1
|
Huang Y, Zhong W, Varga KE, Benkő Z, Pócsi I, Yang C, Molnár I. Promoting the glycosylation of drug-like natural products in a Saccharomyces cerevisiae chassis by deletion of endogenous glycosidases. BIORESOURCE TECHNOLOGY 2025; 422:132258. [PMID: 39971105 DOI: 10.1016/j.biortech.2025.132258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 02/16/2025] [Accepted: 02/16/2025] [Indexed: 02/21/2025]
Abstract
Glycosylation is an effective strategy to improve the absorption, distribution, metabolism, excretion, and toxicity of natural product (NP) pharmacophores. While heterologous production of broad-spectrum fungal glucosyltransferases such as BbGT86 of Beauveria bassiana yields varied phenolic glucoconjugates in S. cerevisiae, endogenous yeast glycosidases diminish the conversion yields and limit the structural diversity of the products. We set out to improve the efficiency and broaden the regiospecificity of the glucosylation of NPs or their unnatural product analogues (uNPs). Using yeast strains deficient in exoglycanases EXG1 or SPR1, we evaluated total biosynthetic and biocatalytic synthetic biology platforms to produce glycoconjugates from polyketides of the benzenediol lactone family, and polyphenols of the phenylpropanoid class. We show that for 13 out of the 18 aglycons tested, exoglycanase deletions improve glucoside yields and/or alter glucoconjugate regioisomer distributions, while macrolactone glycoconjugates with an aryl methylene ketone moiety are impervious to hydrolysis by EXG1. We demonstrate that elimination of EXG1 or biosynthetic methylation of glucosides are efficient alternative strategies to differentially modulate glycoside regioisomer profiles for future pharmaceutical, nutraceutical or crop protection applications.
Collapse
Affiliation(s)
- Yingying Huang
- Southwest Center for Natural Products Research, The University of Arizona, Tucson, AZ, United States; Institute of Food Science and Technology, Fujian Academy of Agricultural Sciences, Fuzhou, China; Key Laboratory of Subtropical Characteristic Fruits, Vegetables and Edible Fungi Processing (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Fuzhou, China; Fujian Key Laboratory of Agricultural Products (Food) Processing, Fuzhou, China
| | - Weimao Zhong
- Southwest Center for Natural Products Research, The University of Arizona, Tucson, AZ, United States
| | - Kinga E Varga
- Department of Molecular Biotechnology and Microbiology, Institute of Biotechnology, Faculty of Science and Technology, University of Debrecen, H-4032 Debrecen, Hungary
| | - Zsigmond Benkő
- Department of Molecular Biotechnology and Microbiology, Institute of Biotechnology, Faculty of Science and Technology, University of Debrecen, H-4032 Debrecen, Hungary
| | - István Pócsi
- Department of Molecular Biotechnology and Microbiology, Institute of Biotechnology, Faculty of Science and Technology, University of Debrecen, H-4032 Debrecen, Hungary
| | - Chenglong Yang
- Institute of Food Science and Technology, Fujian Academy of Agricultural Sciences, Fuzhou, China; Key Laboratory of Subtropical Characteristic Fruits, Vegetables and Edible Fungi Processing (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Fuzhou, China; Fujian Key Laboratory of Agricultural Products (Food) Processing, Fuzhou, China
| | - István Molnár
- Southwest Center for Natural Products Research, The University of Arizona, Tucson, AZ, United States; VTT Technical Research Centre of Finland, Espoo, Finland.
| |
Collapse
|
2
|
Zhu Y, Zhang X, Ma C, Ren X, Wang W, Zhang K, Zhang G, Che Q, Zhu T, Li D. Discovery and Characterization of a Fungal N-acetylglucosamine Transferase in the Biosynthesis of Furanone Glycosides. JOURNAL OF NATURAL PRODUCTS 2025; 88:427-432. [PMID: 39881635 DOI: 10.1021/acs.jnatprod.4c01190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
Malfilamentosides are a class of fungal secondary metabolites characterized by glycosylated furanone scaffold; however, the enzyme that catalyzes the O-glycosylation of the furanone core with N-acetylglucosamine (GlcNAc) has not yet been identified. In this study, we discovered and identified the biosynthetic gene cluster of the malfilamentosides. In vivo and in vitro investigations revealed that a glycosyltransferase, MftB, catalyzes the O-glycosylation of the furanone scaffold with GlcNAc. Furthermore, MftB exhibits broad promiscuity toward glycosyl donors and acceptors, highlighting its potential in glycoside production.
