1
|
Zhang Y, Zhao C, Guo Z, Yang T, Zhang X, Huang X, Shi J, Gao S, Zou X. Ultrasensitive Analysis of Escherichia coli O157:H7 Based on Immunomagnetic Separation and Labeled Surface-Enhanced Raman Scattering with Minimized False Positive Identifications. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:22349-22359. [PMID: 39327911 DOI: 10.1021/acs.jafc.4c06311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
It is a big challenge to monitor pathogens in food with high selectivity. In this study, we reported an ultrasensitive method for Escherichia coli O157:H7 detection based on immunomagnetic separation and labeled surface-enhanced Raman scattering (SERS). The bacterium was identified by heterogeneous recognition elements, monoclonal antibody (mAb), and aptamer. E. coli O157:H7 was separated and enriched by magnetic nanoparticles modified by mAb, and then a plasmonic nanostructure functionalized by aptamers with embedded Raman tags and interior gaps was utilized for further discrimination and detection. The selectivity was enhanced by two binding sites. The higher Raman enhancement was obtained by strong local electromagnetic field oscillation in the gap and the firm embedment of 4-mercaptopyridine (4-Mpy). Optimum experiments created that SERS signals of 4-Mpy at 1010 cm-1 had a good linearity with E. coli O157:H7 at a large range of 10 to 107 CFU/mL with a limit of detection of 2 CFU/mL. This method has great potential for on-site food pathogenic bacterial detection.
Collapse
Affiliation(s)
- Yang Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Chuping Zhao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Zhiming Guo
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Tianxi Yang
- Nutrition and Health, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Xinai Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xiaowei Huang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Jiyong Shi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Shipeng Gao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xiaobo Zou
- International Joint Research Laboratory of Intelligent Agriculture and Agriproducts Processing, China Light Industry Key Laboratory of Food Intelligent Detection & Processing, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| |
Collapse
|
2
|
Yan L, Zheng P, Wang Z, Wang W, Chen X, Liu Q. Multimodal biosensing systems based on metal nanoparticles. Analyst 2024; 149:4116-4134. [PMID: 39007333 DOI: 10.1039/d4an00140k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Biosensors are currently among the most commonly used devices for analysing biomarkers and play an important role in environmental detection, food safety, and disease diagnosis. Researchers have developed multimodal biosensors instead of single-modal biosensors to meet increasing sensitivity, accuracy, and stability requirements. Metal nanoparticles (MNPs) are beneficial for preparing core probes for multimodal biosensors because of their excellent physical and chemical properties, such as easy regulation and modification, and because they can integrate diverse sensing strategies. This review mainly summarizes the excellent physicochemical properties of MNPs applied as biosensing probes and the principles of commonly used MNP-based multimodal sensing strategies. Recent applications and possible improvements of multimodal biosensors based on MNPs are also described, among which on-site inspection and sensitive detection are particularly important. The current challenges and prospects for multimodal biosensors based on MNPs may provide readers with a new perspective on this field.
Collapse
Affiliation(s)
- Liang Yan
- Department of Stomatology, Nanfang Hospital, Southern Medical University, No. 1838 Guangzhou Avenue North, Guangzhou, 510515, China.
- School of Stomatology, Southern Medical University, No. 1838 Guangzhou Avenue North, Guangzhou, 510515, China
| | - Peijia Zheng
- Department of Stomatology, Nanfang Hospital, Southern Medical University, No. 1838 Guangzhou Avenue North, Guangzhou, 510515, China.
- School of Stomatology, Southern Medical University, No. 1838 Guangzhou Avenue North, Guangzhou, 510515, China
| | - Zhicheng Wang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, No. 1838 Guangzhou Avenue North, Guangzhou, 510515, China.
- School of Stomatology, Southern Medical University, No. 1838 Guangzhou Avenue North, Guangzhou, 510515, China
| | - Wenjie Wang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, No. 1838 Guangzhou Avenue North, Guangzhou, 510515, China.
- School of Stomatology, Southern Medical University, No. 1838 Guangzhou Avenue North, Guangzhou, 510515, China
| | - Xiaoman Chen
- Department of Stomatology, Nanfang Hospital, Southern Medical University, No. 1838 Guangzhou Avenue North, Guangzhou, 510515, China.
- School of Stomatology, Southern Medical University, No. 1838 Guangzhou Avenue North, Guangzhou, 510515, China
| | - Qi Liu
- Department of Stomatology, Nanfang Hospital, Southern Medical University, No. 1838 Guangzhou Avenue North, Guangzhou, 510515, China.
- School of Stomatology, Southern Medical University, No. 1838 Guangzhou Avenue North, Guangzhou, 510515, China
| |
Collapse
|
3
|
Ding L, Hu J, Liu X, Zeng J, Hu Z, Chen J, Zhu K, Duan H, Huang X. Ultrasensitive dynamic light scattering immunodetection of alpha-fetoprotein using heptamer-amplified nanoparticle crosslinking aggregation. Mikrochim Acta 2024; 191:387. [PMID: 38869719 DOI: 10.1007/s00604-024-06437-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/13/2024] [Indexed: 06/14/2024]
Abstract
A novel construction strategy is introduced for an ultrasensitive dynamic light scattering (DLS) immunosensor targeting alpha fetoprotein (AFP). This approach relies on a self-assembled heptamer fusion protein (A1-C4bpα), incorporating the dual functions of multivalent recognition and crosslinking aggregation amplification due to the presence of seven AFP-specific A1 nanobodies on the A1-C4bpα heptamer. Leveraging antibody-functionalized magnetic nanoparticles for target AFP capture and DLS signal output, the proposed heptamer-assisted DLS immunosensor offers high sensitivity, strong specificity, and ease of operation. Under the optimized conditions, the designed DLS immunosensor demonstrates excellent linear detection of AFP in the concentration range 0.06 ng mL-1 to 512 ng mL-1, with a detection limit of 15 pg mL-1. The selectivity, accuracy, precision, practicability, and reliability of this newly developed method were further validated through an assay of AFP levels in spiked and actual human serum samples. This work introduces a novel approach for constructing ultrasensitive DLS immunosensors, easily extendable to the sensitive determination of other targets via simply replacing the nanobody sequence, holding great promise in various applications, particularly in disease diagnosis.
