cytotoxic Activity of Novel Natural Arylsulfonamide-Inspired Molecules. Molecules 2022; 27:1479. [PMID: 35268580 PMCID: PMC8911723 DOI: 10.3390/molecules27051479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/11/2022] [Accepted: 02/16/2022] [Indexed: 02/04/2023] Open
Abstract
Primary arylsulfonamide functional groups feature prominently in diverse pharmaceuticals. However, natural arylsulfonamides are relatively infrequent. In this work, two novel arylsulfonamide natural products were first synthesized, and then a series of novel molecules derived from natural arylsulfonamides were designed and synthesized, and their in vitro cytotoxic activities against A875, HepG2, and MARC145 cell lines were systematically evaluated. The results indicate that some of these arylsulfonamide derivatives exhibit significantly good cytotoxic activity against the tested cell lines compared with the control 5-fluorouracil (5-FU), such as compounds 10l, 10p, 10q, and 10r. In particular, the potential molecule 10q, containing a carbazole moiety, exhibited the highest inhibitory activity against all tested cell lines, with IC50 values of 4.19 ± 0.78, 3.55 ± 0.63, and 2.95 ± 0.78 μg/mL, respectively. This will offer the potential to discover novel drug-like compounds from the sparsely populated area of natural products that can lead to effective anticancer agents.
Collapse
Affiliation(s)
- Wenbo Huang
- Key Laboratory of Microbial Pesticides, Ministry of Agriculture and Rural Affairs, Wuhan 430064, China; (W.H.); (L.S.); (M.L.); (Z.Z.); (F.L.); (T.L.); (S.W.); (D.H.); (K.W.); (R.Z.)
- National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Liqiao Shi
- Key Laboratory of Microbial Pesticides, Ministry of Agriculture and Rural Affairs, Wuhan 430064, China; (W.H.); (L.S.); (M.L.); (Z.Z.); (F.L.); (T.L.); (S.W.); (D.H.); (K.W.); (R.Z.)
- National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Manli Liu
- Key Laboratory of Microbial Pesticides, Ministry of Agriculture and Rural Affairs, Wuhan 430064, China; (W.H.); (L.S.); (M.L.); (Z.Z.); (F.L.); (T.L.); (S.W.); (D.H.); (K.W.); (R.Z.)
- National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Zhigang Zhang
- Key Laboratory of Microbial Pesticides, Ministry of Agriculture and Rural Affairs, Wuhan 430064, China; (W.H.); (L.S.); (M.L.); (Z.Z.); (F.L.); (T.L.); (S.W.); (D.H.); (K.W.); (R.Z.)
- National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Fang Liu
- Key Laboratory of Microbial Pesticides, Ministry of Agriculture and Rural Affairs, Wuhan 430064, China; (W.H.); (L.S.); (M.L.); (Z.Z.); (F.L.); (T.L.); (S.W.); (D.H.); (K.W.); (R.Z.)
- National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Tong Long
- Key Laboratory of Microbial Pesticides, Ministry of Agriculture and Rural Affairs, Wuhan 430064, China; (W.H.); (L.S.); (M.L.); (Z.Z.); (F.L.); (T.L.); (S.W.); (D.H.); (K.W.); (R.Z.)
- National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Shaohua Wen
- Key Laboratory of Microbial Pesticides, Ministry of Agriculture and Rural Affairs, Wuhan 430064, China; (W.H.); (L.S.); (M.L.); (Z.Z.); (F.L.); (T.L.); (S.W.); (D.H.); (K.W.); (R.Z.)
- National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Daye Huang
- Key Laboratory of Microbial Pesticides, Ministry of Agriculture and Rural Affairs, Wuhan 430064, China; (W.H.); (L.S.); (M.L.); (Z.Z.); (F.L.); (T.L.); (S.W.); (D.H.); (K.W.); (R.Z.)
- National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Kaimei Wang
- Key Laboratory of Microbial Pesticides, Ministry of Agriculture and Rural Affairs, Wuhan 430064, China; (W.H.); (L.S.); (M.L.); (Z.Z.); (F.L.); (T.L.); (S.W.); (D.H.); (K.W.); (R.Z.)