Collapse
Affiliation(s)
- Yongchun Zhu
- Key Laboratory of Marine Drugs Ministry of Education; School of Medicine and Pharmacy; Sanya Oceanographic Institute, Ocean University of China, Qingdao/Sanya 266100, People's Republic of China
| | - Xianyan Zhang
- Key Laboratory of Marine Drugs Ministry of Education; School of Medicine and Pharmacy; Sanya Oceanographic Institute, Ocean University of China, Qingdao/Sanya 266100, People's Republic of China
| | - Chuanteng Ma
- Key Laboratory of Marine Drugs Ministry of Education; School of Medicine and Pharmacy; Sanya Oceanographic Institute, Ocean University of China, Qingdao/Sanya 266100, People's Republic of China
| | - Xingtao Ren
- Key Laboratory of Marine Drugs Ministry of Education; School of Medicine and Pharmacy; Sanya Oceanographic Institute, Ocean University of China, Qingdao/Sanya 266100, People's Republic of China
| | - Wenxue Wang
- Key Laboratory of Marine Drugs Ministry of Education; School of Medicine and Pharmacy; Sanya Oceanographic Institute, Ocean University of China, Qingdao/Sanya 266100, People's Republic of China
| | - Kaijin Zhang
- Key Laboratory of Marine Drugs Ministry of Education; School of Medicine and Pharmacy; Sanya Oceanographic Institute, Ocean University of China, Qingdao/Sanya 266100, People's Republic of China
| | - Guojian Zhang
- Key Laboratory of Marine Drugs Ministry of Education; School of Medicine and Pharmacy; Sanya Oceanographic Institute, Ocean University of China, Qingdao/Sanya 266100, People's Republic of China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, People's Republic of China
| | - Qian Che
- Key Laboratory of Marine Drugs Ministry of Education; School of Medicine and Pharmacy; Sanya Oceanographic Institute, Ocean University of China, Qingdao/Sanya 266100, People's Republic of China
| | - Tianjiao Zhu
- Key Laboratory of Marine Drugs Ministry of Education; School of Medicine and Pharmacy; Sanya Oceanographic Institute, Ocean University of China, Qingdao/Sanya 266100, People's Republic of China
| | - Dehai Li
- Key Laboratory of Marine Drugs Ministry of Education; School of Medicine and Pharmacy; Sanya Oceanographic Institute, Ocean University of China, Qingdao/Sanya 266100, People's Republic of China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, People's Republic of China
| |
Collapse
|
3
|
Zou Q, Wei J, Chen Z, Luo A, He J, Long Y, Cui H, Liu Y. Biotransformation of Glaucic Acid Isolated from the Root of Lindera glauca by the Endophytic Fungi Penicillium Chrysogenum SHJ-07. Chem Biodivers 2024; 21:e202401658. [PMID: 39143743 DOI: 10.1002/cbdv.202401658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/13/2024] [Accepted: 08/13/2024] [Indexed: 08/16/2024]
Abstract
Glaucic acid isolated from the root of Lindera glauca, was investigated by the biotransformation methods via the endophytic fungi, resulting in the production of five new glausesquiterpenes A-E (1-5), along with a known analogue 6. Their structures were elucidated based on spectroscopic methods and electronic circular dichroism (ECD) calculations. In the bioassays, glausesquiterpene A (1) showed good inhibitory activity of NO production in LPS-activated RAW 264.7 macrophages with an IC50 value of 20.1 μM than positive control (Indomethacin, IC50 24.1 μM). Further in vitro studies demonstrated that glausesquiterpene A significantly suppressed the protein expression of iNOS and COX-2 at the concentration of 25.0 μM.
Collapse
Affiliation(s)
- Qinghui Zou
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China
| | - Jinqin Wei
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China
| | - Zelin Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China
| | - Anni Luo
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China
| | - Jingxin He
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China
| | - Yongling Long
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China
| | - Hui Cui
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China
| | - Yena Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, PR China
| |
Collapse
|
4
|
Chlipała P, Matera A, Sordon S, Popłoński J, Mazur M, Janeczko T. Enzymatic Glycosylation of 4'-Hydroxychalcones: Expanding the Scope of Nature's Catalytic Potential. Int J Mol Sci 2024; 25:11482. [PMID: 39519035 PMCID: PMC11546794 DOI: 10.3390/ijms252111482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 10/15/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
Chalcones, including 4'-hydroxychalcones, have garnered significant attention in the area of drug discovery due to their diverse pharmacological properties, such as anti-inflammatory, antioxidative, and anticancer effects. However, their low water solubility and bioavailability limit their efficacy in vivo. Glycosylation presents a promising approach to enhance the water solubility, stability, and metabolic properties of chalcones. This study investigates the enzymatic glycosylation of eight chemically synthesized 4'-hydroxychalcones using a diverse set of sugar glucosyltransferases from bacterial, plant, and fungal sources, alongside Glycine max sucrose synthase (GmSuSy) in a cascade reaction. Among the tested enzymes, five exhibited a remarkable versatility for glycoside production, and for large-scale biotransformation, flavonoid 7-O-glucosyltransferase Sbaic7OGT from Scutellaria baicalensis was selected as the most effective. As a result of the experiments conducted, eight trans-chalcone glycosides were obtained. During the purification of the reaction products, we also observed the isomerization of the products by simple sunlight exposure, which resulted in eight additional cis-chalcone glycosides. This study highlights the novel use of a cascade reaction involving Glycine max sucrose synthase (GmSuSy) for the efficient glycosylation of trans-4'-hydroxychalcones, alongside the unexpected discovery of cis-chalcone glycosides during the purification process.
Collapse
Affiliation(s)
- Paweł Chlipała
- Department of Food Chemistry and Biocatalysis, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, 50-375 Wrocław, Poland; (A.M.); (S.S.); (J.P.); (M.M.)
| | | | | | | | | | - Tomasz Janeczko
- Department of Food Chemistry and Biocatalysis, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, 50-375 Wrocław, Poland; (A.M.); (S.S.); (J.P.); (M.M.)
| |
Collapse
|
5
|
Łój D, Janeczko T, Bartmańska A, Huszcza E, Tronina T. Biotransformation of Xanthohumol by Entomopathogenic Filamentous Fungi. Int J Mol Sci 2024; 25:10433. [PMID: 39408760 PMCID: PMC11477118 DOI: 10.3390/ijms251910433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
Xanthohumol (1) is a major prenylated flavonoid in hops (Humulus lupulus L.) which exhibits a broad spectrum of health-promoting and therapeutic activities, including anti-inflammatory, antioxidant, antimicrobial, and anticancer effects. However, due to its lipophilic nature, it is poorly soluble in water and barely absorbed from the gastrointestinal tract, which greatly limits its therapeutic potential. One method of increasing the solubility of active compounds is their conjugation to polar molecules, such as sugars. Sugar moiety introduced into the flavonoid molecule significantly increases polarity, which results in better water solubility and often leads to greater bioavailability. Entomopathogenic fungi are well known for their ability to catalyze O-glycosylation reactions. Therefore, we investigated the ability of selected entomopathogenic filamentous fungi to biotransform xanthohumol (1). As a result of the experiments, one aglycone (2) and five glycosides (3-7) were obtained. The obtained (2″E)-4″-hydroxyxanthohumol 4'-O-β-D-(4‴-O-methyl)-glucopyranoside (5) has never been described in the literature so far. Interestingly, in addition to the expected glycosylation reactions, the tested fungi also catalyzed chalcone-flavanone cyclization reactions, which demonstrates chalcone isomerase-like activity, an enzyme typically found in plants. All these findings undoubtedly indicate that entomopathogenic filamentous fungi are still an underexploited pool of novel enzymes.