Collapse
Affiliation(s)
- Lu Ding
- Department of Cardiology, The First Affiliated Hospital, Jiangxi Medical College, Jiangxi Hypertension Research Institute, Nanchang University, Nanchang, 330006, P. R. China
| | - Jiaqi Hu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Nanchang University, Nanchang, 330047, P. R. China
- Songzi Center for Inspection and Test, Songzi, 434200, P. R. China
| | - Xing Liu
- Key Laboratory of Tropical and Vegetables Quality and Safety for State Market Regulation, School of Food Science and Engineering, Hainan University, Haikou, 570228, P. R. China
| | - Junyi Zeng
- Department of Cardiology, The First Affiliated Hospital, Jiangxi Medical College, Jiangxi Hypertension Research Institute, Nanchang University, Nanchang, 330006, P. R. China
| | - Zhiwen Hu
- Department of Cardiology, The First Affiliated Hospital, Jiangxi Medical College, Jiangxi Hypertension Research Institute, Nanchang University, Nanchang, 330006, P. R. China
| | - Jing Chen
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Nanchang University, Nanchang, 330047, P. R. China
| | - Kang Zhu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Nanchang University, Nanchang, 330047, P. R. China
| | - Hong Duan
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University, Beijing, 100048, P. R. China.
| | - Xiaolin Huang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Nanchang University, Nanchang, 330047, P. R. China.
- Jiangxi Medicine Academy of Nutrition and Health Management, Nanchang, 330006, P. R. China.
| |
Collapse
|
4
|
Hussain M, He X, Wang C, Wang Y, Wang J, Chen M, Kang H, Yang N, Ni X, Li J, Zhou X, Liu B. Recent advances in microfluidic-based spectroscopic approaches for pathogen detection. BIOMICROFLUIDICS 2024; 18:031505. [PMID: 38855476 PMCID: PMC11162289 DOI: 10.1063/5.0204987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/30/2024] [Indexed: 06/11/2024]
Abstract
Rapid identification of pathogens with higher sensitivity and specificity plays a significant role in maintaining public health, environmental monitoring, controlling food quality, and clinical diagnostics. Different methods have been widely used in food testing laboratories, quality control departments in food companies, hospitals, and clinical settings to identify pathogens. Some limitations in current pathogens detection methods are time-consuming, expensive, and laborious sample preparation, making it unsuitable for rapid detection. Microfluidics has emerged as a promising technology for biosensing applications due to its ability to precisely manipulate small volumes of fluids. Microfluidics platforms combined with spectroscopic techniques are capable of developing miniaturized devices that can detect and quantify pathogenic samples. The review focuses on the advancements in microfluidic devices integrated with spectroscopic methods for detecting bacterial microbes over the past five years. The review is based on several spectroscopic techniques, including fluorescence detection, surface-enhanced Raman scattering, and dynamic light scattering methods coupled with microfluidic platforms. The key detection principles of different approaches were discussed and summarized. Finally, the future possible directions and challenges in microfluidic-based spectroscopy for isolating and detecting pathogens using the latest innovations were also discussed.
Collapse
Affiliation(s)
| | - Xu He
- Engineering Research Center of Intelligent Theranostics Technology and Instruments, Ministry of Education, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing 211166, China
| | - Chao Wang
- Engineering Research Center of Intelligent Theranostics Technology and Instruments, Ministry of Education, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing 211166, China
| | - Yichuan Wang
- Engineering Research Center of Intelligent Theranostics Technology and Instruments, Ministry of Education, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing 211166, China
| | - Jingjing Wang
- Engineering Research Center of Intelligent Theranostics Technology and Instruments, Ministry of Education, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing 211166, China
| | - Mingyue Chen
- Engineering Research Center of Intelligent Theranostics Technology and Instruments, Ministry of Education, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing 211166, China
| | - Haiquan Kang
- Department of Laboratory Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China
| | | | - Xinye Ni
- The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou Second People's Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou 213161, China
| | | | - Xiuping Zhou
- Department of Laboratory Medicine, The Peoples Hospital of Rugao, Rugao Hospital Affiliated to Nantong University, Nantong 226500, China
| | - Bin Liu
- Author to whom correspondence should be addressed:
| |
Collapse
|
5
|
Chen Z, Liu Z, Liu J, Xiao X. Research progress in the detection of common foodborne hazardous substances based on functional nucleic acids biosensors. Biotechnol Bioeng 2023; 120:3501-3517. [PMID: 37723667 DOI: 10.1002/bit.28555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/31/2023] [Accepted: 09/01/2023] [Indexed: 09/20/2023]
Abstract
With the further improvement of food safety requirements, the development of fast, highly sensitive, and portable methods for the determination of foodborne hazardous substances has become a new trend in the food industry. In recent years, biosensors and platforms based on functional nucleic acids, along with a range of signal amplification devices and methods, have been established to enable rapid and sensitive determination of specific substances in samples, opening up a new avenue of analysis and detection. In this paper, functional nucleic acid types including aptamers, deoxyribozymes, and G-quadruplexes which are commonly used in the detection of food source pollutants are introduced. Signal amplification elements include quantum dots, noble metal nanoparticles, magnetic nanoparticles, DNA walkers, and DNA logic gates. Signal amplification technologies including nucleic acid isothermal amplification, hybridization chain reaction, catalytic hairpin assembly, biological barcodes, and microfluidic system are combined with functional nucleic acids sensors and applied to the detection of many foodborne hazardous substances, such as foodborne pathogens, mycotoxins, residual antibiotics, residual pesticides, industrial pollutants, heavy metals, and allergens. Finally, the potential opportunities and broad prospects of functional nucleic acids biosensors in the field of food analysis are discussed.