- National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Ronghua Zhou
- Key Laboratory of Microbial Pesticides, Ministry of Agriculture and Rural Affairs, Wuhan 430064, China; (W.H.); (L.S.); (M.L.); (Z.Z.); (F.L.); (T.L.); (S.W.); (D.H.); (K.W.); (R.Z.)
- National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Wei Fang
- Key Laboratory of Microbial Pesticides, Ministry of Agriculture and Rural Affairs, Wuhan 430064, China; (W.H.); (L.S.); (M.L.); (Z.Z.); (F.L.); (T.L.); (S.W.); (D.H.); (K.W.); (R.Z.)
- National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Hongtao Hu
- Key Laboratory of Microbial Pesticides, Ministry of Agriculture and Rural Affairs, Wuhan 430064, China; (W.H.); (L.S.); (M.L.); (Z.Z.); (F.L.); (T.L.); (S.W.); (D.H.); (K.W.); (R.Z.)
- National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Shaoyong Ke
- Key Laboratory of Microbial Pesticides, Ministry of Agriculture and Rural Affairs, Wuhan 430064, China; (W.H.); (L.S.); (M.L.); (Z.Z.); (F.L.); (T.L.); (S.W.); (D.H.); (K.W.); (R.Z.)
- National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| |
Collapse
|
26
|
Peng F, Liu T, Cao X, Wang Q, Liu F, Liu L, He M, Xue W. Antiviral Activities of Novel Myricetin Derivatives Containing 1,3,4‐Oxadiazole Bisthioether. Chem Biodivers 2022; 19:e202100939. [DOI: 10.1002/cbdv.202100939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 01/28/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Feng Peng
- Guizhou University Research and Development Center for Fine Chemicals Guizhou University Guiyang CHINA
| | - Tingting Liu
- Guizhou University Research and Development Center for Fine Chemicals Guizhou University Guiyang CHINA
| | - Xiao Cao
- Guizhou University Research and Development Center for Fine Chemicals Guizhou University Guiyang CHINA
| | - Qifan Wang
- Guizhou University Research and Development Center for Fine Chemicals Guizhou University Guiyang CHINA
| | - Fang Liu
- Guizhou University Research and Development Center for Fine Chemicals Guizhou University Guiyang CHINA
| | - Liwei Liu
- Guizhou University Research and Development Center for Fine Chemicals Guizhou University Guiyang CHINA
| | - Ming He
- Guizhou University Research and Development Center for Fine Chemicals Guizhou University Guiyang CHINA
| | - Wei Xue
- Ministry of Education State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering Guizhou University 550025 Guiyang CHINA
| |
Collapse
|
27
|
Li W, Zhang J, Wang M, Dong R, Zhou X, Zheng X, Sun L. Pyrimidine-fused Dinitrogenous Penta-heterocycles as a Privileged Scaffold for Anti-Cancer Drug Discovery. Curr Top Med Chem 2022; 22:284-304. [PMID: 35021973 DOI: 10.2174/1568026622666220111143949] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 12/30/2021] [Accepted: 12/30/2021] [Indexed: 11/22/2022]
Abstract
Pyrimidine-fused derivatives that are the inextricable part of DNA and RNA play a key role in the normal life cycle of cells. Pyrimidine-fused dinitrogenous penta-heterocycles including pyrazolopyrimidines and imidazopyrimidines is a special class of pyrimidine-fused compounds contributing to an important portion in anti-cancer drug discovery, which have been discovered as core structure for promising anti-cancer agents used in clinic or clinical evaluations. Pyrimidine-fused dinitrogenous penta-heterocycles have become one privileged scaffold for anti-cancer drug discovery. This review consists of the recent progress of pyrimidine-fused dinitrogenous penta-heterocycles as anti-cancer agents and their synthetic strategies. In addition, this review also summarizes some key structure-activity relationships (SARs) of pyrimidine-fused dinitrogenous penta-heterocycle derivatives as anti-cancer agents.
