1
|
Ray R, Ghosh S, Maity A, Jana NR. Arginine Surface Density of Nanoparticles Controls Nonendocytic Cell Uptake and Autophagy Induction. ACS APPLIED MATERIALS & INTERFACES 2024; 16:5451-5461. [PMID: 38265005 DOI: 10.1021/acsami.3c14472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
Nonendocytic cell uptake of nanomaterials is challenging, which requires specific surface chemistry and smaller particle size. Earlier works have shown that an arginine-terminated nanoparticle of <10-20 nm size shows nonendocytic uptake via direct membrane penetration. However, the roles of surface arginine density and the arginine-arginine distance at the nanoparticle surface in controlling such nonendocytic uptake mechanism is not yet explored. Here we show that a higher arginine density at the nanoparticle surface with an arginine-arginine distance of <3 nm is the most critical aspect for such nonendocytic uptake. We have used quantum dot (QD)-based nanoparticles as a model for fluorescent tracking inside cells and for quantitative estimation of cellular uptake. We found that arginine-terminated nanoparticles of 10 nm size can opt for the energy-dependent endocytosis pathway if the arginine-arginine distance is >3 nm. In contrast, nanoparticles with <3 nm arginine-arginine distance rapidly enter into the cell via the nonendocytic approach, are freely available in the cytosol in large amounts to capture the cellular adenosine triphosphate (ATP), generate oxidative stress, and induce ATP-deficient cellular autophagy. This work shows that arginine-arginine distance at the nanoparticle surface is another fundamental parameter, along with the particle size, for the nonendocytic cell uptake of foreign materials and to control intracellular activity. This approach may be utilized in designing nanoprobes and nanocarriers with more efficient biomedical performances.
Collapse
Affiliation(s)
- Reeddhi Ray
- School of Materials Science, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Santu Ghosh
- School of Materials Science, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Anupam Maity
- School of Materials Science, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Nikhil R Jana
- School of Materials Science, Indian Association for the Cultivation of Science, Kolkata 700032, India
| |
Collapse
|
2
|
Han S, Wu X, Zhu L, Lu H, Ling X, Luo Y, Hu Z, Zhou Y, Tang Y, Luo F. Whole grain germinated brown rice intake modulates the gut microbiota and alleviates hypertriglyceridemia and hypercholesterolemia in high fat diet-fed mice. Food Funct 2024; 15:265-283. [PMID: 38059679 DOI: 10.1039/d3fo03288d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
Hyperlipidemia is a common clinical disorder of lipid metabolism in modern society and is considered to be one of the major risk factors leading to cardiovascular-related diseases. Germinated brown rice (GBR) is a typical whole grain food. The lipid-lowering effect of GBR has received increasing attention, but its mechanism of action is not fully understood. The gut microbiota has been proposed as a novel target for the treatment of hyperlipidemia. The aim of this study was to investigate the effects of GBR on the gut microbiota and lipid metabolism in high-fat diet (HFD)-fed C57BL/6J mice. The effect of GBR on hyperlipidemia was evaluated by measuring blood lipid levels and by pathological examination. The gut microbiota was detected by 16S rRNA sequencing, and the protein and mRNA expression levels involved in cholesterol metabolism were detected by western blotting and RT-qPCR to find potential correlations. The results showed that GBR supplementation could effectively reduce the levels of TC, TG, LDL-C and HDL-C in the serum and alleviate the excessive accumulation of fat droplets caused by HFD. Moreover, GBR intervention improved HFD-fed gut microbiota disorder via increasing the diversity of the gut microbiota, reducing the Firmicutes/Bacteroidetes ratio, and improving gut barrier damage. In addition, GBR could inhibit endogenous cholesterol synthesis and promote cholesterol transport and excretion. These findings suggest that GBR may be a competitive candidate for the development of functional foods to prevent abnormal lipid metabolism.
Collapse
Affiliation(s)
- Shuai Han
- Laboratory of Molecular Nutrition, College of Food Science and Engineering, Central South University of Forestry and Technology, 498 Southern Shaoshan Road, Changsha, Hunan 410004, P. R. China.
| | - Xiuxiu Wu
- Laboratory of Molecular Nutrition, College of Food Science and Engineering, Central South University of Forestry and Technology, 498 Southern Shaoshan Road, Changsha, Hunan 410004, P. R. China.
| | - Lingfeng Zhu
- Laboratory of Molecular Nutrition, College of Food Science and Engineering, Central South University of Forestry and Technology, 498 Southern Shaoshan Road, Changsha, Hunan 410004, P. R. China.
| | - Han Lu
- Laboratory of Molecular Nutrition, College of Food Science and Engineering, Central South University of Forestry and Technology, 498 Southern Shaoshan Road, Changsha, Hunan 410004, P. R. China.
| | - Xuke Ling
- Laboratory of Molecular Nutrition, College of Food Science and Engineering, Central South University of Forestry and Technology, 498 Southern Shaoshan Road, Changsha, Hunan 410004, P. R. China.