Collapse
Affiliation(s)
- Zijie Chen
- School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, the People's Republic of China
| | - Zhen Liu
- School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, the People's Republic of China
| | - Jingjing Liu
- School of Chemistry and Chemical Engineering, University of South China, Hengyang, Hunan, the People's Republic of China
| | - Xilin Xiao
- School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, the People's Republic of China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, Hunan, the People's Republic of China
| |
Collapse
|
6
|
Wei S, Dou Y, Song S, Li T. Functionalized-Graphene Field Effect Transistor-Based Biosensor for Ultrasensitive and Label-Free Detection of β-Galactosidase Produced by Escherichia coli. BIOSENSORS 2023; 13:925. [PMID: 37887118 PMCID: PMC10605438 DOI: 10.3390/bios13100925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/07/2023] [Accepted: 10/09/2023] [Indexed: 10/28/2023]
Abstract
The detection of β-galactosidase (β-gal) activity produced by Escherichia coli (E. coli) can quickly analyze the pollution degree of seawater bodies in bathing and fishing grounds to avoid large-scale outbreaks of water pollution. Here, a functionalized biosensor based on graphene-based field effect transistor (GFET) modified with heat-denatured casein was developed for the ultrasensitive and label-free detection of the β-gal produced by E. coli in real water samples. The heat-denatured casein coated on the graphene surface, as a probe linker and blocker, plays an important role in fabricating GEFT biosensor. The GFET biosensor response to the β-gal produced by E. coli has a wide concentration dynamic range spanning nine orders of magnitude, in a concentration range of 1 fg·mL-1-100 ng·mL-1, with a limit of detection (LOD) 0.187 fg·mL-1 (1.61 aM). In addition to its attomole sensitivity, the GFET biosensor selectively recognized the β-gal in the water sample and showed good selectivity. Importantly, the detection process of the β-gal produced by E. coli can be completed by a straightforward one-step specific immune recognition reaction. These results demonstrated the usefulness of the approach, meeting environmental monitoring requirements for future use.
Collapse
Affiliation(s)
- Shanhong Wei
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China; (S.W.); (Y.D.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanzhi Dou
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China; (S.W.); (Y.D.)
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Shiping Song
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- Institute of Materiobiology, College of Science, Shanghai University, Shanghai 200444, China
| | - Tie Li
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China; (S.W.); (Y.D.)
| |
Collapse
|
7
|
Guo Q, Huang J, Fang H, Li X, Su Y, Xiong Y, Leng Y, Huang X. Gold nanoparticle-decorated covalent organic frameworks as amplified light-scattering probes for highly sensitive immunodetection of Salmonella in milk. Analyst 2023; 148:4084-4090. [PMID: 37486303 DOI: 10.1039/d3an00946g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Traditional immunoassays exhibit insufficient screening sensitivity for foodborne pathogens due to their low colorimetric signal intensities. Herein, we propose an ultrasensitive dynamic light scattering (DLS) immunosensor for Salmonella based on a "cargo release-seed growth" strategy enabled by a probe, namely gold nanoparticle-decorated covalent organic frameworks (COF@AuNP). Large amounts of AuNPs in COF@AuNP can be released by acid treatment-induced decomposition of the imine-linked COF, and then they are enlarged via gold growth to generate a dramatically enhanced light-scattering signal, leading to a vast improvement in detection sensitivity. Based on an immunomagnetic microbead carrier, the proposed DLS immunosensor is capable of detecting trace Salmonella in milk in the range of 2.0 × 102-2.0 × 105 CFU mL-1, with a limit of detection of 60 CFU mL-1. The immunosensor also demonstrated excellent selectivity, good accuracy and precision, and high reliability for detecting Salmonella in milk.
Collapse
Affiliation(s)
- Qian Guo
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, P. R. China.
- School of Food Science and Technology, Nanchang University, Nanchang 330047, P.R. China
- Jiangxi Province Centre for Disease Control and Prevention, Nanchang, 330029, P. R. China
| | - Jun Huang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, P. R. China.
- School of Food Science and Technology, Nanchang University, Nanchang 330047, P.R. China
| | - Hao Fang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, P. R. China.
- School of Food Science and Technology, Nanchang University, Nanchang 330047, P.R. China
| | - Xiaoyang Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, P. R. China.
- School of Food Science and Technology, Nanchang University, Nanchang 330047, P.R. China
| | - Yu Su
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, P. R. China.
- School of Food Science and Technology, Nanchang University, Nanchang 330047, P.R. China
| | - Yonghua Xiong
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, P. R. China.
- School of Food Science and Technology, Nanchang University, Nanchang 330047, P.R. China
- Sino German Joint Research Institute, Nanchang University, Nanchang 330047, P. R. China
| | - Yuankui Leng
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, P. R. China.
- School of Food Science and Technology, Nanchang University, Nanchang 330047, P.R. China
| | - Xiaolin Huang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, P. R. China.