Collapse
Affiliation(s)
- Wen Li
- Jiangsu Key Laboratory of Drug Design & Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, PR China
| | - Jinyang Zhang
- Jiangsu Key Laboratory of Drug Design & Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, PR China
| | - Min Wang
- Jiangsu Key Laboratory of Drug Design & Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, PR China
| | - Ru Dong
- Jiangsu Key Laboratory of Drug Design & Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, PR China
| | - Xin Zhou
- Jiangsu Key Laboratory of Drug Design & Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, PR China
| | - Xin Zheng
- Jiangsu Key Laboratory of Drug Design & Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, PR China
| | - Liping Sun
- Jiangsu Key Laboratory of Drug Design & Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, PR China
| |
Collapse
|
28
|
Jiang D, Zhang J, He H, Li J, Hu D, Song B. Discovery of novel chromone derivatives containing a sulfonamide moiety as potential anti-TSWV agents. Bioorg Med Chem Lett 2021; 53:128431. [PMID: 34737160 DOI: 10.1016/j.bmcl.2021.128431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 10/20/2021] [Accepted: 10/22/2021] [Indexed: 10/20/2022]
Abstract
A number of chromone derivatives containing sulfonamide structure were designed and synthesized. Firstly, the target compounds were evaluated for anti-TSWV activities in vivo by the half-leaf method. We found that most of the compounds had good anti-TSWV activities. Among them, compound 12B had excellent anti-TSWV inactivating activity with an EC50 of 80.5 μg/mL, which was significantly better than xiangcaoliusuobingmi (765.7 μg/mL). Secondly, TSWV nucleocapsid protein (N) was expressed and purified, and the affinity between the compounds and TSWV N was tested by microscale thermophoresis (MST). Compound 12B had a good affinity for TSWV N with a Kd value of 5.02 μM, which was superior to xiangcaoliusuobingmi (29.83 μM). Finally, in order to study the mode of interaction between the compound 12B and TSWV N, we carried out molecular docking. The results indicated that compound 12B might inactivate the virus by destroying the TSWV N oligomer structure. These results lay a solid foundation for the further discovery of chromone derivatives containing sulfonamide structure with high anti-TSWV activities.
Collapse
Affiliation(s)
- Donghao Jiang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Research and Development Center for Fine Chemicals, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Jian Zhang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Research and Development Center for Fine Chemicals, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Hongfu He
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Research and Development Center for Fine Chemicals, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Jiao Li
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Research and Development Center for Fine Chemicals, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Deyu Hu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Research and Development Center for Fine Chemicals, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Baoan Song
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Research and Development Center for Fine Chemicals, Guizhou University, Huaxi District, Guiyang 550025, China.
| |
Collapse
|
29
|
Jiang D, Chen J, Zan N, Li C, Hu D, Song B. Discovery of Novel Chromone Derivatives Containing a Sulfonamide Moiety as Anti-ToCV Agents through the Tomato Chlorosis Virus Coat Protein-Oriented Screening Method. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:12126-12134. [PMID: 34633811 DOI: 10.1021/acs.jafc.1c02467] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A number of novel chromone derivatives containing sulfonamide moieties were designed and synthesized, and the activity of compounds against tomato chlorosis virus (ToCV) was assessed using the ToCVCP-oriented screening method. Comparative molecular field analysis (CoMFA) and comparative molecular similarity index analysis (CoMSIA) models were established based on the dissociation constant (Kd) values of the target compounds, and compound 35 was designed and synthesized with the aid of CoMFA and CoMSIA models. The study of affinity interaction indicated that compound 35 exhibited excellent affinity with ToCVCP with a Kd value of 0.11 μM, which was better than that of the positive control agents xiangcaoliusuobingmi (0.44 μM) and ningnanmycin (0.79 μM). In addition, the in vivo inhibitory effect of compound 35 on the ToCVCP gene was evaluated by the quantitative real-time polymerase chain reaction. ToCVCP gene expression levels of the compound 35 treatment group were reduced by 67.2%, which was better than that of the positive control agent ningnanmycin (59.5%). Therefore, compound 35 can be used as a potential anti-ToCV drug in the future.
