1
|
Zhang S, Wang F, Yu Y, Jia Y, Sun B, Wang F. Procyanidin B2-3'- O-Gallate Derived from Grape Seed Polymeric Procyanidins via the Galloyl-Attached Nucleophilic Degradation as a Potential Hepatoprotective Agent. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:18918-18929. [PMID: 39140375 DOI: 10.1021/acs.jafc.4c01704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
An effective method was developed for preparing galloylated procyanidins (GPCs) using galloyl-attached nucleophilic degradation. Under degradation conditions optimized through Box-Behnken design and single-factor experiments, two dimeric and three tetrameric GPCs were produced, with the yield of procyanidin B2-3'-O-gallate (B2-3'-G) reaching up to 232 mg/g (PPCs). The structure of B2-3'-G was identified by UV, FTIR, NMR, CD, MS, and phloroglucinolysis. Furthermore, the protective effect of B2-3'-G against alcohol-induced liver injury (ALI) was investigated. Compared with the parent compounds, B2-3'-G exhibited a stronger capacity for inhibiting ALI, attributed to its polymerization degree and galloyl group. Subsequent experiments revealed that the pretreatment of BRL-3A cells with B2-3'-G prior to ethanol improved ALI through activation of the Nrf2-HO-1/NQO1 pathway and initiation of enzymatic antioxidant systems. These findings suggest that GPC B2-3'-G is a potential hepatoprotective agent, which provides a new perspective for functional development of GPCs.
Collapse
Affiliation(s)
- Shuting Zhang
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Fei Wang
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, China
- Food Processing Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
| | - Yanxia Yu
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yuxing Jia
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Baoshan Sun
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, China
- Pólo Dois Portos, Instituto National de Investigação Agrária e Veterinária, I.P., Quinta da Almoinha, Dois Portos 2565-191, Portugal
| | - Fang Wang
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
2
|
Berrios-Henríquez B, Venegas-Toloza M, Reyes-Fuentes M, Zúñiga-Arbalti F, Bustamante L, García-Cancino A, Alarcón-Enos J, Pastene-Navarrete E. Synthesis and Isolation of Phenol- and Thiol-Derived Epicatechin Adducts Prepared from Avocado Peel Procyanidins Using Centrifugal Partition Chromatography and the Evaluation of Their Antimicrobial and Antioxidant Activity. Molecules 2024; 29:2872. [PMID: 38930937 PMCID: PMC11206461 DOI: 10.3390/molecules29122872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/17/2024] [Accepted: 02/23/2024] [Indexed: 06/28/2024] Open
Abstract
Polyphenols from agro-food waste represent a valuable source of bioactive molecules that can be recovered to be used for their functional properties. Another option is to use them as starting material to generate molecules with new and better properties through semi-synthesis. A proanthocyanidin-rich (PACs) extract from avocado peels was used to prepare several semi-synthetic derivatives of epicatechin by acid cleavage in the presence of phenol and thiol nucleophiles. The adducts formed by this reaction were successfully purified using one-step centrifugal partition chromatography (CPC) and identified by chromatographic and spectroscopic methods. The nine derivatives showed a concentration-dependent free radical scavenging activity in the DPPH assay. All compounds were also tested against a panel of pathogenic bacterial strains formed by Listeria monocytogenes (ATCC 7644 and 19115), Staphylococcus aureus (ATCC 9144), Escherichia coli (ATCC 11775 and 25922), and Salmonella enterica (ATCC 13076). In addition, adducts were tested against two no-pathogenic strains, Limosilactobacillus fermentum UCO-979C and Lacticaseibacillus rhamnosus UCO-25A. Overall, thiol-derived adducts displayed antimicrobial properties and, in some specific cases, inhibited biofilm formation, particularly in Listeria monocytogenes (ATCC 7644). Interestingly, phenolic adducts were inactive against all the strains and could not inhibit its biofilm formation. Moreover, depending on the structure, in specific cases, biofilm formation was strongly promoted. These findings contribute to demonstrating that CPC is a powerful tool to isolate new semi-synthetic molecules using avocado peels as starting material for PACc extraction. These compounds represent new lead molecules with antioxidant and antimicrobial activity.
Collapse
Affiliation(s)
- Barbara Berrios-Henríquez
- Department of Microbiology, Faculty of Biological Sciences, Universidad de Concepción, Víctor Lamas 1290, Concepción 4030000, Chile; (B.B.-H.); (M.V.-T.); (A.G.-C.)
| | - Matías Venegas-Toloza
- Department of Microbiology, Faculty of Biological Sciences, Universidad de Concepción, Víctor Lamas 1290, Concepción 4030000, Chile; (B.B.-H.); (M.V.-T.); (A.G.-C.)