Collapse
Affiliation(s)
| | - Tomasz Janeczko
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wroclaw, Poland; (D.Ł.); (A.B.); (E.H.)
| | | | | | - Tomasz Tronina
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wroclaw, Poland; (D.Ł.); (A.B.); (E.H.)
| |
Collapse
|
6
|
Xie L, Liu Y, Zhang Y, Chen K, Yue Q, Wang C, Dun B, Xu Y, Zhang L. The divergence of DHN-derived melanin pathways in Metarhizium robertsii. World J Microbiol Biotechnol 2024; 40:323. [PMID: 39292329 DOI: 10.1007/s11274-024-04134-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 09/07/2024] [Indexed: 09/19/2024]
Abstract
The important role of dihydroxynaphthalene-(DHN) melanin in enhancing fungal stress resistance and its importance in fungal development and pathogenicity are well-established. This melanin also aids biocontrol fungi in surviving in the environment and effectively infecting insects. However, the biosynthetic origin of melanin in the biocontrol agents, Metarhizium spp., has remained elusive due to the complexity resulting from the divergence of two DHN-like biosynthetic pathways. Through the heterologous expression of biosynthetic enzymes from these two pathways in baker's yeast Saccharomyces cerevisiae, we have confirmed the presence of DHN biosynthesis in M. roberstii, and discovered a novel naphthopyrone intermediate, 8, that can produce a different type of pigment. These two pigment biosynthetic pathways differ in terms of polyketide intermediate structures and subsequent modification steps. Stress resistance studies using recombinant yeast cells have demonstrated that both DHN and its intermediates confer resistance against UV light prior to polymerization; a similar result was observed for its naphthopyrone counterpart. This study contributes to the understanding of the intricate and diverse biosynthetic mechanisms of fungal melanin and has the potential to enhance the application efficiency of biocontrol fungi such as Metarhizium spp. in agriculture.
Collapse
Affiliation(s)
- Linan Xie
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing, 100081, People's Republic of China
| | - Yang Liu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing, 100081, People's Republic of China
| | - Yujie Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing, 100081, People's Republic of China
| | - Kang Chen
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing, 100081, People's Republic of China
| | - Qun Yue
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing, 100081, People's Republic of China
| | - Chen Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing, 100081, People's Republic of China
| | - Baoqing Dun
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing, 100081, People's Republic of China
| | - Yuquan Xu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing, 100081, People's Republic of China
| | - Liwen Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing, 100081, People's Republic of China.
| |
Collapse
|
7
|
Krawczyk-Łebek A, Żarowska B, Dymarska M, Janeczko T, Kostrzewa-Susłow E. Synthesis, fungal biotransformation, and evaluation of the antimicrobial potential of chalcones with a chlorine atom. Sci Rep 2024; 14:15050. [PMID: 38951205 PMCID: PMC11217454 DOI: 10.1038/s41598-024-65054-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 06/17/2024] [Indexed: 07/03/2024] Open
Abstract
Chalcones are intermediate products in the biosynthesis of flavonoids, which possess a wide range of biological properties, including antimicrobial and anticancer activities. The introduction of a chlorine atom and the glucosyl moiety into their structure may increase their bioavailability, bioactivity, and pharmacological use. The combined chemical and biotechnological methods can be applied to obtain such compounds. Therefore, 2-chloro-2'-hydroxychalcone and 3-chloro-2'-hydroxychalcone were synthesized and biotransformed in cultures of two strains of filamentous fungi, i.e. Isaria fumosorosea KCH J2 and Beauveria bassiana KCH J1.5 to obtain their novel glycosylated derivatives. Pharmacokinetics, drug-likeness, and biological activity of them were predicted using cheminformatics tools. 2-Chloro-2'-hydroxychalcone, 3-chloro-2'-hydroxychalcone, their main glycosylation products, and 2'-hydrochychalcone were screened for antimicrobial activity against several microbial strains. The growth of Escherichia coli 10,536 was completely inhibited by chalcones with a chlorine atom and 3-chlorodihydrochalcone 2'-O-β-D-(4″-O-methyl)-glucopyranoside. The strain Pseudomonas aeruginosa DSM 939 was the most resistant to the action of the tested compounds. However, chalcone aglycones and glycosides with a chlorine atom almost completely inhibited the growth of bacteria Staphylococcus aureus DSM 799 and yeast Candida albicans DSM 1386. The tested compounds had different effects on lactic acid bacteria depending on the tested species. In general, chlorinated chalcones were more effective in the inhibition of the tested microbial strains than their unchlorinated counterparts and aglycones were a little more effective than their glycosides.
Collapse
Affiliation(s)
- Agnieszka Krawczyk-Łebek
- Department of Food Chemistry and Biocatalysis, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, Wrocław, Poland.
| | - Barbara Żarowska
- Department of Biotechnology and Food Microbiology, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Monika Dymarska
- Department of Food Chemistry and Biocatalysis, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Tomasz Janeczko
- Department of Food Chemistry and Biocatalysis, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Edyta Kostrzewa-Susłow
- Department of Food Chemistry and Biocatalysis, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| |
Collapse
|
8
|
Skellam E, Rajendran S, Li L. Combinatorial biosynthesis for the engineering of novel fungal natural products. Commun Chem 2024; 7:89. [PMID: 38637654 PMCID: PMC11026467 DOI: 10.1038/s42004-024-01172-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 04/08/2024] [Indexed: 04/20/2024] Open
Abstract
Natural products are small molecules synthesized by fungi, bacteria and plants, which historically have had a profound effect on human health and quality of life. These natural products have evolved over millions of years resulting in specific biological functions that may be of interest for pharmaceutical, agricultural, or nutraceutical use. Often natural products need to be structurally modified to make them suitable for specific applications. Combinatorial biosynthesis is a method to alter the composition of enzymes needed to synthesize a specific natural product resulting in structurally diversified molecules. In this review we discuss different approaches for combinatorial biosynthesis of natural products via engineering fungal enzymes and biosynthetic pathways. We highlight the biosynthetic knowledge gained from these studies and provide examples of new-to-nature bioactive molecules, including molecules synthesized using combinations of fungal and non-fungal enzymes.
Collapse
Affiliation(s)
- Elizabeth Skellam
- Department of Chemistry, University of North Texas, 1155 Union Circle, Denton, TX, 76203, USA.
- BioDiscovery Institute, University of North Texas, 1155 Union Circle, Denton, TX, 76203, USA.