- School of Food Science and Technology, Nanchang University, Nanchang 330047, P.R. China
| |
Collapse
|
8
|
Wang X, Li W, Dai S, Dou M, Jiao S, Yang J, Li W, Su Y, Li Q, Li J. High-throughput, highly sensitive and rapid SERS detection of Escherichia coli O157:H7 using aptamer-modified Au@macroporous silica magnetic photonic microsphere array. Food Chem 2023; 424:136433. [PMID: 37244192 DOI: 10.1016/j.foodchem.2023.136433] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 05/16/2023] [Accepted: 05/18/2023] [Indexed: 05/29/2023]
Abstract
The aim of this research was to develop a simple, rapid, sensitive, high-throughput detection method for foodborne Escherichia coli (E. coli) O157:H7 based on the aptamer-modified gold nanoparticles@macroporous magnetic silica photonic microsphere (Au@MMSPM). Such Au@MMSPM array system for E. coli O157:H7 not only integrated sample pretreatment with rapid detection, but also showed highly enhanced effect to develop a highly sensitive SERS assay. The established SERS assay platform gave a wide linear detection range (10-106 CFU/mL) and low limit of detection (2.20 CFU/mL) for E. coli O157:H7. The whole analysis time including sample pretreatment and detection was 110 min. This SERS-based assay platform provided a new high-throughput, highly sensitive and fast detection technology for monitoring E. coli O157:H7 in real samples from the fields of food industry, medicine and environment.
Collapse
Affiliation(s)
- Xiu Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Wei Li
- Medical Imaging Center, the First Affiliated Hospital, Jinan University, Guangdong 510630, China
| | - Shijie Dai
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Menghua Dou
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Saisai Jiao
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Jing Yang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Weiwei Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Ya Su
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Qianjin Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China.
| | - Jianlin Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
9
|
Muthukumar D, Shtenberg G. SERS-based immunosensor for E. coli contaminants detection in milk using silver-coated nanoporous silicon substrates. Talanta 2023; 254:124132. [PMID: 36459872 DOI: 10.1016/j.talanta.2022.124132] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/20/2022] [Accepted: 11/22/2022] [Indexed: 11/24/2022]
Abstract
The dairy sector is frequently affected by contagious and environmental factors that spread between animals by numerous means and induce the inflammatory disease of bovine mastitis (BM). Herein, silver decorated porous silicon (Ag-pSi) SERS platform was designed for rapid and reliable Escherichia coli (predominant BM pathogen) detection in various milk origins. The inherent surface void and pore morphology were physically optimized to augment the SERS effect using 4-aminothiphenol (4ATP) while achieving an enhancement factor >4.6 × 107. An indirect immunoassay evaluated the residual unreacted antibodies using an optimized 4ATP/Ag-pSi SERS platform modified with secondary antibodies. Under optimized conditions, the porous substrate offered high sensitivity toward target bacteria detection of 3 CFU mL-1 and linear response of 101-105 CFU mL-1. Moreover, the selectivity and specificity of the designed sensing platform were cross-validated against other interfering bacteria without compromising its performance efficiencies. Finally, the applicability of the developed system for real-life conditions was elucidated in different milk samples (bovine, goat, sheep) with recovery values of 78-115% compared to the conventional culture technique. Considering the complex media analysis, the miniaturized SERS platform is highly reliable, rapid and accurate that could be applicable for routine on-site analysis of various emerging pathogens relevant to BM management.
Collapse
Affiliation(s)
- Divagar Muthukumar
- Institute of Agricultural Engineering, ARO, Volcani Institute, Rishon LeZion, Israel
| | - Giorgi Shtenberg
- Institute of Agricultural Engineering, ARO, Volcani Institute, Rishon LeZion, Israel.
| |
Collapse
|
10
|
Zhao F, Zou M, Wu H, Yao Y, Zhou M, Ma S, Xiao F, Abudushalamu G, Chen Y, Cai S, Yuan C, Fan X, Jiang X, Wu G. A simple and programmable dual-mode aptasensor for the ultrasensitive detection of multidrug-resistant bacteria. Biomater Sci 2023; 11:1754-1764. [PMID: 36648428 DOI: 10.1039/d2bm01771g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Accurately identifying multidrug-resistant (MDR) bacteria from clinical samples has long been a challenge. Herein, we report a simple and programmable dual-mode aptasensor called DAPT to reliably detect MDR bacteria. The DAPT method comprises two elements, namely the mode of dynamic light scattering (Mode-DLS) for ultrasensitive detection and the mode of fluorescence (Mode-Flu) for reliable quantification as a potent complement. Benefiting from the states of aptamer-modified gold nanoparticles (AptGNPs) sensitively changing from dispersion to aggregation, the proposed Mode-DLS achieved the rapid, specific, and ultrasensitive detection of methicillin-resistant Staphylococcus aureus (MRSA) at the limit of detection (LOD) of 4.63 CFU mL-1 in a proof-of-concept experiment. Simultaneously, the Mode-Flu ensured the accuracy of the detection, especially at a high concentration of bacteria. Moreover, the feasibility and universality of the DAPT platform was validated with four other superbugs by simply reprogramming the corresponding sequence. Overall, the proposed DAPT method based on a dual-mode aptasensor can provide a universal platform for the rapid and ultrasensitive detection of pathogenic bacteria due to its superior programmability.