- Department of Basic Sciences, Faculty of Sciences, Universidad del Bío-Bío, Avenida Andrés Bello 720, Chillán 3800708, Chile;
| | - María Reyes-Fuentes
- Department of Biochemistry and Molecular Biology, Faculty of Chemical and Pharmaceutical Sciences, Universidad de Chile, Dr. Carlos Lorca Tobar 964, Independencia, Santiago 8380494, Chile;
| | - Felipe Zúñiga-Arbalti
- Department of Clinical Biochemistry and Immunology, Faculty of Pharmacy, Universidad de Concepción, Víctor Lamas 1290, Concepción 4030000, Chile;
| | - Luis Bustamante
- Department of Instrumental Analysis, Faculty of Pharmacy, Universidad de Concepción, Víctor Lamas 1290, Concepción 4030000, Chile;
| | - Apolinaria García-Cancino
- Department of Microbiology, Faculty of Biological Sciences, Universidad de Concepción, Víctor Lamas 1290, Concepción 4030000, Chile; (B.B.-H.); (M.V.-T.); (A.G.-C.)
| | - Julio Alarcón-Enos
- Department of Basic Sciences, Faculty of Sciences, Universidad del Bío-Bío, Avenida Andrés Bello 720, Chillán 3800708, Chile;
| | - Edgar Pastene-Navarrete
- Department of Basic Sciences, Faculty of Sciences, Universidad del Bío-Bío, Avenida Andrés Bello 720, Chillán 3800708, Chile;
| |
Collapse
|
3
|
Yu Y, Zuo C, Li M, Tang Y, Li L, Wang F, Zhang S, Sun B. Novel l-Cysteine Incomplete Degradation Method for Preparation of Procyanidin B2-3'- O-Gallate and Exploration of its in Vitro Anti-inflammatory Activity and in Vivo Tissue Distribution. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:4023-4034. [PMID: 38357881 DOI: 10.1021/acs.jafc.3c05616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
In this study, an effective method for preparation of bioactive galloylated procyanidin B2-3'-O-gallate (B2-3'-G) was first developed by incomplete depolymerization of grape seed polymeric procyanidins (PPCs) using l-cysteine (Cys) in the presence of citric acid. The structure-activity relationship of B2-3'-G was further evaluated in vitro through establishing lipopolysaccharide (LPS)-induced inflammation in RAW264.7 cells. The results suggested that the better protective effects of B2-3'-G against inflammation were attributed to its polymerization degree and the introduction of the galloyl group, compared to its four corresponding structural units. In vivo experiments demonstrated that the B2-3'-G prototype was distributed in plasma, small intestine, liver, lung, and brain. Remarkably, B2-3'-G was able to penetrate the blood-brain barrier and appeared to play an important role in improving brain health. Furthermore, a total of 18 metabolites were identified in tissues. Potential metabolic pathways, including reduction, methylation, hydration, desaturation, glucuronide conjugation, and sulfation, were suggested.
Collapse
Affiliation(s)
- Yanxia Yu
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Chunying Zuo
- National Engineering Research Center of Pharmaceutics of Traditional Chinese Medicine, Benxi 117004, China
- Shenzhen Chinese Medicine Manufacturing Innovation Center Co., Shenzhen 518109, China
| | - Mingrui Li
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yuanyuan Tang
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Lingxi Li
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Fang Wang
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Shuting Zhang
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Baoshan Sun
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, China
- Pólo Dois Portos, Instituto National de Investigação Agrária e Veterinária, I.P., Quinta da Almoinha, 2565-191 Dois Portos, Portugal
| |
Collapse
|
4
|
Li Z, Liu J, You J, Li X, Liang Z, Du J. Proanthocyanidin Structure-Activity Relationship Analysis by Path Analysis Model. Int J Mol Sci 2023; 24:ijms24076379. [PMID: 37047349 PMCID: PMC10094556 DOI: 10.3390/ijms24076379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/19/2023] [Accepted: 03/23/2023] [Indexed: 03/31/2023] Open
Abstract
To fully explore the influence mechanism of interactions between different monomer units of proanthocyanidins (PAs) on biological activity, a path analysis model of the PA structure-activity relationship was proposed. This model subdivides the total correlation between each monomer unit and activity into direct and indirect effects by taking into account not only each monomer unit but also the correlation with its related monomer units. In addition, this method can determine the action mode of each monomer unit affecting the activity by comparing the direct and total indirect effects. Finally, the advantage of this model is demonstrated through an influence mechanism analysis of Rhodiola crenulata PA monomer units on antioxidant and anti-diabetes activities.