- Department of Biological Sciences, University of North Texas, 1155 Union Circle, Denton, TX, 76203, USA.
| | - Sanjeevan Rajendran
- Department of Chemistry, University of North Texas, 1155 Union Circle, Denton, TX, 76203, USA
- BioDiscovery Institute, University of North Texas, 1155 Union Circle, Denton, TX, 76203, USA
| | - Lei Li
- Department of Chemistry, University of North Texas, 1155 Union Circle, Denton, TX, 76203, USA
- BioDiscovery Institute, University of North Texas, 1155 Union Circle, Denton, TX, 76203, USA
| |
Collapse
|
9
|
Razola-Díaz MDC, De Montijo-Prieto S, Guerra-Hernández EJ, Jiménez-Valera M, Ruiz-Bravo A, Gómez-Caravaca AM, Verardo V. Fermentation of Orange Peels by Lactic Acid Bacteria: Impact on Phenolic Composition and Antioxidant Activity. Foods 2024; 13:1212. [PMID: 38672885 PMCID: PMC11049403 DOI: 10.3390/foods13081212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/08/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
Orange processing generates peel by-products rich in phenolic compounds, particularly flavanones like hesperidin and narirutin, offering potential health benefits. Utilizing these by-products is of significant interest in supporting Spain's circular bioeconomy. Therefore, the aim of this study was to investigate the fermentation of orange peels by different lactic acid bacteria (LAB) strains and its impact on phenolic composition and antioxidant activity. Three different LAB strains, two Lactiplantibacillus plantarum, and one Levilactobacillus brevis were utilized. The phenolic compounds were measured by HPLC-ESI-TOF-MS, and antioxidant activity was assessed using DPPH and ABTS methods. The growth of the LAB strains varied, showing initial increases followed by gradual declines, with strain-specific patterns observed. Medium acidification occurred during fermentation. A phenolic analysis revealed an 11% increase in phenolic acids in peels fermented by La. plantarum CECT 9567-C4 after 24 h, attributed to glycosylation by LAB enzymes. The flavonoid content exhibited diverse trends, with Le. brevis showing an 8% increase. The antioxidant assays demonstrated strain- and time-dependent variations. Positive correlations were found between antioxidant activity and total phenolic compounds. The results underscore the importance of bacterial selection and fermentation time for tailored phenolic composition and antioxidant activity in orange peel extracts. LAB fermentation, particularly with La. plantarum CECT 9567 and Le. brevis, holds promise for enhancing the recovery of phenolic compounds and augmenting antioxidant activity in orange peels, suggesting potential applications in food and beverage processing.
Collapse
Affiliation(s)
- María del Carmen Razola-Díaz
- Department of Nutrition and Food Science, Campus of Cartuja, University of Granada, 18011 Granada, Spain; (M.d.C.R.-D.); (E.J.G.-H.)
- Institute of Nutrition and Food Technology ‘José Mataix’, Biomedical Research Center, University of Granada, Avda del Conocimiento sn, 18100 Granada, Spain
| | - Soumi De Montijo-Prieto
- Department of Microbiology, Campus of Cartuja, University of Granada, 18071 Granada, Spain; (S.D.M.-P.); (M.J.-V.); (A.R.-B.)
| | - Eduardo Jesús Guerra-Hernández
- Department of Nutrition and Food Science, Campus of Cartuja, University of Granada, 18011 Granada, Spain; (M.d.C.R.-D.); (E.J.G.-H.)
| | - María Jiménez-Valera
- Department of Microbiology, Campus of Cartuja, University of Granada, 18071 Granada, Spain; (S.D.M.-P.); (M.J.-V.); (A.R.-B.)
| | - Alfonso Ruiz-Bravo
- Department of Microbiology, Campus of Cartuja, University of Granada, 18071 Granada, Spain; (S.D.M.-P.); (M.J.-V.); (A.R.-B.)
| | - Ana María Gómez-Caravaca
- Institute of Nutrition and Food Technology ‘José Mataix’, Biomedical Research Center, University of Granada, Avda del Conocimiento sn, 18100 Granada, Spain
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Avd. Fuentenueva s/n, 18071 Granada, Spain
| | - Vito Verardo
- Department of Nutrition and Food Science, Campus of Cartuja, University of Granada, 18011 Granada, Spain; (M.d.C.R.-D.); (E.J.G.-H.)
- Institute of Nutrition and Food Technology ‘José Mataix’, Biomedical Research Center, University of Granada, Avda del Conocimiento sn, 18100 Granada, Spain
| |
Collapse
|
10
|
Chen D, Song Z, Han J, Liu J, Liu H, Dai J. Targeted Discovery of Glycosylated Natural Products by Tailoring Enzyme-Guided Genome Mining and MS-Based Metabolome Analysis. J Am Chem Soc 2024; 146:9614-9622. [PMID: 38545685 DOI: 10.1021/jacs.3c12895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Glycosides make up a biomedically important class of secondary metabolites. Most naturally occurring glycosides were isolated from plants and bacteria; however, the chemical diversity of glycosylated natural products in fungi remains largely unexplored. Herein, we present a paradigm to specifically discover diverse and bioactive glycosylated natural products from fungi by combining tailoring enzyme-guided genome mining with mass spectrometry (MS)-based metabolome analysis. Through in vivo genes deletion and heterologous expression, the first fungal C-glycosyltransferase AuCGT involved in the biosynthesis of stromemycin was identified from Aspergillus ustus. Subsequent homology-based genome mining for fungal glycosyltransferases by using AuCGT as a probe revealed a variety of biosynthetic gene clusters (BGCs) containing its homologues in diverse fungi, of which the glycoside-producing capability was corroborated by high-performance liquid chromatography-mass spectrometry (HPLC-MS) analysis. Consequently, 28 fungal aromatic polyketide C/O-glycosides, including 20 new compounds, were efficiently discovered and isolated from the three selected fungi. Moreover, several novel fungal C/O-glycosyltransferases, especially three novel α-pyrone C-glycosyltransferases, were functionally characterized and verified in the biosynthesis of these glycosides. In addition, a proof of principle for combinatorial biosynthesis was applied to design the production of unnatural glycosides in Aspergillus nidulans. Notably, the newly discovered glycosides exhibited significant antiviral, antibacterial, and antidiabetic activities. Our work demonstrates the promise of tailoring enzyme-guided genome-mining approach for the targeted discovery of fungal glycosides and promotes the exploration of a broader chemical space for natural products with a target structural motif in microbial genomes.