Collapse
Affiliation(s)
- Donghao Jiang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Jixiang Chen
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Ningning Zan
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Chunyi Li
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Deyu Hu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Baoan Song
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| |
Collapse
|
30
|
High throughput screening identifies inhibitors for parvovirus B19 infection of human erythroid progenitor cells. J Virol 2021; 96:e0132621. [PMID: 34669461 DOI: 10.1128/jvi.01326-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Parvovirus B19 (B19V) infection can cause hematological disorders and fetal hydrops during pregnancy. Currently, no antivirals or vaccines are available for the treatment or the prevention of B19V infection. To identify novel small-molecule antivirals against B19V replication, we developed a high throughput screening assay, which is based on an in vitro nicking assay using recombinant N-terminal 1-176 amino acids of the viral large nonstructural protein (NS1N) and a fluorescently labeled DNA probe (OriQ) that spans the nicking site of the viral DNA replication origin. We collectively screened 17,040 compounds and identified 2,178 (12.78%) hits that possess >10% inhibition of the NS1 nicking activity, among which 84 hits were confirmed to inhibit nicking in a dose-dependent manner. Using ex vivo expanded primary human erythroid progenitor cells (EPCs) infected by B19V, we validated 24 compounds demonstrated >50% in vivo inhibition of B19V infection at 10 μM, which can be categorized into 7 structure scaffolds. Based on the therapeutic index [half maximal cytotoxic concentration (CC50)/half maximal effective concentration (EC50)] in EPCs, the top 4 compounds were chosen to examine their inhibitions of B19V infection in EPCs at two times of the 90% maximal effective concentration (EC90). A purine derivative (P7), demonstrated an antiviral effect (EC50=1.46 μM) without prominent cytotoxicity (CC50=71.8 μM) in EPCs, exhibited 92% inhibition of B19V infection in EPCs at 3.32 μM, which can be used as the lead compound in future studies for the treatment of B19V infection caused hematological disorders. Importance B19V encodes a large non-structural protein NS1. Its N-terminal domain (NS1N) consisting of 1-176 amino acids binds to viral DNA and serves as an endonuclease to nick the viral DNA replication origins, which is a pivotal step in rolling hairpin-dependent B19V DNA replication. For high throughput screening (HTS) of anti-B19V antivirals, we miniaturized a fluorescence-based in vitro nicking assay, which employs a fluorophore-labeled probe spanning the trs and the NS1N protein, into a 384-well plate format. The HTS assay showed a high reliability and capability in screening 17,040 compounds. Based on the therapeutic index [half maximal cytotoxic concentration (CC50)/half maximal effective concentration (EC50)] in EPCs, a purine derivative demonstrated an antiviral effect of 92% inhibition of B19V infection in EPCs at 3.32 μM (two times EC90). Our study demonstrated a robust HTS assay for screening antivirals against B19V infection.
Collapse
|
31
|
Alzahrani AY, Shaaban MM, Elwakil BH, Hamed MT, Rezki N, Aouad MR, Zakaria MA, Hagar M. Anti-COVID-19 activity of some benzofused 1,2,3-triazolesulfonamide hybrids using in silico and in vitro analyses. CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS : AN INTERNATIONAL JOURNAL SPONSORED BY THE CHEMOMETRICS SOCIETY 2021; 217:104421. [PMID: 34538993 PMCID: PMC8434689 DOI: 10.1016/j.chemolab.2021.104421] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/14/2021] [Accepted: 09/06/2021] [Indexed: 05/26/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a pandemic fatal infection with no known treatment. The severity of the disease and the fast viral mutations forced the scientific community to search for potential solution. Here in the present manuscript, some benzofused1,2,3triazolesulfonamide hybrids were synthesized and evaluated for their anti- SARS-CoV-2 activity using in silico prediction then the most potent compounds were assessed using in-Vitro analysis. The in-Silico study was assessed against RNA dependent RNA polymerase, Spike protein S1, Main protease (3CLpro) and 2'-O-methyltransferase (nsp16). It was found that 4b and 4c showed high binding scores against RNA dependent RNA polymerase reached -8.40 and -8.75 kcal/mol, respectively compared to the approved antiviral (remdesivir -6.77 kcal/mol). Upon testing the binding score with SARS-CoV-2 Spike protein it was revealed that 4c exhibited the highest score (-7.22 kcal/mol) compared to the reference antibacterial drug Ceftazidime (-6.36 kcal/mol). Surprisingly, the two compounds 4b and 4c showed the highest binding scores against SARS-CoV-2 3CLpro (-8.75, -8.48 kcal/mol, respectively) and nsp16 (- 8.84 and - 8.89 kcal/mol, respectively) displaying many types of interaction with all the enzymes binding sites. The derivatives 4b and 4c were examined in vitro for their potential anti-SARS-CoV-2 and it was revealed that 4c was the most promising compound with IC50 reached 758.8108 mM and complete (100%) inhibition of the binding of SARS-CoV-2 virus to human ACE2 can be accomplished by using 0.01 mg.