Collapse
|
5
|
Huang M, Li M, Zhang Y, Gong H, Zhou Y, Zhu D, Li L, Ma N, Cui Y. Novel flavan-3-ol-dithiothreitol conjugates derived from the degradation of grape seed proanthocyanidins and their neuroprotective potential. Food Chem 2022; 405:134825. [DOI: 10.1016/j.foodchem.2022.134825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 10/22/2022] [Accepted: 10/30/2022] [Indexed: 11/06/2022]
|
6
|
Yu Y, Chen P, Li X, Shen S, Li K. Persimmon Proanthocyanidins with Different Degrees of Polymerization Possess Distinct Activities in Models of High Fat Diet Induced Obesity. Nutrients 2022; 14:nu14183718. [PMID: 36145094 PMCID: PMC9505881 DOI: 10.3390/nu14183718] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/30/2022] [Accepted: 09/02/2022] [Indexed: 11/20/2022] Open
Abstract
Proanthocyanidins is a kind of polyphenol that had been found with strong prevention ability on high fat diet induced obesity. However, whether proanthocyanidins with different polymerization degree showed different anti-obesity ability is unclear. Therefore, in this study, the effects of persimmon proanthocyanidins (P-PCs) and persimmon oligo-proanthocyanidins (P-OPCs) on high-fat diet induced obesity were systematically investigated. The findings indicated that both of P-PCs and P-OPCs significantly reduced the body weight, and P-PCs showed stronger anti-obesity ability compared with P-OPCs, P-OPCs seemed with stronger ability on improvement of insulin resistance. Furthermore, gut microbiota results indicated that the composition of the gut microbiota was changed after P-PCs and P-OPCs intervention in C57BL/6J mice. In addition, P-PCs exhibited strong inhibitory on the digestion of starch and fat. Above all, this study indicated that P-PCs showed stronger anti-obesity ability compared with P-OPCs.
Collapse
Affiliation(s)
- Ying Yu
- College of Food Science and Technology, Key Laboratory of Environment Correlative Food Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Ping Chen
- College of Food Science and Technology, Key Laboratory of Environment Correlative Food Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaofang Li
- College of Food Science and Technology, Key Laboratory of Environment Correlative Food Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Shanshan Shen
- Wuhan Children’s Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430016, China
- Correspondence: author: (S.S.); (K.L.)
| | - Kaikai Li
- College of Food Science and Technology, Key Laboratory of Environment Correlative Food Science, Huazhong Agricultural University, Wuhan 430070, China
- Correspondence: author: (S.S.); (K.L.)
| |
Collapse
|
7
|
Preparative high‐performance liquid chromatography: Isolation of natural chemical compounds for identification and characterization. SEPARATION SCIENCE PLUS 2022. [DOI: 10.1002/sscp.202200040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
8
|
Li L, Zhao J, Yang T, Sun B. High-speed countercurrent chromatography as an efficient technique for large separation of plant polyphenols: a review. Food Res Int 2022; 153:110956. [DOI: 10.1016/j.foodres.2022.110956] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 01/13/2022] [Accepted: 01/21/2022] [Indexed: 12/19/2022]
|
9
|
Liu X, Le Bourvellec C, Guyot S, Renard CMGC. Reactivity of flavanols: Their fate in physical food processing and recent advances in their analysis by depolymerization. Compr Rev Food Sci Food Saf 2021; 20:4841-4880. [PMID: 34288366 DOI: 10.1111/1541-4337.12797] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/22/2021] [Accepted: 06/10/2021] [Indexed: 12/15/2022]
Abstract
Flavanols, a subgroup of polyphenols, are secondary metabolites with antioxidant properties naturally produced in various plants (e.g., green tea, cocoa, grapes, and apples); they are a major polyphenol class in human foods and beverages, and have recognized effect on maintaining human health. Therefore, it is necessary to evaluate their changes (i.e., oxidation, polymerization, degradation, and epimerization) during various physical processing (i.e., heating, drying, mechanical shearing, high-pressure, ultrasound, and radiation) to improve the nutritional value of food products. However, the roles of flavanols, in particular for their polymerized forms, are often underestimated, for a large part because of analytical challenges: they are difficult to extract quantitatively, and their quantification demands chemical reactions. This review examines the existing data on the effects of different physical processing techniques on the content of flavanols and highlights the changes in epimerization and degree of polymerization, as well as some of the latest acidolysis methods for proanthocyanidin characterization and quantification. More and more evidence show that physical processing can affect content but also modify the structure of flavanols by promoting a series of internal reactions. The most important reactivity of flavanols in processing includes oxidative coupling and rearrangements, chain cleavage, structural rearrangements (e.g., polymerization, degradation, and epimerization), and addition to other macromolecules, that is, proteins and polysaccharides. Some acidolysis methods for the analysis of polymeric proanthocyanidins have been updated, which has contributed to complete analysis of proanthocyanidin structures in particular regarding their proportion of A-type proanthocyanidins and their degree of polymerization in various plants. However, future research is also needed to better extract and characterize high-polymer proanthocyanidins, whether in their native or modified forms.