Collapse
Affiliation(s)
- Dawei Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs and NHC Key Laboratory of Biosynthesis of Natural Products, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Zhijun Song
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs and NHC Key Laboratory of Biosynthesis of Natural Products, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Junjie Han
- Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jimei Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs and NHC Key Laboratory of Biosynthesis of Natural Products, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Hongwei Liu
- Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jungui Dai
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs and NHC Key Laboratory of Biosynthesis of Natural Products, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
11
|
Tronina T, Łużny M, Dymarska M, Urbaniak M, Kozłowska E, Piegza M, Stępień Ł, Janeczko T. Glycosylation of Quercetin by Selected Entomopathogenic Filamentous Fungi and Prediction of Its Products' Bioactivity. Int J Mol Sci 2023; 24:11857. [PMID: 37511613 PMCID: PMC10380404 DOI: 10.3390/ijms241411857] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023] Open
Abstract
Quercetin is the most abundant flavonoid in food products, including berries, apples, cauliflower, tea, cabbage, nuts, onions, red wine and fruit juices. It exhibits various biological activities and is used for medical applications, such as treating allergic, inflammatory and metabolic disorders, ophthalmic and cardiovascular diseases, and arthritis. However, its low water solubility may limit quercetin's therapeutic potential. One method of increasing the solubility of active compounds is their coupling to polar molecules, such as sugars. The attachment of a glucose unit impacts the stability and solubility of flavonoids and often determines their bioavailability and bioactivity. Entomopathogenic fungi are biocatalysts well known for their ability to attach glucose and its 4-O-methyl derivative to bioactive compounds, including flavonoids. We investigated the ability of cultures of entomopathogenic fungi belonging to Beauveria, Isaria, Metapochonia, Lecanicillium and Metarhizium genera to biotransform quercetin. Three major glycosylation products were detected: (1), 7-O-β-D-(4″-O-methylglucopyranosyl)-quercetin, (2) 3-O-β-D-(4″-O-methylglucopyranosyl)-quercetin and (3) 3-O-β-D-(glucopyranosyl)-quercetin. The results show evident variability of the biotransformation process, both between strains of the tested biocatalysts from different species and between strains of the same species. Pharmacokinetic and pharmacodynamic properties of the obtained compounds were predicted with the use of cheminformatics tools. The study showed that the obtained compounds may have applications as effective modulators of intestinal flora and may be stronger hepato-, cardio- and vasoprotectants and free radical scavengers than quercetin.
Collapse
Affiliation(s)
- Tomasz Tronina
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland
| | - Mateusz Łużny
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland
| | - Monika Dymarska
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland
| | - Monika Urbaniak
- Department of Pathogen Genetics and Plant Resistance, Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479 Poznań, Poland
| | - Ewa Kozłowska
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland
| | - Michał Piegza
- Department of Biotechnology and Food Microbiology, Wrocław University of Environmental and Life Sciences, Chełmońskiego 37, 51-630 Wrocław, Poland
| | - Łukasz Stępień
- Department of Pathogen Genetics and Plant Resistance, Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479 Poznań, Poland
| | - Tomasz Janeczko
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland
| |
Collapse
|
12
|
Jeong E, Kim W, Son S, Yang S, Gwon D, Hong J, Cho Y, Jang CY, Steinegger M, Lim YW, Kang KB. Qualitative metabolomics-based characterization of a phenolic UDP-xylosyltransferase with a broad substrate spectrum from Lentinus brumalis. Proc Natl Acad Sci U S A 2023; 120:e2301007120. [PMID: 37399371 PMCID: PMC10334773 DOI: 10.1073/pnas.2301007120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 06/06/2023] [Indexed: 07/05/2023] Open
Abstract
Wood-decaying fungi are the major decomposers of plant litter. Heavy sequencing efforts on genomes of wood-decaying fungi have recently been made due to the interest in their lignocellulolytic enzymes; however, most parts of their proteomes remain uncharted. We hypothesized that wood-decaying fungi would possess promiscuous enzymes for detoxifying antifungal phytochemicals remaining in the dead plant bodies, which can be useful biocatalysts. We designed a computational mass spectrometry-based untargeted metabolomics pipeline for the phenotyping of biotransformation and applied it to 264 fungal cultures supplemented with antifungal plant phenolics. The analysis identified the occurrence of diverse reactivities by the tested fungal species. Among those, we focused on O-xylosylation of multiple phenolics by one of the species tested, Lentinus brumalis. By integrating the metabolic phenotyping results with publicly available genome sequences and transcriptome analysis, a UDP-glycosyltransferase designated UGT66A1 was identified and validated as an enzyme catalyzing O-xylosylation with broad substrate specificity. We anticipate that our analytical workflow will accelerate the further characterization of fungal enzymes as promising biocatalysts.