Collapse
Affiliation(s)
- Abdullah Y Alzahrani
- Department of Chemistry, Faculty of Science and Arts, King Khalid University, Mohail, Assir, Saudi Arabia
| | - Marwa M Shaaban
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
| | - Bassma H Elwakil
- Department of Medical Laboratory Technology, Faculty of Applied Health Sciences Technology, Pharos University in Alexandria, Alexandria, Egypt
| | - Moaaz T Hamed
- Industrial Microbiology and Applied Chemistry Program, Department of Botany & Microbiology, Faculty of Science, Alexandria University, Alexandria, 21568, Egypt
| | - Nadjet Rezki
- Department of Chemistry, College of Science, Taibah University, Al-Madinah Al-Munawarah, 30002, Saudi Arabia
| | - Mohamed R Aouad
- Department of Chemistry, College of Science, Taibah University, Al-Madinah Al-Munawarah, 30002, Saudi Arabia
| | - Mohamed A Zakaria
- Department of Chemistry, College of Sciences, Taibah University, Yanbu, 30799, Saudi Arabia
| | - Mohamed Hagar
- Department of Chemistry, College of Sciences, Taibah University, Yanbu, 30799, Saudi Arabia
- Department of Chemistry, Faculty of Science, Alexandria University, Alexandria, 21321, Egypt
| |
Collapse
|
32
|
Peng F, Liu T, Wang Q, Liu F, Cao X, Yang J, Liu L, Xie C, Xue W. Antibacterial and Antiviral Activities of 1,3,4-Oxadiazole Thioether 4 H-Chromen-4-one Derivatives. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:11085-11094. [PMID: 34516137 DOI: 10.1021/acs.jafc.1c03755] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Various 1,3,4-oxadiazole thioether 4H-chromen-4-one derivatives were conceived. The title compounds demonstrated striking inhibitory effects against Xac, Psa, and Xoo. EC50 data exhibited that A8 (19.7 μg/mL) had better antibacterial activity against Xoo than myricetin, BT, and TC. Simultaneously, the mechanism of action of A8 had been verified by SEM. The results of anti-tobacco mosaic virus indicated that A9 had the best in vivo antiviral effect compared with ningnanmycin. From the data of MST, it could be seen that A9 (0.003 ± 0.001 μmol/L) exhibited a strong binding capacity, which was far superior to ningnanmycin (2.726 ± 1.301 μmol/L). This study shows that the 1,3,4-oxadiazole thioether 4H-chromen-4-one derivatives may become agricultural drugs with great potential.
Collapse
Affiliation(s)
- Feng Peng
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering; Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education; Research and Development Center for Fine Chemicals, Guizhou University, Guiyang 550025, P.R. China
| | - Tingting Liu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering; Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education; Research and Development Center for Fine Chemicals, Guizhou University, Guiyang 550025, P.R. China
| | - Qifan Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering; Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education; Research and Development Center for Fine Chemicals, Guizhou University, Guiyang 550025, P.R. China
| | - Fang Liu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering; Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education; Research and Development Center for Fine Chemicals, Guizhou University, Guiyang 550025, P.R. China
| | - Xiao Cao
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering; Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education; Research and Development Center for Fine Chemicals, Guizhou University, Guiyang 550025, P.R. China
| | - Jinsong Yang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering; Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education; Research and Development Center for Fine Chemicals, Guizhou University, Guiyang 550025, P.R. China
| | - Liwei Liu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering; Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education; Research and Development Center for Fine Chemicals, Guizhou University, Guiyang 550025, P.R. China
| | - Chengwei Xie
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering; Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education; Research and Development Center for Fine Chemicals, Guizhou University, Guiyang 550025, P.R. China
| | - Wei Xue
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering; Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education; Research and Development Center for Fine Chemicals, Guizhou University, Guiyang 550025, P.R. China
| |
Collapse
|
33
|
Zhang M, Chen M, Ding X, Kang J, Gao Y, He X, Wang Z, Lu A, Wang Q. The photoredox-catalyzed hydrosulfamoylation of styrenes and its application in the novel synthesis of naratriptan. Chem Commun (Camb) 2021; 57:9140-9143. [PMID: 34498639 DOI: 10.1039/d1cc04225d] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The hydrosulfamoylation of diverse aryl olefins provides facile access to alkylsulfonamides. Here we report a novel protocol utilizing radical-mediated addition and a thiol-assisted strategy to achieve the hydrosulfamoylation of diverse styrenes in modest to excellent yields under mild and economic reaction conditions. The methodology was found to provide an efficient and convenient approach for the synthesis of the anti-migraine drug naratriptan and it also can be used for the late-stage functionalization of natural products or medicines.