Collapse
Affiliation(s)
- Fengfeng Zhao
- Center of Clinical Laboratory Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, People's Republic of China.
| | - Mingyuan Zou
- Center of Clinical Laboratory Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, People's Republic of China.
| | - Huina Wu
- Center of Clinical Laboratory Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, People's Republic of China.
| | - Yuming Yao
- Center of Clinical Laboratory Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, People's Republic of China.
| | - Meiling Zhou
- Center of Clinical Laboratory Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, People's Republic of China.
| | - Shuo Ma
- Center of Clinical Laboratory Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, People's Republic of China.
| | - Feng Xiao
- Center of Clinical Laboratory Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, People's Republic of China.
| | - GuliNazhaer Abudushalamu
- Center of Clinical Laboratory Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, People's Republic of China.
| | - Yaya Chen
- Center of Clinical Laboratory Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, People's Republic of China.
| | - Shijie Cai
- Center of Clinical Laboratory Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, People's Republic of China.
| | - Chenyan Yuan
- Center of Clinical Laboratory Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, People's Republic of China.
| | - Xiaobo Fan
- Diagnostics Department, Medical School of Southeast University, Nanjing 210009, People's Republic of China
| | - Xinglu Jiang
- Clinical Laboratory Medicine Department, College of Stomatology, Hospital of Stomatology, Guangxi Medical University, Nanning 530021, People's Republic of China.
| | - Guoqiu Wu
- Center of Clinical Laboratory Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, People's Republic of China. .,Diagnostics Department, Medical School of Southeast University, Nanjing 210009, People's Republic of China.,Jiangsu Provincial Key Laboratory of Critical Care Medicine, Southeast University, Nanjing 210009, People's Republic of China
| |
Collapse
|
11
|
Zhu K, Zou H, Chen J, Hu J, Xiong S, Fu J, Xiong Y, Huang X. Rapid and sensitive determination of lactoferrin in milk powder by boronate affinity amplified dynamic light scattering immunosensor. Food Chem 2022; 405:134983. [DOI: 10.1016/j.foodchem.2022.134983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 10/30/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022]
|
12
|
Zhan S, Fang H, Chen Q, Xiong S, Guo Y, Huang T, Li X, Leng Y, Huang X, Xiong Y. M13 bacteriophage as biometric component for orderly assembly of dynamic light scattering immunosensor. Biosens Bioelectron 2022; 217:114693. [PMID: 36108584 DOI: 10.1016/j.bios.2022.114693] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 08/22/2022] [Accepted: 09/02/2022] [Indexed: 11/17/2022]
Abstract
The ordered assembly of nanostructure is an effective strategy used to manipulate the hydrodynamic diameter (DH) of nanoparticles. Herein, a versatile dynamic light scattering (DLS) immunosensing platform is presented to sensitively detect small molecules and biomacromolecules by using the M13 phage as the building module to order the assembly of gold nanoflowers and gold-coated magnetic nanoparticles, respectively. After the directional assembly of M13 phage, the DH of the probes was significantly increased due to its larger filamentous structure, thus improving the detection sensitivity of the DLS immunosensor. The designed M13 assembled DLS immunosensor with competitive and sandwich formats showed high sensitivities for ochratoxin A and alpha-fetoprotein in real corn and undiluted serum samples, with the detection limits of 1.37 and 57 pg/mL, respectively. These values are approximately 15.8 and 164.9 times lower than those of traditional phage-based enzyme-linked immunosorbent assays. Collectively, this work provides a promising strategy to manipulate the DH of nanoparticles by highly evolved biomaterials such as engineered M13 phages and opens upon a new direction for developing DLS immunosensors to detect various targets by the fusion expression of special peptide or nanobody on the pIII or pVIII protein of M13 phage.
Collapse
Affiliation(s)
- Shengnan Zhan
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China; College of Food and Pharmaceutical Science, Ningbo University, Ningbo, Zhejiang, 315800, PR China; School of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China
| | - Hao Fang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China; School of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China
| | - Qi Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
| | - Sicheng Xiong
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA, 01003, United States
| | - Yuqian Guo
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China; School of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China
| | - Tao Huang
- College of Food and Pharmaceutical Science, Ningbo University, Ningbo, Zhejiang, 315800, PR China
| | - Xiangmin Li
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China; School of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China; Jiangxi-OAI Joint Research Institute, Nanchang University, Nanchang, 330047, PR China
| | - Yuankui Leng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China; School of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China; Jiangxi-OAI Joint Research Institute, Nanchang University, Nanchang, 330047, PR China
| | - Xiaolin Huang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China; School of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China; Jiangxi-OAI Joint Research Institute, Nanchang University, Nanchang, 330047, PR China.
| | - Yonghua Xiong
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China; School of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China; Jiangxi-OAI Joint Research Institute, Nanchang University, Nanchang, 330047, PR China.
| |
Collapse
|
13
|
Bai Z, Xu X, Wang C, Wang T, Sun C, Liu S, Li D. A Comprehensive Review of Detection Methods for Escherichia coli O157:H7. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
14
|
Zhu K, Chen J, Hu J, Xiong S, Zeng L, Huang X, Xiong Y. Low-sample-consumption and ultrasensitive detection of procalcitonin by boronate affinity recognition-enhanced dynamic light scattering biosensor. Biosens Bioelectron 2022; 200:113914. [PMID: 34973568 DOI: 10.1016/j.bios.2021.113914] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 11/16/2022]
Abstract
Accurate determination of procalcitonin (PCT) is highly crucial in bacterial infection diagnosis. Many biosensors previously developed suffer from large sample consumption or lengthy waiting time, which raise difficulties for more vulnerable patients, such as infants, old people, and other critically ill patients. To address this dilemma, we present an innovative boronate affinity recognition (BAR)-enhanced dynamic light scattering (DLS) biosensor to achieve ultrasensitive PCT detection. In this biosensing system, monoclonal antibody-modified magnetic nanoparticles (MNP@mAb) are designed as probes to capture PCT from serum samples and generate DLS signal transduction. Polyvalent phenylboronic acid-labeled bovine serum albumin (BSA@PBA) is used as scaffold to aggregate MNP@mAb and PCT (MNP@mAb-PCT) complex because of the specific interaction of cis-diol-containing PCT with boronic acid ligands on the surface of BSA@PBA. The BAR-enhanced DLS biosensor shows ultrahigh sensitivity to PCT determination due to high binding affinity, with the limit of detection of 0.03 pg/mL. The total detection time of PCT in whole blood or serum is less than 15 min with small sample consumption (about 1 μL) due to the rapid magnetic separation and aggregation of MNP@mAb-PCT triggered by BSA@PBA. In addition, the proposed DLS biosensor exhibits a high specificity for PCT quantitative detection. Therefore, this work provides a promising and versatile strategy for extending DLS biosensor to rapid and ultrasensitive detection of trace PCT for broader patients and more urgent cases.