Collapse
Affiliation(s)
- Eunah Jeong
- College of Pharmacy, Sookmyung Women’s University, Seoul04310, Korea
- Research Institute of Pharmaceutical Sciences and Muscle Physiome Research Center, Sookmyung Women’s University, Seoul04310, Korea
| | - Wonyong Kim
- Korean Lichen Research Institute, Sunchon National University, Suncheon57922, Korea
| | - Seungju Son
- College of Pharmacy, Sookmyung Women’s University, Seoul04310, Korea
| | - Sungyeon Yang
- College of Pharmacy, Sookmyung Women’s University, Seoul04310, Korea
| | - Dasom Gwon
- College of Pharmacy, Sookmyung Women’s University, Seoul04310, Korea
- Research Institute of Pharmaceutical Sciences and Muscle Physiome Research Center, Sookmyung Women’s University, Seoul04310, Korea
| | - Jihee Hong
- College of Pharmacy, Sookmyung Women’s University, Seoul04310, Korea
- Research Institute of Pharmaceutical Sciences and Muscle Physiome Research Center, Sookmyung Women’s University, Seoul04310, Korea
| | - Yoonhee Cho
- School of Biological Sciences, Seoul National University, Seoul08826, Korea
| | - Chang-Young Jang
- College of Pharmacy, Sookmyung Women’s University, Seoul04310, Korea
- Research Institute of Pharmaceutical Sciences and Muscle Physiome Research Center, Sookmyung Women’s University, Seoul04310, Korea
| | - Martin Steinegger
- School of Biological Sciences, Seoul National University, Seoul08826, Korea
- Artificial Intelligence Institute, Seoul National University, Seoul08826, Korea
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul08826, Korea
| | - Young Woon Lim
- School of Biological Sciences, Seoul National University, Seoul08826, Korea
- Institute of Microbiology, Seoul National University, Seoul08826, Korea
| | - Kyo Bin Kang
- College of Pharmacy, Sookmyung Women’s University, Seoul04310, Korea
- Research Institute of Pharmaceutical Sciences and Muscle Physiome Research Center, Sookmyung Women’s University, Seoul04310, Korea
| |
Collapse
|
13
|
Peng Y, Huan Y, Chen JJ, Chen TJ, Lei L, Yang JL, Shen ZF, Gong T, Zhu P. Microbial biotransformation to obtain stilbene methylglucoside with GPR119 agonistic activity. Front Microbiol 2023; 14:1148513. [PMID: 37032867 PMCID: PMC10081513 DOI: 10.3389/fmicb.2023.1148513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 02/27/2023] [Indexed: 04/11/2023] Open
Abstract
Introduction Limitation of pharmaceutical application of resveratrol (RSV) and piceatannol (PIC) continue to exist, there is a need to obtain the superior analogs of two stilbenes with promoted activity, stability, and bioavailability. Microbial transformation has been suggested as a common and efficient strategy to solve the above problems. Methods In this study, Beauveria bassiana was selected to transform RSV and PIC. LC-MS and NMR spectroscopies were used to analyze the transformed products and identify their structures. The biological activities of these metabolites were evaluated in vitro with GPR119 agonist and insulin secretion assays. Single factor tests were employed to optimize the biotransformation condition. Results Three new methylglucosylated derivatives of PIC (1-3) and two known RSV methylglucosides (4 and 5) were isolated and characterized from the fermentation broth. Among them, 1 not only showed moderate GPR119 agonistic activity with 65.9%, but also promoted insulin secretion level significantly (12.94 ng/mg protein/hour) at 1 μM. After optimization of fermentation conditions, the yield of 1 reached 45.53%, which was increased by 4.2-fold compared with the control. Discussion Our work presents that 3-O-MG PIC (1), obtained by microbial transformation, is an effective and safer ligand targeting GPR119, which lays a foundation for the anti-diabetic drug design in the future.
Collapse
|
14
|
Poudel PB, Dhakal D, Magar RT, Sohng JK. Microbial Biosynthesis of Chrysazin Derivatives in Recombinant Escherichia coli and Their Biological Activities. Molecules 2022; 27:molecules27175554. [PMID: 36080320 PMCID: PMC9457698 DOI: 10.3390/molecules27175554] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 11/20/2022] Open
Abstract
Anthraquinone and its derivatives show remarkable biological properties such as anticancer, antibacterial, antifungal, and antiviral activities. Hence, anthraquinones derivatives have been of prime interest in drug development. This study developed a recombinant Escherichia coli strain to modify chrysazin to chrysazin-8-O-α-l-rhamnoside (CR) and chrysazin-8-O-α-l-2′-O-methylrhamnoside (CRM) using rhamnosyl transferase and sugar-O-methyltransferase. Biosynthesized CR and CRM were structurally characterized using HPLC, high-resolution mass spectrometry, and various nuclear magnetic resonance analyses. Antimicrobial effects of chrysazin, CR, and CRM against 18 superbugs, including 14 Gram-positive and 4 Gram-negative pathogens, were investigated. CR and CRM exhibited antimicrobial activities against nine pathogens, including methicillin-resistant Staphylococcus aureus (MRSA) and methicillin-sensitive Staphylococcus aureus (MSSA) in a disk diffusion assay at a concentration of 40 µg per disk. There were MIC and MBC values of 7.81−31.25 µg/mL for CR and CRM against methicillin-sensitive S. aureus CCARM 0205 (MSSA) for which the parent chrysazin is more than >1000 µg/mL. Furthermore, the anti-proliferative properties of chrysazin, CR, and CRM were assayed using AGS, Huh7, HL60, and HaCaT cell lines. CR and CRM showed higher antibacterial and anticancer properties than chrysazin.