Collapse
Affiliation(s)
- Mingjun Zhang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China.
| | - Miaomiao Chen
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China.
| | - Xin Ding
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China.
| | - Jin Kang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China.
| | - Yongyue Gao
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China.
| | - Xingxing He
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China.
| | - Ziwen Wang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China.
| | - Aidang Lu
- School of Chemical Engineering and Technology, Hebei University of Technology, Hebei Collaborative Innovation Center of Modern Marine Chemical Technology, Tianjin 300130, China.
| | - Qingmin Wang
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, China.
| |
Collapse
|
34
|
Tugrak M, Gul HI, Akincioglu H, Gulcin I. New Chalcone Derivatives with Pyrazole and Sulfonamide Pharmacophores as Carbonic Anhydrase Inhibitors. LETT DRUG DES DISCOV 2021. [DOI: 10.2174/1570180817999201001160414] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Background:
Compound containing sulfonamide, pyrazole and chalcone groups are
important in medicinal chemistry. They have a wide range of biological activities, including carbonic
anhydrase (CA) inhibitory activities.
Introduction:
Carbonic anhydrase I and II inhibitors are used for the treatment of diseases, such as
retinal and cerebral edema (CA I), epilepsy, and glaucoma (CA II). However, the currently available
drugs have some limitations or side effects. Thus, there is a need for new drug candidates to
overcome these issues. In this study, a series of compounds, (E)-4-(4-(3-aryl)-3-oxoprop-1-en-1-yl)-
3-phenyl-1H-pyrazol-1-yl) benzenesulfonamides MS4-MS10, were designed to discover new CA
inhibitors using a hybrid approach.
Methods:
Compounds MS4-MS10 were synthesized as shown in Scheme 1, and their chemical
structures were confirmed by 1H NMR, 13C NMR, and HRMS spectra. The CAs (E.C.4.2.1.1) inhibitory
effects of MS4-MS10 were tested on the hCA I and II isoenzymes using previously reported
procedures.
Results:
The CA inhibitors MS4–MS10 gave IC50 values (nM) of 27.8–87.3 towards hCA I and
24.4–54.8 towards hCA II while the IC50 values for reference drug acetazolamide were 384.2 (hCA I)
and 36.9 (hCA II). MS7 and MS9 exhibited 13.8 (hCA I) and 1.5 (hCA II) times more potent CA
inhibition than the reference compound acetazolamide, respectively.
Conclusion:
MS7 (Ar: 2,4,5-trimethoxy phenyl) and MS9 (Ar: 3,4-dimethoxy phenyl) were the
most promising compounds of our series with the lowest IC50 values towards hCA I and hCA II,
respectively, and can be considered for further studies.