Collapse
Affiliation(s)
- Kang Zhu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China; School of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China
| | - Jing Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China; School of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China
| | - Jiaqi Hu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China; School of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China
| | - Sicheng Xiong
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China; School of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China; Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, United States.
| | - Lifeng Zeng
- The People's Hospital in Jiangxi Province, Nanchang, Jiangxi, 330006, PR China
| | - Xiaolin Huang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China; School of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China.
| | - Yonghua Xiong
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China; School of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China
| |
Collapse
|
15
|
Meena J, Gupta A, Ahuja R, Singh M, Panda AK. Recent advances in nano-engineered approaches used for enzyme immobilization with enhanced activity. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116602] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
16
|
Yu F, Huang H, Shi J, Liang A, Jiang Z. A new gold nanoflower sol SERS method for trace iodine ion based on catalytic amplification. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 255:119738. [PMID: 33812234 DOI: 10.1016/j.saa.2021.119738] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/11/2021] [Accepted: 03/18/2021] [Indexed: 06/12/2023]
Abstract
As one of the essential trace elements in metabolism, iodine is crucial to maintain the normal physiological functions. Therefore, based on health and environmental protection, it is very important to realize sensitive detection of iodide ion. Herein, we developed a simple, rapid and sensitive method for the determination of iodide ion. Trypsin was used as an ideal template for the synthesis of gold nanoflower sol (AuNFs) with anisotropic surface structure and good stability. It exhibits highly active surface enhanced Raman scattering (SERS) effect and can be used as facile SERS sol substrate. The TMBox generated by the catalytic oxidation reaction of TMB-chloramine T-iodide ion is used as the SERS probe. The enhanced SERS signal intensity is linearly related to the iodide ion with high sensitivity. In addition, TMB has fluorescence effect, and the colored TMBox can produce RRS signal due to polymerization. Based on this, a quad-mode detection method of SERS, RRS, fluorescence and colorimetry for quantitative detection of trace iodide ions was established, and this method can be applied to the detection of iodide ions in natural water and drinking water.
Collapse
Affiliation(s)
- Faxin Yu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin 541004, China; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin 541004, China
| | - Hanbing Huang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin 541004, China; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin 541004, China
| | - Jinling Shi
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin 541004, China; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin 541004, China
| | - Aihui Liang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin 541004, China; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin 541004, China.
| | - Zhiliang Jiang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin 541004, China; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin 541004, China.
| |
Collapse
|
17
|
Li J, Wang J. Size-dependent optical extinction of MoS 2 nanosheets and their aptamer-induced dispersion behavior for the label-free detection of Escherichia coli O157:H7. Analyst 2021; 146:3121-3126. [PMID: 33999082 DOI: 10.1039/d1an00212k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
For aptamer-modified nanomaterial biosensors label-free detection methods are desirable due to them being simple and low in cost. Among these methods, nanomaterial aggregation for signal conversion is common, using materials such as gold nanoparticles. However, for MoS2 nanosheets (MoS2-NSs), signal conversion of its aggregation is difficult, resulting in the limited development of its label-free sensing applications. Herein, for the first time, the extinction spectrum has been employed to quickly transform the signal of MoS2-NS aggregation and reveal the size-dependent extinction response of MoS2-NS aggregation. Moreover, the size-dependent optical extinction behavior of MoS2-NSs, using aptamers to induce the dispersion of the MoS2-NSs and greatly improve their ability to identify targets, is studied. Importantly, this method has been employed to achieve the label-free detection of Escherichia coli O157:H7. The present investigation shows the promising use of MoS2-NSs for the development of label-free detection.
Collapse
Affiliation(s)
- Jiye Li
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China. and University of Chinese Academy of Science, Beijing, 100049, China
| | - Jie Wang
- College of Instrumentation and Electrical Engineering, Jilin University, Changchun, Jilin 130061, China
| |
Collapse
|
18
|
DNA-encoded bimetallic Au-Pt dumbbell nanozyme for high-performance detection and eradication of Escherichia coli O157:H7. Biosens Bioelectron 2021; 187:113327. [PMID: 33991962 DOI: 10.1016/j.bios.2021.113327] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/01/2021] [Accepted: 05/06/2021] [Indexed: 02/02/2023]
Abstract
Infectious Escherichia coli O157:H7 threatens the health of millions people each year. Thus, it is important to establish a simple and sensitive method for bacterial detection and eradication. Herein, a DNA-programming strategy is explored to synthesize anisotropic dumbbell-like Au-Pt nanoparticles with excellent catalytic and anti-bacterial activities, which were applied in the simultaneous detection and eradication of pathogenic bacteria. The DNA sequence-dependent growth of bimetallic nanoparticles is firstly studied and polyT20 has the tendency to form dumbbell-like Au-Pt bimetallic structures based on gold nanorods seeds. PolyA20 and polyC20 can also form similar structures but only at much lower DNA concentrations, which can be explained by their much higher affinity to the metal surfaces than T20. The as-prepared nanoparticles exhibit high nanozyme catalytic activity resulting from the synergistic effect of Au and Pt. Under light irradiation, the Au-Pt nanoparticles show high photothermal conversion efficiency and enhanced catalytic activity, which can be applied for the eradication and detection of E. coli O157:H7 with a robust efficacy (95%) in 5 min and provides excellent linear detection (10-107 CFU/mL), with a detection limit of 2 CFU/mL. This study offered new insights into DNA-directed synthesis of nanomaterials with excellent biosensing and antibiotic applications.