Collapse
Affiliation(s)
- Purna Bahadur Poudel
- Institute of Biomolecule Reconstruction (iBR), Department of Life Science and Biochemical Engineering, Sun Moon University, 70 Sun Moon-ro 221, Tangjeong-myeon, Asan-si 31460, Chungnam, Korea
| | - Dipesh Dhakal
- Institute of Biomolecule Reconstruction (iBR), Department of Life Science and Biochemical Engineering, Sun Moon University, 70 Sun Moon-ro 221, Tangjeong-myeon, Asan-si 31460, Chungnam, Korea
| | - Rubin Thapa Magar
- Institute of Biomolecule Reconstruction (iBR), Department of Life Science and Biochemical Engineering, Sun Moon University, 70 Sun Moon-ro 221, Tangjeong-myeon, Asan-si 31460, Chungnam, Korea
| | - Jae Kyung Sohng
- Institute of Biomolecule Reconstruction (iBR), Department of Life Science and Biochemical Engineering, Sun Moon University, 70 Sun Moon-ro 221, Tangjeong-myeon, Asan-si 31460, Chungnam, Korea
- Department of Biotechnology and Pharmaceutical Engineering, Sun Moon University, 70 Sun Moon-ro 221, Tangjeong-myeon, Asan-si 31460, Chungnam, Korea
- Correspondence: ; Tel.: +82-(41)-530-2246; Fax: +82-(41)-530-8229
| |
Collapse
|
15
|
Krawczyk-Łebek A, Dymarska M, Janeczko T, Kostrzewa-Susłow E. Glycosylation of Methylflavonoids in the Cultures of Entomopathogenic Filamentous Fungi as a Tool for Obtaining New Biologically Active Compounds. Int J Mol Sci 2022; 23:ijms23105558. [PMID: 35628367 PMCID: PMC9146141 DOI: 10.3390/ijms23105558] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/13/2022] [Accepted: 05/14/2022] [Indexed: 02/04/2023] Open
Abstract
Flavonoid compounds are secondary plant metabolites with numerous biological activities; they naturally occur mainly in the form of glycosides. The glucosyl moiety attached to the flavonoid core makes them more stable and water-soluble. The methyl derivatives of flavonoids also show increased stability and intestinal absorption. Our study showed that such flavonoids can be obtained by combined chemical and biotechnological methods with entomopathogenic filamentous fungi as glycosylation biocatalysts. In the current paper, two flavonoids, i.e., 2′-hydroxy-4-methylchalcone and 4′-methylflavone, have been synthesized and biotransformed in the cultures of two strains of entomopathogenic filamentous fungi Isaria fumosorosea KCH J2 and Beauveria bassiana KCH J1.5. Biotransformation of 2′-hydroxy-4-methylchalcone resulted in the formation of two dihydrochalcone glucopyranoside derivatives in the culture of I. fumosorosea KCH J2 and chalcone glucopyranoside derivative in the case of B. bassiana KCH J1.5. 4′-Methylflavone was transformed in the culture of I. fumosorosea KCH J2 into four products, i.e., 4′-hydroxymethylflavone, flavone 4′-methylene-O-β-d-(4″-O-methyl)-glucopyranoside, flavone 4′-carboxylic acid, and 4′-methylflavone 3-O-β-d-(4″-O-methyl)-glucopyranoside. 4′-Methylflavone was not efficiently biotransformed in the culture of B. bassiana KCH J1.5. The computer-aided simulations based on the chemical structures of the obtained compounds showed their improved physicochemical properties and antimicrobial, anticarcinogenic, hepatoprotective, and cardioprotective potential.
Collapse
|
16
|
4'-Methylflavanone Glycosides Obtained Using Biotransformation in the Entomopathogenic Filamentous Fungi Cultures as Potential Anticarcinogenic, Antimicrobial, and Hepatoprotective Agents. Int J Mol Sci 2022; 23:ijms23105373. [PMID: 35628179 PMCID: PMC9140535 DOI: 10.3390/ijms23105373] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/09/2022] [Accepted: 05/09/2022] [Indexed: 02/04/2023] Open
Abstract
Flavonoid compounds exhibit numerous biological activities and significantly impact human health. The presence of methyl or glucosyl moieties attached to the flavonoid core remarkably modifies their physicochemical properties and improves intestinal absorption. Combined chemical and biotechnological methods can be applied to obtain such derivatives. In the presented study, 4'-methylflavanone was synthesized and biotransformed in the cultures of three strains of entomopathogenic filamentous fungi, i.e., Isaria fumosorosea KCH J2, Beauveria bassiana KCH J1.5, and Isaria farinosa KCH J2.1. The microbial transformation products in the culture of I. fumosorosea KCH J2, flavanone 4'-methylene-O-β-D-(4″-O-methyl)-glucopyranoside, 2-phenyl-(4'-hydroxymethyl)-4-hydroxychromane, and flavanone 4'-carboxylic acid were obtained. Biotransformation of 4'-methylflavanone in the culture of B. bassiana KCH J1.5 resulted in the formation of one main product, i.e., flavanone 4'-methylene-O-β-D-(4″-O-methyl)-glucopyranoside. In the case of I. farinosa KCH J2.6 as a biocatalyst, three products, i.e., flavanone 4'-methylene-O-β-D-(4″-O-methyl)-glucopyranoside, flavanone 4'-carboxylic acid, and 4'-hydroxymethylflavanone 4-O-β-D-(4″-O-methyl)-glucopyranoside were obtained. The Swiss-ADME online simulations confirmed the increase in water solubility of 4'-methylflavanone glycosides and analyses performed using the Way2Drug Pass Online prediction tool indicated that flavanone 4'-methylene-O-β-D-(4″-O-methyl)-glucopyranoside and 4'-hydroxymethylflavanone 4-O-β-D-(4″-O-methyl)-glucopyranoside, which had not been previously reported in the literature, are promising anticarcinogenic, antimicrobial, and hepatoprotective agents.
Collapse
|
17
|
Inductive Production of the Iron-Chelating 2-Pyridones Benefits the Producing Fungus To Compete for Diverse Niches. mBio 2021; 12:e0327921. [PMID: 34903054 PMCID: PMC8669486 DOI: 10.1128/mbio.03279-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Diverse 2-pyridone alkaloids have been identified with an array of biological and pharmaceutical activities, including the development of drugs. However, the biosynthetic regulation and chemical ecology of 2-pyridones remain largely elusive. Here, we report the inductive activation of the silent polyketide synthase-nonribosomal peptide synthetase (PKS-NRPS) (tenS) gene cluster for the biosynthesis of the tenellin-type 2-pyridones in the insect-pathogenic fungus Beauveria bassiana when cocultured with its natural competitor fungus Metarhizium robertsii. A pathway-specific transcription factor, tenR, was identified, and the overexpression of tenR well expanded the biosynthetic mechanism of 15-hydroxytenellin (15-HT) and its derivatives. In particular, a tandemly linked glycosyltransferase-methyltransferase gene pair located outside the tenS gene cluster was verified to mediate the rare and site-specific methylglucosylation of 15-HT at its N-OH residue. It was evident that both tenellin and 15-HT can chelate iron, which could benefit B. bassiana to outcompete M. robertsii in cocultures and to adapt to iron-replete and -depleted conditions. Relative to the wild-type strain, the deletion of tenS had no obvious negative effect on fungal virulence, but the overexpression of tenR could substantially increase fungal pathogenicity toward insect hosts. The results of this study well advance the understanding of the biosynthetic machinery and chemical ecology of 2-pyridones.