Collapse
Affiliation(s)
- Xuwei Liu
- INRAE, Avignon University, UMR408 SQPOV, Avignon, France
| | | | - Sylvain Guyot
- INRAE, UR1268 BIA, Team Polyphenol, Reactivity & Processing (PRP), Le Rheu, France
| | - Catherine M G C Renard
- INRAE, Avignon University, UMR408 SQPOV, Avignon, France.,INRAE, TRANSFORM, Nantes, France
| |
Collapse
|
10
|
Liu C, Xi X, Liu Y, Lu Y, Che F, Gu Y, Yu Y, Li H, Liu J, Wei Y. Isolation of Four Major Compounds of γ-Oryzanol from Rice Bran Oil by Ionic Liquids Modified High-Speed Countercurrent Chromatography and Antimicrobial Activity and Neuroprotective Effect of Cycloartenyl Ferulate In Vitro. Chromatographia 2021. [DOI: 10.1007/s10337-021-04044-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
11
|
Zhang Y, Gong S, Wang X, Muhammad M, Li Y, Meng S, Li Q, Liu D, Zhang H. Insights into the Inhibition of Aeromonas hydrophila d-Alanine-d-Alanine Ligase by Integration of Kinetics and Structural Analysis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:7509-7519. [PMID: 32609505 DOI: 10.1021/acs.jafc.0c00682] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Aeromonas hydrophila, a pathogenic bacterium, is harmful to humans, domestic animals, and fishes and, moreover, of public health concern due to the emergence of multiple drug-resistant strains. The cell wall has been discovered as a novel and efficient drug target against bacteria, and d-alanine-d-alanine ligase (Ddl) is considered as an essential enzyme in bacterial cell wall biosynthesis. Herein, we studied the A. hydrophila HBNUAh01 Ddl (AhDdl) enzyme activity and kinetics and determined the crystal structure of AhDdl/d-Ala complex at 2.7 Å resolution. An enzymatic assay showed that AhDdl exhibited higher affinity to ATP (Km: 54.1 ± 9.1 μM) compared to d-alanine (Km: 1.01 ± 0.19 mM). The kinetic studies indicated a competitive inhibition of AhDdl by d-cycloserine (DCS), with an inhibition constant (Ki) of 120 μM and the 50% inhibitory concentrations (IC50) value of 0.5 mM. Meanwhile, structural analysis indicated that the AhDdl/d-Ala complex structure adopted a semi-closed conformation form, and the active site was extremely conserved. Noteworthy is that the substrate d-Ala occupied the second d-Ala position, not the first d-Ala position. These results provided more insights for understanding the details of the catalytic mechanism and resources for the development of novel drugs against the diseases caused by A. hydrophila.
Collapse
Affiliation(s)
- Yingli Zhang
- College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, P. R. China
| | - Siyu Gong
- College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, P. R. China
| | - Xuan Wang
- College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, P. R. China
| | - Murtala Muhammad
- Department of Biochemistry, Kano University of Science and Technology, Wudil 713281, Nigeria
| | - Yangyang Li
- College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, P. R. China
| | - Shuaishuai Meng
- Engineering Research Center of Industrial Microbiology, Ministry of Education; Collaborative Innovation Center of Haixi Green Bio-Manufacturing Technology, Ministry of Education; College of Life Sciences, Fujian Normal University, Fuzhou 350117, P. R. China
| | - Qin Li
- Engineering Research Center of Industrial Microbiology, Ministry of Education; Collaborative Innovation Center of Haixi Green Bio-Manufacturing Technology, Ministry of Education; College of Life Sciences, Fujian Normal University, Fuzhou 350117, P. R. China
| | - Dong Liu
- College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, P. R. China
| | - Huaidong Zhang
- Engineering Research Center of Industrial Microbiology, Ministry of Education; Collaborative Innovation Center of Haixi Green Bio-Manufacturing Technology, Ministry of Education; College of Life Sciences, Fujian Normal University, Fuzhou 350117, P. R. China
| |
Collapse
|