Collapse
Affiliation(s)
- Mehtap Tugrak
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ataturk University, Erzurum, Turkey
| | - Halise Inci Gul
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ataturk University, Erzurum, Turkey
| | - Hulya Akincioglu
- Department of Chemistry, Faculty of Sciences and Arts, Agri Ibrahim Cecen University, Agri, Turkey
| | - Ilhami Gulcin
- Department of Chemistry, Faculty of Science, Ataturk University, Erzurum, Turkey
| |
Collapse
|
35
|
Design and Synthesis of Novel 3,4-Dihydro-2H-1,2,4-benzothiadiazine 1,1-Dioxides-based Strobilurins as Potent Fungicide Candidates. Chem Res Chin Univ 2020. [DOI: 10.1007/s40242-020-0160-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
36
|
Yang Y, Zhang J, Li X, He F, Wu R, Hu D, Song B. Discovery of Dithioacetal Derivatives Containing Sulfonamide Moiety of Novel Antiviral Agents by TMV Coat Protein as a Potential Target. ACS OMEGA 2020; 5:22596-22602. [PMID: 32923819 PMCID: PMC7482297 DOI: 10.1021/acsomega.0c03306] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 08/12/2020] [Indexed: 05/15/2023]
Abstract
Tobacco mosaic virus coat protein (TMV CP) plays an important role in viral replication, translation, and intracellular and intercellular movements. Thus, TMV CP could be regarded as a potential target for antiviral agents. In this study, in order to find out whether dithioacetal derivatives act on the CP target, a series of dithioacetal derivatives containing sulfonamide moiety was first designed and synthesized. Bioassay results demonstrated that Y14, Y18, and Y21 exhibited excellent activities against TMV, with half-maximal effective concentrations (EC50) of the curative, protective, and inactivate activities being 183.0 ± 3.2, 252.3 ± 2.6, and 63.8 ± 1.2 μg/mL, 270.6 ± 3.7, 249.7 ± 3.5, and 57.7 ± 1.4 μg/mL, and 329.5 ± 1.5, 269.2 ± 3.7, and 48.1 ± 2.0 μg/mL for Y14, Y18, and Y21, respectively, which were higher than those for the control agents ningnanmycin (331.0 ± 2.8, 271.0 ± 2.8, and 77.4 ± 1.3 μg/mL, respectively) and d2 (471.5 ± 1.4, 447.2 ± 2.1, and 91.7 ± 1.8 μg/mL, respectively). Transmission electron microscopy showed that the particle morphology of TMV was destroyed by Y21, and microscale thermophoresis (MST) showed that Y21 bonded to CP with a dissociation constant (K d) of 9.7 ± 1.7 μM. Then, molecular docking and MST further illustrated that Y21 had a weak binding affinity with the TMV mutant protein (K d = 561.3 ± 83.2 μM). Thus, we deduced that the dithioacetal derivative Y21 may inhibit TMV activity by binding TMV CP. This work provides some new insights for the design and optimization of novel anti-TMV agents.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Baoan Song
- . Phone: 86-851-83622211. Fax: 86-851-83622211
| |
Collapse
|
37
|
Chen XM, Liu ZJ, Cheng JS, Zhao RF, Qin L. Crystal structure of 3-((3-nitrophenyl)sulfonamido)propanoic acid — 4,4′-bipyridine (1/1), C 19H 18N 4O 6S. Z KRIST-NEW CRYST ST 2020. [DOI: 10.1515/ncrs-2020-0190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
C19H18N4O6S, monoclinic, P21/n (no. 14), a = 8.343(4) Å, b = 7.367(3) Å, c = 31.532(14) Å, β = 97.398(8)°, V = 1921.8(14) Å3, Z = 4, R
gt(F) = 0.0420, wR
ref(F
2) = 0.1158, T = 296.15 K.
Collapse
Affiliation(s)
- Xiao-Miao Chen
- Special and Key Laboratory of Functional Materials and Resource Chemistry of Guizhou Provincial Education Department , Anshun University , Anshun 561000 , P.R. China
| | - Zheng-Jun Liu
- Special and Key Laboratory of Functional Materials and Resource Chemistry of Guizhou Provincial Education Department , Anshun University , Anshun 561000 , P.R. China
| | - Jing-Song Cheng
- Special and Key Laboratory of Functional Materials and Resource Chemistry of Guizhou Provincial Education Department , Anshun University , Anshun 561000 , P.R. China
| | - Rong-Fei Zhao
- Special and Key Laboratory of Functional Materials and Resource Chemistry of Guizhou Provincial Education Department , Anshun University , Anshun 561000 , P.R. China
| | - Lan Qin
- Special and Key Laboratory of Functional Materials and Resource Chemistry of Guizhou Provincial Education Department , Anshun University , Anshun 561000 , P.R. China
| |
Collapse
|
38
|
Ren X, Li X, Yin L, Jiang D, Hu D. Design, Synthesis, Antiviral Bioactivity, and Mechanism of the Ferulic Acid Ester-Containing Sulfonamide Moiety. ACS OMEGA 2020; 5:19721-19726. [PMID: 32803067 PMCID: PMC7424737 DOI: 10.1021/acsomega.0c02421] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 07/20/2020] [Indexed: 05/09/2023]
Abstract
Tobacco mosaic virus (TMV) has caused huge economic losses to tobacco, pepper, cucumber, and ornamental crops all over the world. However, few effective antiviral agents were developed and applied to control such plant disease. It is challenging to find an anti-TMV agent which is highly effective, less toxic, and environmentally friendly. In this work, a series of ferulic acid ester-containing sulfonamide moieties were designed and synthesized, and the antiviral activities of these compounds against TMV were evaluated. The anti-TMV biological activity test showed that the target compounds showed excellent anti-TMV activity in vitro and in vivo. In particular, compound 2 has excellent anti-TMV activity at 500 μg/mL, which is higher than that of the control drug ribavirin. The preliminary mechanism research results showed that compound 2 can obviously destroy the morphology of the virions to show excellent activity. The results show that the ferulic acid ester-containing sulfonamide moiety deserves further research and development.