Collapse
|
18
|
Gu N, Liu S, Qiu C, Zhao L, Pei J. Biosynthesis of 3'-O-methylisoorientin from luteolin by selecting O-methylation/C-glycosylation motif. Enzyme Microb Technol 2021; 150:109862. [PMID: 34489021 DOI: 10.1016/j.enzmictec.2021.109862] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/23/2021] [Accepted: 06/26/2021] [Indexed: 11/26/2022]
Abstract
Glycosylation and methylation of flavonoids are the main types of structural modifications and can endow flavonoids with greater stability, bioactivity, and bioavailability. In this study, five types of O-methyltransferases were screened for producing O-methylated luteolin, and the biosynthesis strategy of 3'-O-methylisoorientin from luteolin was determined. To improve the production of 3'-O-methylluteolin, the S-adenosyl-l-methionine synthesis pathway was reconstructed in the recombinant strain by introducing S-adenosyl-l-methionine synthetase genes. After optimizing the conversion conditions, maximal 3'-O-methylluteolin production reached 641 ± 25 mg/L with a corresponding molar conversion of 76.5 %, which was the highest titer of methylated flavonoids reported to date in Escherichia coli. 3'-O-Methylluteolin (127 mg) was prepared from 250 mL of the broth by silica gel column chromatography and preparative HPLC with a yield of 79.4 %. Subsequently, we used the biocatalytic cascade of Gentiana triflora C-glycosyltransferase (Gt6CGT) and Glycine max sucrose synthase (GmSUS) to biosynthesize 3'-O-methylisoorientin from 3'-O-methylluteolin in vitro. By optimizing the coupled reaction conditions and using the fed-batch operation, maximal 3'-O-methylisoorientin production reached 226 ± 8 mg/L with a corresponding molar conversion of 98 %. Therefore, this study provides an efficient method for the production of novel 3'-O-methylisoorientin and the biosynthesis strategy for methylated C-glycosylation flavonoids by selective O-methylation/C-glycosylation motif on flavonoids.
Collapse
Affiliation(s)
- Na Gu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, China; College of Chemical Engineering, Nanjing Forestry University, Nanjing, China; Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, Nanjing, China
| | - Simin Liu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, China; College of Chemical Engineering, Nanjing Forestry University, Nanjing, China; Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, Nanjing, China
| | - Cong Qiu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, China; College of Chemical Engineering, Nanjing Forestry University, Nanjing, China; Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, Nanjing, China
| | - Linguo Zhao
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, China; College of Chemical Engineering, Nanjing Forestry University, Nanjing, China; Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, Nanjing, China.
| | - Jianjun Pei
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, China; College of Chemical Engineering, Nanjing Forestry University, Nanjing, China; Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, Nanjing, China.
| |
Collapse
|
19
|
Abstract
Flavonoids are known for their numerous biological activities; however, their pharmacological application is limited by poor bioavailability. Glycosides are usually more stable and more soluble in water and in this form, flavonoids are present in nature. Likewise, the presence of the methyl group in the flavonoid skeleton results in facilitated absorption and greater bioavailability. Entomopathogenic filamentous fungi are effective in the biotransformation of flavonoids; they are known especially for efficient glycosylation. In the current study we used strains of Beauveria bassiana KCH J1.5 and Isaria fumosorosea KCH J2 to biotransform flavonoids with a single methyl group. 2′-Hydroxy-5′-methylchalcone was biotransformed by both strains into 2′-hydroxy-5′-methylchalcone 3-O-β-D-(4″-O-methyl)-glucopyranoside. In the culture of B. bassiana KCH J1.5 four products were obtained from 6-methylflavanone: 4′-hydroxy-6-methylflavanone 3′-O-β-D-(4″-O-methyl)-glucopyranoside; 4′-hydroxyflavanone 6-methylene-O-β-D-(4″-O-methyl)-glucopyranoside; 6-hydroxymethylflavanone 3′-O-β-D-(4″-O-methyl)-glucopyranoside and 4′-hydroxy-6-hydroxymethylflavanone 3′-O-β-D-(4″-O-methyl)-glucopyranoside. Biotransformation with I. fumosorosea KCH J2 as a biocatalyst resulted in the formation of 6-methylflavanone 4′-O-β-D-(4″-O-methyl)-glucopyranoside and 2-phenyl-6-methylchromane 4-O-β-D-(4″-O-methyl)-glucopyranoside. All of these flavonoids can be used in biological activity tests and can be useful in studies concerning structure—bioactivity relationships.
Collapse
|
20
|
Gu N, Qiu C, Zhao L, Zhang L, Pei J. Enhancing UDP-Rhamnose Supply for Rhamnosylation of Flavonoids in Escherichia coli by Regulating the Modular Pathway and Improving NADPH Availability. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:9513-9523. [PMID: 32693583 DOI: 10.1021/acs.jafc.0c03689] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
UDP-rhamnose is the main type of sugar donor and endows flavonoids with special activity, selectivity, and pharmacological properties by glycosylation. In this study, several UDP-glucose synthesis pathways and UDP-rhamnose synthases were screened to develop an efficient UDP-rhamnose biosynthesis pathway in Escherichia coli. Maximal UDP-rhamnose production reached 82.2 mg/L in the recombinant strain by introducing the cellobiose phosphorolysis pathway and Arabidopsis thaliana UDP-rhamnose synthase (AtRHM). Quercitrin production of 3522 mg/L was achieved in the recombinant strain by coupling the UDP-rhamnose generation system with A. thaliana rhamnosyltransferase (AtUGT78D1) to recycle UDP-rhamnose. To further increase UDP-rhamnose supply, an NADPH-independent fusion enzyme was constructed, the UTP supply was improved, and NADPH regenerators were overexpressed in vivo. Finally, by optimizing the bioconversion conditions, the highest quercitrin production reached 7627 mg/L with the average productivity of 141 mg/(L h), which is the highest yield of quercitrin and efficiency of UDP-rhamnose supply reported to date in E. coli. Therefore, the method described herein for the regeneration of UDP-rhamnose from cellobiose may be widely used for the rhamnosylation of flavonoids and other bioactive substances.
Collapse
Affiliation(s)
- Na Gu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
- College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Cong Qiu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
- College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Linguo Zhao
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
- College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
- Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, Nanjing 210037, China
| | - Lihu Zhang
- Department of Pharmacy, Jiangsu Vocational College of Medicine, Yancheng 224006, China
| | - Jianjun Pei
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
- College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
- Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, Nanjing 210037, China
| |
Collapse
|