| | - Yi Luo
- Department of Clinic Medicine, Xiangya School of Medicine, Central South University, Changsha, Hunan, 410008, China
| | - Zuomin Hu
- Laboratory of Molecular Nutrition, College of Food Science and Engineering, Central South University of Forestry and Technology, 498 Southern Shaoshan Road, Changsha, Hunan 410004, P. R. China.
| | - Yaping Zhou
- Laboratory of Molecular Nutrition, College of Food Science and Engineering, Central South University of Forestry and Technology, 498 Southern Shaoshan Road, Changsha, Hunan 410004, P. R. China.
| | - Yiping Tang
- National Engineering Research Center of Rice and Byproduct Deep Processing, 498 South Shaoshan Road, Changsha, Hunan 410004, P. R. China
| | - Feijun Luo
- Laboratory of Molecular Nutrition, College of Food Science and Engineering, Central South University of Forestry and Technology, 498 Southern Shaoshan Road, Changsha, Hunan 410004, P. R. China.
- National Engineering Research Center of Rice and Byproduct Deep Processing, 498 South Shaoshan Road, Changsha, Hunan 410004, P. R. China
| |
Collapse
|
3
|
Beaulieu JC, Boue SM, Goufo P. Health-promoting germinated rice and value-added foods: a comprehensive and systematic review of germination effects on brown rice. Crit Rev Food Sci Nutr 2023; 63:11570-11603. [PMID: 35816149 DOI: 10.1080/10408398.2022.2094887] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Over the last 30 years, thousands of articles have appeared examining the effects of soaking and germinating brown rice (BR). Variable germination conditions and methods have been employed to measure different health-beneficial parameters in a diverse germplasm of BR. Research results may therefore appear inconsistent with occasional anomalies, and it may be difficult to reach consensus concerning expected trends. Herein, we amassed a comprehensive review on germinated brown rice (GBR), attempting to codify 133 peer-reviewed articles regarding the effects on 164 chemical parameters related to health and nutrition in BR and in value-added food products. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA-2020) approach was used to direct the flow of the literature search. A pair-wise comparison t-test was performed to deliver an overall approach indicating when a given compound has been found to significantly increase or decrease through germination, which was grouped into GABA and polyamines, γ-Oryzanol and phytosterols, phenolic compounds, vitamins, proteins and amino acids, starchy carbohydrates, free sugars, lipids, minerals and phytic acid. This resource will stimulate interest in germinating rice and optimistically help increase both production and consumption of highly nutritious, health-beneficial rice with pigmented bran.
Collapse
Affiliation(s)
- John C Beaulieu
- Food Processing & Sensory Quality Research Unit, United States Department of Agriculture, Agricultural Research Service, Southern Regional Research Center, New Orleans, Louisiana, USA
| | - Stephen M Boue
- Food Processing & Sensory Quality Research Unit, United States Department of Agriculture, Agricultural Research Service, Southern Regional Research Center, New Orleans, Louisiana, USA
| | - Piebiep Goufo
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| |
Collapse
|
4
|
Germinated brown rice protects against glutamate toxicity in HT22 hippocampal neurons through the jnk-mediated apoptotic pathway via the GABA A receptor. IBRO Neurosci Rep 2022; 14:38-49. [PMID: 36590249 PMCID: PMC9800259 DOI: 10.1016/j.ibneur.2022.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
The anti-apoptosis effect of germinated brown rice (GBR) focusing on differentiated HT22 cells results in improved nutritional values after the germination process of GBR which contains total phenolic compounds and γ-aminobutyric acid (GABA). Cell death induced by 5 mM glutamate was investigated for 24 h to determine whether GBR mediates cell death through GABA receptors by using antagonists. The results showed that GBR (100 µg/ml) suppressed glutamate-induced cytotoxicity and caused arrest at the G1/S phase of the cell cycle in differentiated HT22 cells. Furthermore, GBR significantly decreased the expression level of c-Jun, while its active form, p-c-Jun, is the downstream product of the JNK-mediated apoptotic pathway and causes subsequent cell death. In addition, bicuculline (12.5 nM), a GABAA antagonist, could eliminate GBR effects, but phaclofen (1 mM), a GABAB antagonist, could not. Surprisingly, GBR exhibited a better neuroprotective effect than a pure commercial GABA compound (0.115 µM). These results indicated that GBR possessed high anti-apoptotic activity and inhibited cell death in differentiated HT22 cells by perturbing re-entry of the cell cycle and apoptosis via the GABAA receptor. Hence, GBR could be further used as a valuable nutritional compound to prevent apoptosis-induced neurodegenerative diseases.