Collapse
Affiliation(s)
| | | | | | | | - Deyu Hu
- . Phone: 86-851-88292170. Fax: 0086-851-88292170
| |
Collapse
|
39
|
Fu Y, Liu D, Zeng H, Ren X, Song B, Hu D, Gan X. New chalcone derivatives: synthesis, antiviral activity and mechanism of action. RSC Adv 2020; 10:24483-24490. [PMID: 35516226 PMCID: PMC9055036 DOI: 10.1039/d0ra03684f] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 06/19/2020] [Indexed: 01/28/2023] Open
Abstract
In this work, twenty-eight chalcone derivatives containing a purine (sulfur) ether moiety were synthesized and their antiviral activities were evaluated. Biological results showed that compound 5d exhibited outstanding inactive activity against tobacco mosaic virus (TMV) in vivo (EC50 = 65.8 μg mL−1), which is significantly superior to that of ribavirin (EC50 = 154.3 μg mL−1). Transmission electron microscopy indicated that compound 5d can break the integrity of TMV particles. The results of microscale thermophoresis, fluorescence titration and molecular docking showed that compound 5d had stronger combining affinity (Ka = 1.02 ×105 L mol−1, Kd = 13.4 μmol L−1) with TMV coat protein (TMV-CP), which is due to the formation of five hydrogen bonds between compound 5d and the amino-acid residues of TMV-CP. These findings revealed that compound 5d can effectively inhibit the infective ability of TMV. This work provides inspiration and reference for the discovery of new antiviral agents. The chalcone derivatives containing a purine (sulfur) ether moiety were synthesized. The antiviral mechanism suggested that the antiviral activity of compound 5d may depend on its stronger binding affinity with TMV-CP.![]()
Collapse
Affiliation(s)
- Yun Fu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering
- Key Laboratory of Green Pesticide and Agricultural Bioengineering
- Ministry of Education
- Center for Research and Development of Fine Chemicals
- Guizhou University
| | - Dan Liu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering
- Key Laboratory of Green Pesticide and Agricultural Bioengineering
- Ministry of Education
- Center for Research and Development of Fine Chemicals
- Guizhou University
| | - Huanan Zeng
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering
- Key Laboratory of Green Pesticide and Agricultural Bioengineering
- Ministry of Education
- Center for Research and Development of Fine Chemicals
- Guizhou University
| | - Xiaoli Ren
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering
- Key Laboratory of Green Pesticide and Agricultural Bioengineering
- Ministry of Education
- Center for Research and Development of Fine Chemicals
- Guizhou University
| | - Baoan Song
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering
- Key Laboratory of Green Pesticide and Agricultural Bioengineering
- Ministry of Education
- Center for Research and Development of Fine Chemicals
- Guizhou University
| | - Deyu Hu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering
- Key Laboratory of Green Pesticide and Agricultural Bioengineering
- Ministry of Education
- Center for Research and Development of Fine Chemicals
- Guizhou University
| | - Xiuhai Gan
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering
- Key Laboratory of Green Pesticide and Agricultural Bioengineering
- Ministry of Education
- Center for Research and Development of Fine Chemicals
- Guizhou University
| |
Collapse
|