Collapse
|
19
|
Hua Z, Yu T, Liu D, Xianyu Y. Recent advances in gold nanoparticles-based biosensors for food safety detection. Biosens Bioelectron 2021; 179:113076. [PMID: 33601132 DOI: 10.1016/j.bios.2021.113076] [Citation(s) in RCA: 150] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 01/20/2021] [Accepted: 02/04/2021] [Indexed: 12/21/2022]
Abstract
Food safety issue remains a challenge worldwide. Common substances in food can pose a great threat to human health including but not limited to food borne-pathogens, heavy metals, mycotoxins, pesticides, herbicides, veterinary drugs, allergens and illegal additives. To develop rapid, low-cost, portable and on-site detection methods of those contaminants and allergens to ensure food safety, gold nanoparticles (AuNPs) of versatile shapes and morphologies such as nanorods, nanoclusters, nanoflowers, nanostars, nanocages, nanobipyramids and nanowires have been employed as probes because they possess extraordinary properties that can be used to design biosensors enabling detecting various contaminants and allergens. By means of surface modification, AuNPs can directly or indirectly sense specific targets based on different mechanisms, such as hydrogen bonds, nucleic acid hybridization, aptamer-target binding, antigen-antibody recognition, enzyme inhibition, and enzyme-mimicking activity. AuNPs can induce a distinct color change from red to blue when they transform from a monodispersed state to an aggregated state in liquid solution, which can be observed by naked eyes. If Raman molecules are functionalized on AuNPs, their aggregation will alter the interparticle distance and induce the surface-enhanced Raman scattering that can be employed for highly sensitive detection. Ultra-small AuNPs such as Au nanoclusters also feature in fluorescence that enable a fluorescent readout. The formats of AuNPs for food safety detection in real world range broadly including but not limited to films, fibers, liquid solutions, tapes, chips and lateral flow strips. In this review, recent applications of AuNPs-based biosensors for food safety detection will be discussed, mainly in the aspect of different contaminants and allergens encountered in food samples.
Collapse
Affiliation(s)
- Zheng Hua
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Ting Yu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Donghong Liu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, Zhejiang, China; Fuli Institute of Food Science, Zhejiang University, Hangzhou, 310058, Zhejiang, China; Ningbo Research Institute, Zhejiang University, Ningbo, 315100, Zhejiang, China
| | - Yunlei Xianyu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, Zhejiang, China; Fuli Institute of Food Science, Zhejiang University, Hangzhou, 310058, Zhejiang, China; Ningbo Research Institute, Zhejiang University, Ningbo, 315100, Zhejiang, China.
| |
Collapse
|
20
|
Zhan S, Hu J, Li Y, Huang X, Xiong Y. Direct competitive ELISA enhanced by dynamic light scattering for the ultrasensitive detection of aflatoxin B 1 in corn samples. Food Chem 2020; 342:128327. [PMID: 33069525 DOI: 10.1016/j.foodchem.2020.128327] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 08/08/2020] [Accepted: 10/05/2020] [Indexed: 12/25/2022]
Abstract
Compared with absorbance, scattering-based dynamic light scattering (DLS) signal has higher sensitivity because its light-scattering intensity is very sensitive to changes in size, thereby enhancing the sensitivity. Herein, we first developed a DLS-enhanced direct competitive enzyme-linked immunosorbent assay (DLS-dcELISA) for ultrasensitive detection of aflatoxin B1 (AFB1) in corn. By using hydroxyl radical-induced gold nanoparticle (AuNP) aggregation to amplify AuNP scattering signals, the developed DLS-dcELISA exhibited ultrahigh sensitivity for AFB1. The detection limit was 0.12 pg mL-1, which was 153- and 385-fold lower than those obtained using plasmonic and colorimetric dcELISA. In addition, the DLS-dcELISA exhibited excellent selectivity, high accuracy, and strong practicality. Overall, this work presented a simple and universal strategy for improving the sensitivity of traditional ELISA platform only by using the sensitive DLS signals. This technique can replace absorbance-based plasmonic or colored signals as immunoassay signal output for enhanced competitive detection of mycotoxins.
Collapse
Affiliation(s)
- Shengnan Zhan
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China; School of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
| | - Jiaqi Hu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China; School of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
| | - Yu Li
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China; School of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
| | - Xiaolin Huang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China; School of Food Science and Technology, Nanchang University, Nanchang 330047, PR China.
| | - Yonghua Xiong
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China; School of Food Science and Technology, Nanchang University, Nanchang 330047, PR China; Jiangxi-OAI Joint Research Institute, Nanchang University, Nanchang 330047, PR China.