Collapse
Key Words
- AMPA, α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid
- Apoptosis
- Bic, bicuculline
- Cell cycle
- Differentiated HT22 cells
- GABA, gamma-aminobutyric acid
- GABAA receptor
- GABRG2, GABAA receptor (γ2 subunit)
- GBR
- GBR, germinated brown rice
- Glu, glutamate
- HT22, mouse hippocampal neuronal cell line
- JNKs
- JNKs, c-Jun N-terminal kinases
- MAPKs, mitogen-activated protein kinase
- NMDA, N-methyl-D-aspartate receptors
- Pha, phaclofen
- ROS, reactive oxygen species
Collapse
|
5
|
New perspectives on physiological, biochemical and bioactive components during germination of edible seeds: A review. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.02.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
6
|
Oliveira MEAS, Coimbra PPS, Galdeano MC, Carvalho CWP, Takeiti CY. How does germinated rice impact starch structure, products and nutrional evidences? – A review. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.02.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
7
|
Tian D, Guo Y, Zhang D, Gao Q, Liu G, Lin J, Chang Z, Wang Y, Su R, Han Z. Shenzhi Jiannao formula ameliorates vascular dementia in vivo and in vitro by inhibition glutamate neurotoxicity via promoting clathrin-mediated endocytosis. Chin Med 2021; 16:65. [PMID: 34321050 PMCID: PMC8317332 DOI: 10.1186/s13020-021-00477-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 07/21/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Synaptic damage and glutamate excitotoxicity have been implicated in the pathogenesis of vascular dementia (VD). Clathrin, RAB5B and N-methyl-D-aspartic acid receptor 1 (NMDAR1) proteins play a vital role in endocytosis of synaptic vesicles in neurons and glutamate over accumulation. Previous researches have been confirmed that Shenzhi Jiannao (SZJN) formula has an anti-apoptotic and neuroprotective effect in VD, but the underlying mechanisms are still unclear. In this study, we aimed to explore the effect of SZJN formula on cognitive impairment and glutamate excitotoxicity via clathrin-mediated endocytosis (CME) in vivo and in vitro. METHODS SZJN formula consists of Panax ginseng C.A.Mey., Anemarrhena asphodeloides Bunge, and Paeonia anomala subsp. veitchii (Lynch) D.Y.Hong & K.Y.Pan. All herbs were prepared into granules. Both common carotid arteries were permanent occluded (2-vessel occlusion, 2VO) in male Sprague Dawley (SD) rats to model VD. One day after operation, the rats began daily treatment with SZJN formula for 2 weeks. The neuroprotective effects of SZJN formula was subsequently assessed by the novel object recognition test, Morris water maze, hematoxylin-eosin (HE) staining and Nissl staining. Glutamate cytotoxicity was assessed by detecting cell viability and cell death of PC12 cells. Immunohistochemistry, immunofluorescence, Western blot, and quantitative real-time PCR were used to detect the expression levels of clathrin, RAB5B, and NMDAR1. RESULTS Administration of SZJN formula effectively improved short-term memory and spatial memory. SZJN formula treatment significantly reduced hippocampal neuronal loss, and recovered the arrangement and morphology of neurons and Nissl bodies. Moreover, SZJN formula promoted the proliferation of PC12 cells and inhibited glutamate-induced cell death. The down-regulation of clathrin and RAB5B, as well as the upregulation of NMDAR1 in the brain induced by 2VO or glutamate was also notably reversed by SZJN formula at both the protein and mRNA levels, which may contribute to SZJN formula induced improved neurological function. CONCLUSIONS Taken together, our findings provide evidence that the neuroprotective effects of SZJN formula in experimental VD maybe mediated through promoting the expression of clathrin-mediated endocytosis and reducing NMDARs-associated glutamate excitotoxicity. SZJN formula serves as a promising alternative therapy and may be a useful herbal medicine for preventing progression of VD.
Collapse
Affiliation(s)
- Danfeng Tian
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yangyang Guo
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Dandan Zhang
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Qiang Gao
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Ganlu Liu
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Jingfeng Lin
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Ze Chang
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yuchun Wang
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Rui Su
- Department of Scientific Research, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
| | - Zhenyun Han
- Shenzhen Hospital of Beijing University of Chinese Medicine (Longgang), No. 1 Dayun Road, Longgang District, Shenzhen, 518172, China.
| |
Collapse
|
8
|
Munarko H, Sitanggang AB, Kusnandar F, Budijanto S. Effect of different soaking and germination methods on bioactive compounds of germinated brown rice. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15194] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Hadi Munarko
- Department of Food Science and Technology IPB University Kampus IPB Darmaga 16680 Bogor Indonesia
- Department of Food Technology Faculty of Engineering UPN “Veteran” East Java Surabaya 60294 Indonesia
| | - Azis Boing Sitanggang
- Department of Food Science and Technology IPB University Kampus IPB Darmaga 16680 Bogor Indonesia
| | - Feri Kusnandar
- Department of Food Science and Technology IPB University Kampus IPB Darmaga 16680 Bogor Indonesia
| | - Slamet Budijanto
- Department of Food Science and Technology IPB University Kampus IPB Darmaga 16680 Bogor Indonesia
| |
Collapse
|