| |
Collapse
|
21
|
Zhang R, Belwal T, Li L, Lin X, Xu Y, Luo Z. Nanomaterial‐based biosensors for sensing key foodborne pathogens: Advances from recent decades. Compr Rev Food Sci Food Saf 2020; 19:1465-1487. [DOI: 10.1111/1541-4337.12576] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 04/11/2020] [Accepted: 04/21/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Ruyuan Zhang
- College of Biosystems Engineering and Food Science, Key Laboratory of Agro‐Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agri‐Food Processing, National‐Local Joint Engineering Laboratory of Intelligent Food Technology and EquipmentZhejiang University Hangzhou People's Republic of China
| | - Tarun Belwal
- College of Biosystems Engineering and Food Science, Key Laboratory of Agro‐Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agri‐Food Processing, National‐Local Joint Engineering Laboratory of Intelligent Food Technology and EquipmentZhejiang University Hangzhou People's Republic of China
| | - Li Li
- College of Biosystems Engineering and Food Science, Key Laboratory of Agro‐Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agri‐Food Processing, National‐Local Joint Engineering Laboratory of Intelligent Food Technology and EquipmentZhejiang University Hangzhou People's Republic of China
| | - Xingyu Lin
- College of Biosystems Engineering and Food Science, Key Laboratory of Agro‐Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agri‐Food Processing, National‐Local Joint Engineering Laboratory of Intelligent Food Technology and EquipmentZhejiang University Hangzhou People's Republic of China
| | - Yanqun Xu
- College of Biosystems Engineering and Food Science, Key Laboratory of Agro‐Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agri‐Food Processing, National‐Local Joint Engineering Laboratory of Intelligent Food Technology and EquipmentZhejiang University Hangzhou People's Republic of China
- Ningbo Research Institute, Zhejiang University Ningbo People's Republic of China
| | - Zisheng Luo
- College of Biosystems Engineering and Food Science, Key Laboratory of Agro‐Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agri‐Food Processing, National‐Local Joint Engineering Laboratory of Intelligent Food Technology and EquipmentZhejiang University Hangzhou People's Republic of China
- Ningbo Research Institute, Zhejiang University Ningbo People's Republic of China
- Fuli Institute of Food Science Hangzhou People's Republic of China
| |
Collapse
|
22
|
Fu J, Zhou Y, Huang X, Zhang W, Wu Y, Fang H, Zhang C, Xiong Y. Dramatically Enhanced Immunochromatographic Assay Using Cascade Signal Amplification for Ultrasensitive Detection of Escherichia coli O157:H7 in Milk. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:1118-1125. [PMID: 31895982 DOI: 10.1021/acs.jafc.9b07076] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The conventional colloidal gold immunochromatographic assay (AuNP-ICA) cannot meet the requirements for the rapid and sensitive detection of Escherichia coli (E. coli) O157:H7 because of its poor sensitivity. Herein, a novel two-step cascade signal amplification strategy that integrates in situ gold growth and nanozyme-mediated catalytic deposition was proposed to enhance the detection sensitivity of conventional AuNP-ICA dramatically. The enhanced strip displayed ultrahigh sensitivity in E. coli O157:H7 detection and had a detection limit of 1.25 × 101 CFU/mL, which is approximately 400-fold lower than that of traditional AuNP-ICA (5 × 103 CFU/mL). The amplified strip had no background signal in the T-line zone in the absence of E. coli O157:H7 even after one round of cascade signal amplification. The enhanced strip demonstrated excellent selectivity against E. coli O157:H7 with a negligible cross-reaction to nine other common pathogens. Intra-assays and interassays showed that the improved strip has acceptable accuracy and precision for determining E. coli O157:H7. The average recoveries in a real milk sample ranged from 87.33 to 112.15%, and the coefficients of variation were less than 10%. The enhanced strip also showed great potential in detecting a single E. coli O157:H7 cell in a 75 μL solution.
Collapse
Affiliation(s)
- Jinmei Fu
- State Key Laboratory of Food Science and Technology , Nanchang University , Nanchang 330047 , P. R. China
- Jiangxi Key Laboratory for Microscale Interdisciplinary Study , Nanchang University , Nanchang 330047 , P. R. China
| | - Yaofeng Zhou
- State Key Laboratory of Food Science and Technology , Nanchang University , Nanchang 330047 , P. R. China
- Jiangxi Key Laboratory for Microscale Interdisciplinary Study , Nanchang University , Nanchang 330047 , P. R. China
| | - Xiaolin Huang
- State Key Laboratory of Food Science and Technology , Nanchang University , Nanchang 330047 , P. R. China
- Jiangxi Key Laboratory for Microscale Interdisciplinary Study , Nanchang University , Nanchang 330047 , P. R. China
| | - Wenjing Zhang
- State Key Laboratory of Food Science and Technology , Nanchang University , Nanchang 330047 , P. R. China
- Jiangxi Key Laboratory for Microscale Interdisciplinary Study , Nanchang University , Nanchang 330047 , P. R. China
| | - Yuhao Wu
- State Key Laboratory of Food Science and Technology , Nanchang University , Nanchang 330047 , P. R. China
- Jiangxi Key Laboratory for Microscale Interdisciplinary Study , Nanchang University , Nanchang 330047 , P. R. China
| | - Hao Fang
- State Key Laboratory of Food Science and Technology , Nanchang University , Nanchang 330047 , P. R. China
- Jiangxi Key Laboratory for Microscale Interdisciplinary Study , Nanchang University , Nanchang 330047 , P. R. China
| | - Cunzheng Zhang
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Food Safety and Nutrition , Jiangsu Academy of Agricultural Sciences , Nanjing 210014 , China
| | - Yonghua Xiong
- State Key Laboratory of Food Science and Technology , Nanchang University , Nanchang 330047 , P. R. China
- Jiangxi Key Laboratory for Microscale Interdisciplinary Study , Nanchang University , Nanchang 330047 , P. R. China
- Jiangxi-OAI Joint Research Institute , Nanchang University , Nanchang 330047 , P. R. China
| |
Collapse
|